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Abstract – In this article, we present a new hybrid differential evolution (DE) which employs a topographical heuristic in-
troduced in the early nineties as part of a global optimization method. This heuristic is used to select individuals from the DE
population in order to be starting points of instances of the Hooke–Jeeves algorithm. The solutions achieved in this phase are
potential candidates for the next generation. The method, called TopoDE, is compared with other stochastic optimization algo-
rithms using challenging benchmark problems. The results obtained are quite promising.
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1 INTRODUCTION

Differential evolution [1] is a stochastic direct search populational algorithm, originally designed for continuous optimization,
in which the optimality search is performed mutating, using crossover and selecting the individuals along the generations. DE is
an evolutionary optimization algorithm that the mutation operator has a crucial role, being the main responsible for the algorithm’s
efficiency. In fact, this algorithm owes its name to mutation, as this mechanism is based on the difference vector between
individuals of the current population. A great number of variations of the original DE have been proposed in the literature [2].
There have been many applications of differential evolution to practical problems [3–6].

In this article, we present a new variant of the differential evolution algorithm. This algorithm, called Hybrid Topographical
Differential Evolution (TopoDE), is a hybridization of DE and the Hooke–Jeeves direct local search algorithm [7] which the
topographical heuristic [8] is used to select the individuals of the former algorithm that will be initial solutions for instances
of the latter. This heuristic is based on the topographical information on the objective function, and originally is part of an
optimization method, the Topographical Algorithm [8–12].

Let’s describe some algorithms from the literature that are similar to TopoDE. Ali and Törn [13] introduced the Topographical
Differential Evolution (TDE), which employs the topographical heuristic within the DE framework in a different manner from our
work. Their method uses two sets of populations. The first set is formed by the regular DE population. The second set, by its turn,
is formed by points rejected by DE along the generations. These points form the topograph that will generate, after a determined
number of generations, initial solutions for a local search algorithm. Then, a certain number of the final solutions obtained by
local search replace the worst individuals from the first set. Caponio et al. [14] proposed the fast adaptive memetic algorithm
(FAMA), which employs the Hooke–Jeeves and Nelder–Mead [15] local search methods executing the former only on the elite
individual and the latter on 11 randomly selected individuals.Tirronen et al. [16] presented the Enhanced Memetic Differential
Evolution (EMDE), which combines DE with three local search algorithms, among them Hooke-Jeeves. These local search
algorithms are adaptively coordinated by means of a control parameter that measures fitness distribution among individuals
of the population and a novel probabilistic scheme. Moser and Chiong [17] presented a new Hooke-Jeeves based Memetic
Algorithm (HJMA) for dynamic function optimization, which is a hybridization of Hooke–Jeeves pattern search and Extremal
Optimisation (EO), an optimization heuristic that was first introduced by Boettcher and Percus [18]. Recently, Domı́nguez–Isidro
and Mezura–Montes [19] introduced an adaptive local search coordination for a multimeme Differential Evolution to constrained
numerical optimization problems. The proposed approach associates a pool of direct local search operators within the standard
Differential Evolution, among them the method of Hooke–Jeeves.

The remainder of the paper is organized as follows. In the next section, the canonical differential evolution is described.
Section 3 provides a description of the topographical algorithm and of the method of Hooke–Jeeves followed by an exposition of
the new method. In section 4, TopoDE is compared against other stochastic optimization algorithms using challenging benchmark
problems. Finally, in section 5, conclusions are presented along with suggestions of further development.
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2 THE CANONICAL DIFFERENTIAL EVOLUTION ALGORITHM

In this section, we describe the canonical version of differential evolution, as introduced by Storn and Price [1]. DE is applied
to the minimization of an objective function f(x), where x is a continuous variable vector with domain [low,up] ⊂ <n.

Let’s describe DE in a pseudo-code style. The algorithm is outlined in Algorithm 1 and its operators are described in
Algorithms. 2, 3, 4, and 5.

Input parameters, which remain constant along the optimization process, are population size NP and, to be explained below,
crossover rateCR and scaling factor F . First of all, an initial random population is generated by function “initialize”, as described
in Algorithm 2. Note that each initial solution or individual must meet the boundary constraints. After that, inside a loop, the
evolutive process starts until a stopping criterion is satisfied.

