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Abstract – The recombination of solutions is important for population metaheuristics and other optimization algorithms. Re-
cently, an efficient recombination operator that preserve the interaction between the decision variables was proposed for pseudo-
Boolean optimization. Partition Crossover (PX) groups decision variables in order to allow the decomposition of the evaluation
function. PX allows to find, with computational cost proportional to the cost of evaluating one solution of the problem, the best
solution among a number of offspring solutions that grows exponentially with the number of recombining components found by
the operator. PX has been so far used only in problems where the information about the linkage between the decision variables
is known a priori. This information is stored in a graph, know as variable interaction graph. We propose a new PX for pseudo-
Boolean optimization problems that can be used when the variable interaction graph is not known a priori. For this purpose,
it is necessary to estimate the linkage between the decision variables by using procedures generally employed in estimation of
distribution algorithms. The experimental results show that the new recombination operator generally improves the number of
offspring that are better than their parents when compared to traditional recombination operators. However, generating better
offspring does not necessarily imply in better performance for the evolutionary algorithm.
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1. Introduction

Genetic algorithms (GAs) are evolutionary algorithms initially proposed by John Holland [1], which combine the use of a
population of solutions, heredity of characteristics, and selection and transformation operators inspired by biological mechanisms.
In evolutionary algorithms, individuals are interpreted as candidate solutions for a problem and the fittest individual represents the
best solution found. GA, in a simple way, involves three types of operators: selection, recombination and mutation. The selection
operators choose the individuals in a population for transformation according to their fitness. The recombination operator, also
called crossover operator, recombine decision variables from the parents to generate new individuals (offspring). The mutation
operator randomly transforms decision variables of a solution.

The recombination assumes an important role in population metaheuristics, particularly in GAs [2]. However, recombi-
nation is not used only in population metaheuristics, but in other optimization paradigms too. For example, multi-trial LKH
(Lin-Kernigan-Helsgaun), that is one of the most successful heuristics for the Traveling Salesman Problem (TSP), recombines
solutions generated in different trials of local search [3]. Multi-trial LKH obtained success in finding the global optimal in all
instances researched by K. Helsgaun and holds records for several instances where optimal solutions are not known [4].

The process of recombining locally optimal solutions found in different runs of an algorithm, or by different algorithms, makes
the research for efficient recombination operators of great importance for the area of optimization in general. In evolutionary
computation, recombination operators are generally random and do not preserve the relationship between decision variables. In
GAs, the term genetic linkage is used to represent the interaction between decision variables.

Partition Crossover (PX) is a deterministic crossover that explores the decomposition of the evaluation function and the
linkage between decision variables. PX was first proposed by Whitley et al. [5, 6] for the Travelling Salesman Problem. In [7],
PX was extended for pseudo-Boolean problems and in [8] it was used in a clustering problem where the decision variables
are integers. Basically, partition crossover groups the decision variables into p subsets. The subsets are defined through the
identification of connected components in a recombination graph. The recombination graph is obtained by removing, from the
variable interaction graph, common features found in two parents .

The variable interaction graph stores the information of the linkage between decision variables in a given instance of an
optimization problem. The decomposition of the interaction graph allows to find the best solution among 2p possible offspring
solutions in computational cost similar to evaluating two solutions1, where p is the number of components found in the recombi-
nation graph. This is possible because PX explores the linear decomposition of the evaluation function (or fitness function).

All partition crossover presented in the literature require that the variable interaction graph be known a priori, i.e., before
starting the optimization procedure. In all PX proposed in the literature by now, the variable interaction graph is obtained by
analyzing the evaluation function of the instance of the problem. However, there are many problems where it is not possible to
build the variable interaction graph by analyzing the evaluation function. Problems where information of the fitness function is

1For example, in TSP, the cost of evaluating a solution is O(N), where N is the number of the graph vertices.
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not explicitly explored by the algorithm are know as black-box problems. On the other hand, problems where this information
is explicitly explored are known as gray-box problems [9]. All PX proposed in the literature by now can be applied only to
gray-box problems.