The first operation inside the loop is mutation, described by funtion “mutate”, Algorithm 3. In mutation, a trial solution is
generated for each individual i as follows:

x̂i = xp(1) + F (xp(2) − xp(3)), (1)

where p(1), p(2), and p(3) are random indexes mutually different from each other and different from index i, and F is a scaling
factor in the range [0, 2]. The solution correspondent to the first random index, xp(1), is known as the base vector. This vector
is altered by the addition of the weighted difference of the two other solutions with indexes p(2) and p(3). The operation is
repeated as long as trial solution x̂i is outside the domain.

After mutation, population goes through crossover, as in Algorithm 4. In this operation, component j of offspring yi is found
from its parents xi and x̂i according to the rule

yji =

{
x̂ji , if Rj ≤ CR or j = Ii,

xji , otherwise,
(2)

where Ii is a random integer in range [0, n], Rj is a random in [0, 1], and crossover rate CR, also in [0, 1], controls the fraction
of parameter values that are copied from the trial solution x̂i. Note that alternative j = Ii assures that at least one component
will receive a mutated value.

Finally, there is the selection process, Algorithm 5, which defines the population of next generation as follows:

xNIter+1
i =

{
yNIteri , if f(yNIteri ) ≤ f(xNIteri ).
xNIteri , otherwise. (3)

The trial solution will only replace its counterpart in the current population if it’s equal or better than the latter. As pointed out
by Lampinen and Zelinka [20], in DE’s selection scheme, a trial vector is not compared against all the individuals in the current
population, but only against its counterpart.

Note that it’s in function “select” (Algorithm 5), that the best solution found so far and its fitness value are stored.
As termination criterion, one may use the number of generations (NIter in our pseudocode), the number of objective-function

evaluations, or, as in Kaelo and Ali [21], |fmax − fmin| < ε, where fmax and fmin are the maximum and minimum function
values within a generation.

Data: NP , CR, F .
Result: Optimal solution x∗, f(x∗).
begin

NIter ← 0
f(x∗

i )← 1.0E6
initialize()
repeat

NIter ← NIter + 1
mutate()
crossover()
select()

until a termination criterion is satisfied

Algorithm 1: The Differential Evolution Algorithm.

3 HYBRID TOPOGRAPHICAL DIFFERENTIAL EVOLUTION

3.1 The topographical algorithm

Between the early seventies and mid-nineties, a global optimization paradigm based on clustering was studied by some
researchers, mainly in Europe. The seminal article by Becker and Lago [22] was followed by, among others, Törn [23, 24],
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Timmer [25], Törn and Viitanen [8, 9], and Ali and Storey [26]. Ali [27] and Levi and Haas [28] present fine reviews on the
clustering methods. According to Törn and Zilinskas [29], the motivation for exploring clustering methods in based on the
following:

(a) It is possible to obtain a sample of points in the search space consisting of concentration of points in the neighborhood of
local minimizers of the objective function f ;

(b) The points in the sample can be clustered giving clusters identifying the neighborhoods of local minimizers and thus permit-
ting local optimization methods to be applied.

The original TA algorithm is non-iterative and based on the exploration of the search space [26]. It consists of three steps [9]:

1. A uniform random sampling of N points in the search space;

2. The construction of the topograph, which is a graph with directed arcs connecting the accepted sampled points on a k–
nearest neighbors basis, where the direction of the arc is towards a point with a larger function value. The minima of the
graph are the points better than their neighbors, i.e., the nodes with no incoming arcs;

3. The topograph minima are starting points for a local optimization algorithm. The best point obtained from all the executions
using each minimum as the initial solution is the result of the algorithm.

Originally, Törn and Viitanen [8, 9] obtained the initial solutions from step 1 sampling points in a unit hypercube, until N
points with their nearest neighbors farther than a threshold distance δ were obtained. Then, these points were denormalized. But
these authors mention that any other method that produces a very uniform covering can be used. In fact, they used the more
efficient quasi–random sampling [30, 31] in an iterative version of TA [10]. In their tests, Törn and Viitanen [9] used mostly
N = 100 or N = 200.

Step 2, the construction of the topograph, is the core of the method. First of all, an N × N symmetric distance matrix
is computed. Following that, an N × k matrix called kNN–matrix is constructed containing, for each point, the indexes of
its k–nearest neighbors sorted by distance. Next, this matrix, which is an undirected topograph, is transformed into a directed
topograph indicating if the reference is to a point with larger or smaller objective function value by giving the reference a plus or
minus sign, respectively [27]. The signs represent the directed arcs in the graph, a positive sign representing the “arrow head” of
the arc, and the negative sign the “start” of the arc [9]. Finally, the points that correspond to rows with only positive signs are the
topograph minima.

Let us illustrate how the topographical heuristic works by a simple illustrative example, adapted from Ali [27]. Suppose we
want to minimize the function

f(x, y) = x2 + y2, (4)

and that six points were sampled and their function values calculated: f(P1) = f(2, 5) = 29, f(P2) = f(1, 2) = 5,
f(P3) = f(3, 4) = 25, f(P4) = f(0, 1) = 1, f(P5) = f(5, 0) = 25, and f(P6) = f(4, 2) = 20.

First, the symmetric squared distance matrix D is constructed, where, for example, the element d13 corresponds to the
distance between P1 and P3:

D =


0 10 2 20 34 13
10 0 8 2 20 9
2 8 0 18 20 5
20 2 18 0 26 17
34 20 20 26 0 5
13 9 5 17 5 0

 (5)

Following that, the kNN–matrix is formed by each point’s k–nearest neighbors. Using k = 3, the nearest neighbors of P1

(the first row of D) are the points with indexes 3, 2, and 6, respectively. These elements will constitute the first row of the matrix.
The process goes on until the following matrix is obtained:

kNN =


3 2 6
4 3 6
1 6 2
2 6 3
6 2 3
3 5 2

 (6)

This matrix represents an undirected graph. Computationally, it is obtained sorting each row of D and taking the first k
elements’ indexes. The elements of the main diagonal of D receive a very large value (e.g., 108) before sorting, so that they are
not included in the kNN–matrix.
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Now, the elements of kNN will receive a plus or minus sign according to their functional values in relation to the value of
the point represented by the row index. The second row, for example, corresponds to P2, whose function value is equal to 5,
which is more than f(P4) = 1 (P4 is element knn21), but less than f(P3) = 13 and f(P1) = 29 (elements knn22 and knn23,
respectively). Therefore, knn21 will receive a minus sign and the other two elements a plus sign. The signed matrix becomes

kNN =


−3 −2 −6
−4 +3 +6
+1 −6 −2
+2 +6 +3
−6 −2 +3
+3 +5 −2

 (7)

As the only point that corresponds to a row with only positive signs is P4 = (0, 1), this will be the starting point for a local
optimization algorithm. When implementing the topographical heuristic, the signs can be attributed in the process of construction
of kNN.

In step 3, Törn and Viitanen [9] say that any local optimization method can be used. They employed a gradient–based
algorithm, as their tests were performed on algebraic test functions. We employ the Hooke–Jeeves algorithm, which is described
in the following subsection.

3.2 The Method of Hooke and Jeeves

The Hooke–Jeeves algorithm is a direct search algorithm, as it doesn’t make use of derivative information [32]. It performs
two types of search: an exploratory search and a pattern search. A summary of the method [33] is given below.

Initialization Step
Let d1, . . . ,dn be the coordinate directions. Choose a scalar ε > 0 to be used for terminating the algorithm. Furthermore, choose
an initial step size, ∆ ≥ ε, and an acceleration factor, α > 0. Choose a starting point, x1, let y1 = x1, let k = j = 1, and go to
the main step.

Main Step

1. If f(yj+∆dj) < f(yj), the trial is termed a success; let yj+1 = yj+∆dj , and go to Step 2. If, however, f(yj+∆dj) ≥
f(yj), the trial is deemed a failure. In this case, if f(yj − ∆dj) < f(yj), let yj+1 = yj − ∆dj , and go to Step 2; if
f(yj −∆dj) ≥ f(yj), let yj+1 = yj .