In this work, we propose a PX that can be used in black-box pseudo-Boolean optimization problems, i.e., it is not necessary
to know a priori the variable interaction graph. In the proposed PX, the variable interaction graph is estimated during the
optimization procedure. In order to estimate the interaction graph, procedures employed in estimation of distribution algorithms
(EDAs) are used. We use procedures of a popular EDA: the Bayesian optimization algorithm (BOA). BOA was proposed by
Pelikan et al. [10] and makes use of Bayesian Networks (BNs) to encode and represent the probabilistic model that is used here
as the variable interaction graph [11, 12]. The PX proposed here is called Bayesian Partition Crossover (BPX). BPX uses the
same recombination procedures used by the PX for pseudo-Boolean problems proposed in [7]. However, it uses BNs to model
the variable interaction graph.

2. Proposed Method

An important concept related to the theory of GAs is the concept of hyperplanes (or schemata). Hyperplanes are subsets
of decision variables that can be recombined and transformed in order to improve the fitness of the solutions [13]. The GAs
implicitly manipulate large amounts of hyperplanes in order to improve solutions.

The first step of a GA is the initialization of candidate solutions; in general, individual of the initial population are randomly
generated. Then, the population is evaluated using the fitness function. The fitness of the individuals is used to select parents that
will be reproduced. The offspring are then added to the current population. This process is repeated until a stop criterion is met.

There are different genetic operators employed in GAs. Regarding crossover, the traditional operators in literature, e.g. 2-
point crossover and uniform crossover, are random and "blind", which means that they cut and recombine subsets of decision
variables without identifying possible good hyperplanes. In other words, the genetic linkage, represented by hyperplanes, are
not necessarily preserved. PX for pseudo-Boolean problems, on other hand, preserve good hyperplanes by decomposing the
interaction graph according to the information present in the parents.

2.1. PX for Pseudo-Boolean Problems

A pseudo-Boolean function has the form f : Bn → R. If the evaluation function can be written as a sum of subfunctions
that depends on the maximum k variables, then we say the pseudo-Boolean function is also k-restrict. An example of k-restrict
pseudo-Boolean function is the NK landscape model. The fitness function for the NK landscape model is given by:

f(x) =
1

N

N∑
i=1

fi(x,mi) (1)

where x ∈ BN is the candidate solution and the mask mi ∈ BN indicates the elements of x that influence subfunction fi.
Each mask mi has k = K + 1 ones. The element of x at position i and K other elements are equal to one, i.e., they influence
subfunction fi.

The NK model is considered hard for genetic algorithms with traditional recombination operators [14]. Traditional recom-
bination operators do not explore the interaction between decision variables to define which elements should be inherited from
one or another parent. In this way, the offspring generated by traditional recombination are usually worse than the parents be-
cause good hyperplanes are broken. As a consequence, good combinations for the subsets of decision variables that influence a
subfunction of the fitness function are broken.

The epistasis between decision variables in a pseudo-Boolean problem can be represented by a directed graph known as
variable interaction graph (VIG)2. The vertices of the VIG are the decision variables and the edges represent the interaction
between variables. When available, the information between the genetic linkage present in the fitness function can be used to
build the VIG. In the NK landscape model for example, if a decision variable i influences subfunction j in the fitness function
(Equation 1), then an edge is created from vertex i to vertex j.

The main idea of PX is the use of the information about common variables, found in the parents, to decompose the VIG and,
as a consequence, the fitness function. If the bits for the parents in a given vertex are equal (i.e., the vertex is common), then the
impact of inheriting the bit from one or another parent is the same. Thus, this vertex can be removed from the VIG. The resulting
graph is known as recombination graph. The connected components in the recombination graph indicate the bits that should
be inherited together from the parents. The connected components, known as recombining components, can be individually
evaluated.

The offspring’s fitness is computed as a sum of partial evaluations for the connected components inherited from the parents.
Figure 1 shows an example of recombination by PX. The VIG (Figure 1.a) is modified by removing edges from common vertices
(an alternative is to remove the common vertices). By applying a procedure (e.g., breadth-first search) to find the connected
components in the resulting graph (recombination graph), recombining components are found. Each component is defined by
elements of the solution influenced only by other elements within the component or by elements outside the component with
similar bis for both parents (Figure 1.b). Thus, the partial evaluation for each component is independent from the choice of one

2A undirected graph can also be used, depending on the implementation of PX.
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or another parent for the elements outside the component. The bits of the offspring are chosen according to the best evaluation,
from the bits of one or another parent, inside each component (Figure 1.c).