2. If j < n, replace j by j + 1, and repeat Step 1. Otherwise, go to Step 3 if f(yn+1) < f(xk), and go to Step 4 if
f(yn+1) ≥ f(xk).

3. Let xk+1 = yn+1, and let y1 = xk+1 + α(xk+1 − xk). Replace k by k + 1, let j = 1, and go to Step 1.

4. If ∆ ≤ ε, stop; xk is the solution. Otherwise, replace ∆ by ∆/2. Let y1 = xk, xk+1 = xk, replace k by k + 1, let j = 1,
and repeat Step 1.

Steps 1 and 2 above describe an exploratory search. In step 3, there is an acceleration along the direction xk+1−xk. Finally,
in step 4 the step size ∆ is reduced.

3.3 Description of the new method

The principle behind the new method is quite simple. Firstly, after the crossover process, the individuals are clustered
using the topographical heuristic with the k–nearest neighbors. Then, the topograph minima are starting points for instances
of the Hooke–Jeeves local search algorithm. If there is improvement, the solution obtained by the local search replaces its
correspondent topograph minimum. After that, the standard selection phase occurs. Algorithm 6 displays the method.

4 NUMERICAL COMPARISONS

4.1 Implementation and setup

Our tests were performed on a PC with 8 Gb RAM running Windows10 with a Intel Core i5-2410M processsor. Our op-
timization method was implemented in C using CodeBlock as a compiler. For its stochastic part, we used the pseudorandom
number generating algorithm developed by Matsumoto and Nishimura [34].

The Hooke–Jeeves routine inside our method was set up, for all the executions, with initial step size ∆ = 10−3, scalar
ε = 10−3 and acceleration factor α = 0.8.
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Data: NP , CR, F , k.
Result: Optimal solution x∗, f(x∗).
begin

NIter ← 0
f(x∗

i )← 1.0E6
initialize()
repeat

NIter ← NIter + 1
mutate()
crossover()
topographical()
HookeJeeves()
select()

until a termination criterion is satisfied

Algorithm 2: The new method, TopoDE.

As all optimization problems attacked in this work have known global minima, the new DE variant was run using the same ter-
mination criterion as in Siarry et al. [35], Hirsch et al. [36], Rios–Coelho et al. [37], which is ideal for an algorithm’s performance
assessment:

|f(x∗)− f(x)| ≤ ε1|f(x∗)|+ ε2, (8)

where f(x∗) is the global optimum, f(x) is the current best, coefficient ε1 = 10−4 corresponds to the relative error and
ε2 = 10−6 corresponds to the absolute error [35] .

4.2 Problems

4.2.1 Global Optimization Test Functions

As in Hirsch et al. [36],Csendes et al. [38],Hirsch et al. [39], Rios–Coelho et al. [37], we tested our algorithm using a testbed
proposed by Hedar and Fukushima [40]. As justified by these authors, “the characteristics of these test functions are diverse
enough to cover many kinds of difficulties that arise in global optimization problems”. Indeed, this testbed, whose functions
are described in Appendix A, contains functions with multiple global optima, with an isolated global optimum, and with high
dimensionality.

4.2.2 Chemical equilibrium problem

These nonlinear systems, introduced by Meintjes and Morgan [41], have been widely employed in the literature [36, 37, 42–44],
among others. They concern the combustion of propane (C3H8) in air (O2 and N2) to form ten products. This chemical reaction
generates a system of ten equations in ten unknowns, which can be reduced to a system of five equations in five unknowns [41].
We solve both systems formulating them as optimization problems. To see how this formulation is made, the interested reader
should see Appendix B.

First, let’s show the simplest system, consisting of five equations in five unknowns. It’s given by

f1 = x1x2 + x1 − 3x5
f2 = 2x1x2 + x1 + x2x

2
3 + R8x2 − Rx5 + 2R10x

2
2 + R7x2x3 + R9x2x4

f3 = 2x2x
2
3 + 2R5x

2
3 − 8x5 + R6x3 + R7x2x3

f4 = R9x2x4 + 2x24 − 4Rx5
f5 = x1(x2 + 1) + R10x

2
2 + x2x

2
3 + R8x2 + R5x

2
3 + x24 − 1 + R6x3

+R7x2x3 + R9x2x4

(9)

where 

R = 10
R5 = 0.193

R6 = 0.002597/
√

40

R7 = 0.003448/
√

40
R8 = 0.00001799/40

R9 = 0.0002155/
√

40
R10 = 0.00003846/40

Variables xi are surrogates for atomic combinations, which means that only positive values make physical sense. Among the
four real solutions reported by Meintjes and Morgan [41], only one has all-positive components, x∗ = (0.0031, 34.59, 0.0650,
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0.8594, 0.0369). Hence, if the search domain is taken from the positive side, as we did using the interval [0, 100], this will be the
only solution.