As a condition for PX to work, it is necessary that the VIG of the problem be known. In the NK landscape model, the
VIG is built by analyzing the fitness function; in particular, by analyzing the masks mi. However, this is not possible for all
pseudo-Boolean functions.

Figure 1: Example of PX for the NK landscape model with N = 6 and K = 2. a) VIG. In this example, the parents are x =
[1, 1, 0, 0, 1, 1]T (in blue) and y= [0, 1, 0, 1, 1, 1]T (in red). In order to identify the recombining components, an undirected graph
(recombination graph) is created from the VIG by removing all the edges from vertices i in which xi = yi. The recombining
components are the connected components of the resulting graph. Here two recombining components are identified: the first
contains vertices 4, 5 and 6; the second contains vertices 1, 2 and 3. c) The best offspring is generated by the recombination of
the best partial solutions (inside the recombining components). In this example, the offspring inherits the variables of the first
component from y and the variables of the second component from x.

2.2. Learning the Problem Structure

EDAs generate new solutions without making use of traditional operators employed in evolutionary algorithms [15]. Off-
spring are generated by finding partial solutions common to individuals with good fitness. The generation of new individuals
occurs through sampling using a probabilistic model based on the knowledge of the problem structure represented by BNs. BOA
uses BNs to represent the dependence between variables. Each variable corresponds to a vertex of the graph and the edges
indicate the dependence between variables.

Here, we propose to use the BNs created by BOA to represent the VIG in problems where the VIG cannot be built from the
analysis of the fitness function. The VIG is used to create the recombination graph in PX. Thus, only the procedure to build the
BN from BOA is employed in the proposed recombination operator.

The way BOA estimates the probabilistic model combines the knowledge a priori of the problem and the sampling of promis-
ing solutions selected from a initial population [10]. When the knowledge is not available, BOA estimates the BN only from the
sampled solutions [16, 17].

2.3. Bayesian Partition Crossover (BPX)

The BPX, proposed in this paper, is based on the PX operator and uses procedures of BOA to estimate the VIG of an instance
of a pseudo-Boolean problem. When the graph is estimated, PX can be applied. The main advantage is that, unlike traditional PX,
this operator can be applied to any pseudo-Boolean problem, since it is not necessary to know a priori the VIG. The procedure
used in BOA to build the BN is used here to build the VIG, but, unlike in BOA, the model is not built in every generation.

Here, a new VIG is built every ng generations. The parameter ng is defined in the beginning of the run. As in BOA, it
is expected that the network model generated in BPX will also be improved along the generations. The BN is created using
Algorithm K2 [18]. Starting with a BN without edges and N vertices, representing the problem variables, K2 uses a score metric
to evaluate how good a BN represents the dataset. A greedy search method is then used to maximize the score metric. In each
step of the greedy search, news edges are added to the BN. The gain of each insertion is calculated and used to accept or reject
the changes. Here, the BN is used to build the VIG employed in PX. After the VIG is created, the PX is used as described in
Algorithm 1.

Algorithm 1 presents PX for pseudo-Boolean problems. In Algorithm 1, we assume that the VIG is available. The first step
(line 6) is transferring all bits that are common to both parents to the offspring. Then, in line 7, the recombination graph is built
and the subset of connected components π is found using Breadth First Search3 In lines 8 to 16, the partial evaluation, gi, for the
partial solution inside the connected component, defined by π, for each parent is employed to select the corresponding bits from
one or another parent. Inside each recombining (connected) component, the offspring inherits the bits of only one parent. PX is

3Other algorithm to find connected components in a graph can be used in this step.

17



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 17, Iss. 2, pp. 15–26, 2019

c© Brazilian Computational Intelligence Society

greedy: for each component, PX selects the partial solution that results in the best partial evaluation gi. Thus, if p recombining
components are found, PX returns the best of 2p reachable offspring. For example, if p = 10, the best of 210 = 1024 individuals
is found. The time complexity for one application of PX is O(N ) when the maximum degree of the VIG is limited by a constant
K.

Here, the maximum degree of vertices of the BN (and also of the VIG) is given by K = 5. Thus, each variable is linked
to a maximum of 5 other variables. A high degree implies a higher computational cost for Algorithm K2 [19]. High vertex
degrees also generally implies in finding less connected components for PX. This is a limitation of PX: when the VIG is highly
connected, few recombining components are found, implying in a small number of recombination opportunities. By limiting K
here, this problems is minimized. The parameter K used in this work was defined through initial experiments.

The new BPX differs from the traditional PX [7] in two points: i) it uses an estimated VIG, as described before; ii) the partial
evaluations of the recombining components are estimated (Line 8 in Algorithm 1). In the traditional PX, the partial evaluations
of the recombining components are computed according to the knowledge of the subfunctions in the fitness function of the
problem. Here, we consider that these subfunctions are not available and should be estimated. In the method proposed here, the
subfunctions estimation is dependent on the problem. We will present the method for estimating the partial evaluations for the
recombining components for specific problems in Section 3.

Algorithm 1 Partition Crossover (PX) - Assuming Maximization
1: function PX(f,G,x,y)
2: Input: f . pseudo-Boolean function
3: Input: G . VIG
4: Input: x and y . parents
5: Output: z . offspring
6: z← x ∧ y . transferring common bits
7: π ← findConnectedComponents(G[x⊕ y])

8: Let f(x) =
∑|π|
i=1 g

i(x) and f(y) =
∑|π|
i=1 g

i(y)
9: for i = 1 until |π| do

10: if gi(x) > gi(y) then
11: z← z ∨ (x ∧ πi)
12: else
13: z← z ∨ (y ∧ πi)
14: end if
15: end for
16: end function

Algorithm 2 shows the hybrid GA with BPX that is used in the experiments. The first step of algorithm is to randomly
generating the individuals in the initial population (line 3). The individuals in the initial population are improved by first-
improvement local search, LSFI (step 4). LSFI transforms random bits and checks if there is an improvement. This process
is repeated until all bits are tested or an improvement is detected. The BN is estimated by Algorithm K2 (line 11), using the
individuals of the current population selected according to their fitness (line 10). The BN is used here as the VIG G. PX uses G
to recombine two parents, p1 and p2, in order to create an offspring Q(i) (line 19).

In the hybrid algorithm, the offspring is generated by recombination (line 19) or flip mutation (line 21). In order to preserve
the diversity of the population, part of the population is replaced by random individuals every 15 generations (lines 28 -30). Here,
10% of individuals are replaced by random individuals. All solutions are then improved by local search (line 31). The hybrid
algorithm was used on previous works with the PX [7].

3. Problems

Experimental results for three pseudo-Boolean problems are presented in Section 4: 0-1 knapsack problem, deceptive function
based on trap functions, and NK landscape model. The NK landscape model was used because the VIG is available by analyzing
the fitness function; as a consequence, BPX can be compared to PX in this problem. In the other two problems, PX cannot be
used; thus, BPX is compared only to traditional crossover. The next subsection present the three problems and how the partial
evaluation of the recombining components (Line 8 in Algorithm 1) are computed for each problem.

3.1. 0-1 Knapsack Problem

The 0-1 knapsack problem is a binary variation of a traditional combinatorial optimization problem. The problem is NP-hard
for the general case. Hybrid algorithms, composed of genetic algorithms and local search, have presented interesting results
for this problem [20]. Variation of this problem can be found in different real-world applications, e.g., in project selection and
economic planning [21, 22]. The objective of the 0-1 knapsack problem is to maximize the sum of the profits of items in the
knapsack (V ) without, however, exceeding the weight capacity (C) of it. The sum of profits items in the knapsack is given by:
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V (x) =

N∑
i=1

pixi (2)

Algorithm 2 Hybrid GA with BPX
1: Input: f . pseudo-Boolean function
2: for i← 1, npop do
3: P (i) = randomIndividual();
4: P (i) = LSFI(P (i)); . Local Search with First Improvement
5: end for
6: g ← 0
7: r ← 0
8: while terminated condition is not satisfied do
9: if g = 0 or g = ng then