The original system consisting of ten equations in ten unknowns, by its turn, is defined as follows:

f1 = n1 + n4 − 3
f2 = 2n1 + n2 + n4 + n7 + n8 + n9 + 2n10 − R
f3 = 2n2 + 2n5 + n6 + n7 − 8
f4 = 2n3 + n9 − 4R
f5 = K5n2n4 − n1n5
f6 = K6n

1/2
2 n

1/2
4 − n1/21 n6

(
p
nT

)1/2
f7 = K7n

1/2
1 n

1/2
2 − n1/24 n7

(
p
nT

)1/2
f8 = K8n1 − n4n8

(
p
nT

)
f9 = K9n1n

1/2
3 − n4n9

(
p
nT

)1/2
f10 = K10n

2
1 − n24n10

(
p
nT

)

(10)

where 

nT =
∑10
i=1 ni

p = 40 atm
R = 10
K5 = 0.193
K6 = 0.002597
K7 = 0.003448
K8 = 0.00001799
K9 = 0.0002155
K10 = 0.00003846

Variables ni represent the number of moles of product i formed per mole of propane consumed, as given by Table 1.

Table 1: Products of propane combustion [41].

Product Subscript Description
CO2 1 Carbon dioxide
H2O 2 Water
N2 3 Nitrogen
CO 4 Carbon monoxide
H2 5 Hydrogen
H 6 Hydrogen atom
OH 7 Hydroxyl radical
O 8 Oxygen atom
NO 9 Nitric oxide
O2 10 Oxygen

4.3 Results

Both DE and TOPODE were design to stay in a loop until it reaches the stopping criteria written on equation 8. In order to
avoid an infinity loop, in the beginning of each new population, it also checks if the total number of function evaluations (FE) has
reached the maximum of 106. In this case the loop stops and this run has failed to find the local minima. It means that successful
runs are the ones that stops before the new population reaches 106 function evaluations.

Table 2 displays the number of FE necessary for the new method to reach the stopping criterion 8 after one-hundred runs
using different seeds for each run. For all of the problems the method achieved 100% success rate, being able to find the local
minima in all of executions.

For the sake of comparison, the same functions and systems of equations problems were also solved by using the canonical
form of the Differential Evolution Method (DE) and the results are present in Table 3. For some problems, the canonical form of
the algorithm was not able to find the global optima reaching, thus, lower success rates.
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Despite needing, for some problems, more function evaluations to find the global minima than the canonical DE, TopoDE
was successful in all of them. This fact corroborates the efficiency of the new method.

Table 2: TopoDE: average, maximum and minimum numbers of functions evaluations, and success rate.
Problem Average FE Maximum FE Minimum FE Success Rate
Branin 1,268 4,189 317 100%

Chemical Equilibrium 197,098 1,415,105 20,996 100%
Easom 2,024 5,479 376 100%

Goldstein-Price 1,236 13,407 334 100%
Hartman-3 2,168 7,803 621 100%
Hartman-6 5,710 66,638 1,302 100%

Rosenbrock-2 1,729 12,594 400 100%
Rosenbrock-5 20,213 151,571 1,409 100%

Rosenbrock-10 148,056 1,510,708 4,432 100%
Shekel-5 5,818 19,945 867 100%
Shekel-7 6,974 31,689 876 100%

Shekel-10 6,485 44,180 869 100%
Shubert 1,137 4,615 363 100%

Ten-variable Chemical Equilibrium 3,656,715 133,182,273 2,883 100%
Zakharov-5 4,640 59,207 1,014 100%

Zakharov-10 24,281 252,076 3,790 100%

5 CONCLUSIONS

This paper was written in order to present a new optimization method, the topographical differential evolution (TopoDE),
which combines Differential Evolution, the Topographical Algorithm, and Hooke–Jeeves. This algorithm was used, with great
success, to find the optima for FOURTEEN benchmark test functions and two systems of equations. TopoDE outperformed the
canonical form of Differential Evolution, demonstrating, thus, its potential for further application.
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in Global Optimization, pp. 353–363. Kluwer Academic Publishers, 1996.

[11] W. F. Sacco, N. Henderson and A. C. Rios-Coelho. “Topographical global optimization applied to nuclear reactor core
design: Some preliminary results”. Annals of Nuclear Energy, vol. 65, pp. 166–173, 03 2014.

[12] N. Henderson, M. de Sa Rego, W. F. Sacco and R. A. Rodrigues Jr. “A new look at the topographical global optimization
method and its application to the phase stability analysis of mixtures”. Chemical Engineering Science, vol. 127, pp. 151–
174, 05 2015.

[13] M. Ali and A. Torn. “Optimization of Carbon and Silicon Cluster Geometry for Tersoff Potential using Differential Evolu-
tion”. pp. 287–300, 01 2000.

[14] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore and M. Sumner. “A Fast Adaptive Memetic Algorithm for Online and
Offline Control Design of PMSM Drives”. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a
publication of the IEEE Systems, Man, and Cybernetics Society, vol. 37, pp. 28–41, 03 2007.

[15] J. Nelder and R. Mead. “A Simplex Method for Function Minimization”. Computer J., vol. 7, pp. 308–313, 01 1965.

[16] V. Tirronen, F. Neri, T. Karkakinen, K. Valjus and T. Rossi. “An Enhanced Memetic Differential Evolution in Filter Design
for Defect Detection in Paper Production”. Evolutionary Computation, vol. 16, pp. 529–555, 2008.

[17] I. Moser and R. Chiong. “A Hooke-Jeeves Based Memetic Algorithm for Solving Dynamic Optimisation Problems”. pp.
301–309, 06 2009.

[18] S. Boettcher and A. G. Percus. “Extremal Optimization: Methods derived from Co–Evolution.” In Proceedings of Genetic
and Evolutionary Computation Conference, pp. 825–832, 01 1999.

[19] S. Dominguez and E. Mezura-Montes. “A cost-benefit local search coordination in multimeme differential evolution for
constrained numerical optimization problems”. Swarm and Evolutionary Computation, vol. 39, pp. 249–266, 2018.

[20] J. Lampinen and I. Zelinka. “Mixed variable non-linear optimization by differential evolution”. In 2nd International
Prediction Conference, volume 99, pp. 44–55. Proceedings of the Nostradamus, 1999.

49



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 17, Iss. 2, pp. 42–52, 2019

c© Brazilian Computational Intelligence Society

[21] P. Kaelo and M. Ali. “A numerical study of some modified differential evolution algorithms”. European Journal of
Operational Research, vol. 169, pp. 1176–1184, 03 2006.

[22] R. W. Becker and G. V. Lago. “A global optimization algorithm”. Proceedings of the 8th Allerton Conference on Circuits
and Systems Theory, pp. 3–12, 01 1970.

[23] A. Törn. “Global optimization as a combination of global and local search.” In Proceedings of Computer Simulation Versus
Analytical Solutions for Business and Economic Models, pp. 191–206, 1973.

[24] A. A. Törn. “A search-clustering approach to global optimization”. In L.C.W. Dixon and G.P. SzegÃ¶ (Eds.), Towards
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Appendix A Function Definitions

A.1 Branin [45].

f(x) = a(x2 − bx21 + cx1 − d)2 + g(1− h)cos(x1) + g,
where a = 1, b = 5/(4π2), c = 5/π, d = 6, g = 10, h = 1/(8π).
Domain: [−5, 15]2

Global minima: x∗ = (−π, 12.275), (π, 2.275), (3π, 2.475); f(x∗) = 5/(4π).

A.2 Easom [46].

f(x) = −cos(x1)cos(x2)e(−(x1−π)2−(x2−π)2)

Domain: [−100, 100]2

Global minimum: x∗ = (π, π); f(x∗) = 1.

A.3 Goldstein–Price [45].

f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]
[30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

Domain: [−2, 2]2

Global minimum: x∗ = (0,−1); f(x∗) = 3.

A.4 Shubert [47].

f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]
Domain: [−10, 10]2

Global minima:
x∗ ≈ (−7.0835, 4.8580), (−7.0835,−7.7083), (−1.4251,−7.0835), (5.4828, 4.8580),

(−1.4251,−0.8003), (4.8580, 5.4828), (−7.7083,−7.0835), (−7.0835,−1.4251),
(−7.7083,−0.8003), (−7.7083, 5.4828), (−0.8003,−7.7083), (−0.8003,−1.4251),
(−0.8003, 4.8580), (−1.4251, 5.4828), (5.4828,−7.7083), (4.8580,−7.0835),
(5.4828,−1.4251), (4.8580,−0.8003); f(x∗) ≈ −186.7309.

A.5 Hartmann [45].

fn,m(x) = −
∑m
i=1 αie

−
∑n

j=1 A
(n)
ij (xj−P (n)

ij )2 , where

A(3) =


3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35


P(3) = 10−4


6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8838


A(6) =


10 3 17 3.05 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


P(6) = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381
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α = [1, 1.2, 3, 3.2]
Domain: [0, 1]n

Global minimum:
n = 3,m = 4: x∗ ≈ (0.114614, 0.555649, 0.852547); f3,4(x∗) ≈ −3.86278.
n = 6,m = 4: x∗ ≈ (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);

f6,4(x∗) ≈ −3.32237.

A.6 Rosenbrock [48].

f(x) =
∑n−1
j=1 [100(x2j − xj+1)2 + (xj − 1)2]

Domain: [−10, 10]n

Global minimum: x∗ = (1, . . . , 1); f(x∗) = 0.

A.7 Shekel [45].

f4,m(x) = −
∑m
i=1[(x− ai)T (x− ai) + ci]

−1, where

a =



4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
7.0 3.0 7.0 3.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 3.6 7.0 3.6


c =

[
0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5

]
Domain: [0, 10]4

Global minimum: x∗ = (4, 4, 4, 4);
f4,5(x∗) ≈ −10.1532, f4,7(x∗) ≈ −10.4029, f4,10(x∗) ≈ −10.5364.

A.8 Zakharov [40].

f(x) =
∑n
i=1 x

2
i + (

∑n
i=1 0.5ixi)

2 + (
∑n
i=1 0.5ixi)

4

Domain: [−5, 10]n

Global minimum: x∗ = (0, . . . , 0); f(x∗) = 0.

Appendix B Nonlinear systems formulated as optimization problems

Let us consider the problem of computing solutions of nonlinear systems with simple bound constraints. We can express this
problem as 

f1(x) = 0
f2(x) = 0

...
fN (x) = 0

s.t. x ∈ [a,b] ⊆ <n, (B-1)

where x = (x1, . . . , xN )T ∈ <n, fi : <n → < and [a,b] ≡ [a1, b1]×[a2, b2]×. . .×[aN , bN ], with ai < bi, for all i = 1, . . . , N .
Note that vectors a = (a1, a2, . . . , aN ) and b = (b1, b2, . . . , bN ) are specified as the lower and upper bounds of the variables,
and set [a,b] is a box in <n, where there exist one or more roots of the nonlinear system.

Let us suppose that function fi : <n → <, for any i = 1, . . . , N , can be nondifferentiable or even discontinuous, but it must
be bounded in [a,b].

If F = (f1(x), . . . , fN (x))T , the problem described by Eq. (B-1) can be reformulated as the following optimization problem:

Min f(x) s.t. x ∈ [a,b] ⊆ <n (B-2)

In Eq. (B-2), f : [a,b] ⊂ <n → < is a nonnegative and possibly multimodal merit function, given by

f(x) = FT (x)F (x), (B-3)

Since the system represented by Eq. (B-1) has solution(s) in [a,b], then, in terms of results, to solve this system is equivalent
to find the global minimum(a) of the optimization problem given by Eq. (B-2).
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