10: S ← selectPromisingSolutions(P );
11: G← BayesianNetwork(S); . building the VIG
12: g ← 0
13: end if
14: g ← g + 1
15: Q(1) = bestSolution(P );
16: for i← 2, npop do
17: (p1,p2) = selection (P);
18: if random() < pcross then
19: Q(i)← px(f,G,p1,p2); . execute PX with the graph generated by BN
20: else
21: Q(i) = mutation(p1);
22: end if
23: end for
24: if r=15 then
25: Q(1) = bestSolution(Q);
26: Q(1) = LSFI(Q(1));
27: for i← 2, npop do
28: if i < 0.1 ∗ npop then
29: Q(i) = randomIndividual();
30: end if
31: Q(i) = LSFI(Q(i));
32: end for
33: r ← 0
34: end if
35: r ← r + 1
36: P ← Q;
37: end while

where pi is the profit for the i-th item and x ∈ BN is the candidate solution where:

xi =

{
1 , if the i-th object is selected
0 , otherwise

(3)

The sum of weights should be constrained by:

W (x) =

N∑
i=1

wixi ≤ V (4)

where wi is the weight of the i-th item. In our experiments, we use the following penalty function [23, 24]:

R(x) =

{
0, if W (x) ≤ V

α (W (x)− C) , otherwise (5)

where α = maxi=1,...,N (piwi). Thus, the 0-1 knapsack fitness function is given by:

f(x) = V (x)−R(x) (6)
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In BPX, the partial evaluation (see Algorithm 1) for each recombining component πi is computed by summing the profits for
the decision variables inside the recombining component:

gi(x) =
∑
j∈πi

pjxj (7)

3.2. Deceptive Functions

Unatation functions depend only on the number of 1s in a string x ∈ BN , regardless of the position in the same [25]. The
study of this type of function is interesting since its understanding and manipulation are easy. There are only N + 1 different
function values for a search space with size 2N . Unatation functions can be used to create trap functions and deceptive functions
for GAs. In a trap function, a candidate solution with all alleles equal to 1 is the global optimum and another candidate solution
with all alleles equal to 0 is a local optimum with a large basin of attraction [26]. A trap function for a candidate solution x ∈ BN
is created when:

f(x) =

{
a
b (z − u(x), if u(x) ≤ z
b

N−z (u(x)− z), otherwise (8)

where u(x) =
∑N
i=1 xi is the unatation function, b and a are respectively the fitness of the global and local optima, and z controls

the size of the basin of attraction for the local optimum.
In BPX, the partial evaluation (see Algorithm 1) for each recombining component πi is computed by summing the contribu-

tions in Equation 8 for the decision variables inside the recombining component:

gi(x) =

{
a
b (z − u

i(x), if ui(x) ≤ z
b

N−z (u
i(x)− z), otherwise (9)

where:

ui(x) =
∑
j∈πi

xj (10)

is the unitation function for the decision variables inside recombining component πi.

3.3. NK Model

The NK Model, or NK Landscape, is a problem introduced by Stuart Kauffaman [27] and is one of the most popular classes
of problems for testing optimization algorithms on random instances [28]. In this model, N represents the number of genes in
the chromosome and each gene interacts with K other genes. The genes interactions is given by two types of neighborhood in
the model: adjacent and random. In adjacent neighborhood, each genes interact withK other adjacent genes adjacent. In random
neighborhood, each gene interacts with K other random genes.

The fitness function is computed by using Equation 1. By changing K, the difficult of the problem changes because the
number of local optima in the fitness landscape changes.

In BPX, the partial evaluation (see Algorithm 1) for each recombining component πi is computed by summing the contribu-
tions in Equation 1 for the decision variables inside the recombining component:

gi(x) =
1

N

∑
j∈πi

fj(x,mj) (11)

4. Experimental Results

Results of experiments with the three problems described in Section 3 are presented here. In all problems, BPX was compared
to uniform (UN) and 2-point (2PT) crossover. The same hybrid GAs are used; the only difference among the algorithms is the
recombination operator. As commented before, BPX was compared to PX only when it was possible to compute the VIG a
priori, i.e., for the NK Landscapes. For the two other problems, we also show results where BPX is combined with UN and
2PT. The combined strategies are respectively called BPX+UN and BPX+2PT. These combinations have been tested in order to
investigate the potential of combining exploratory characteristics of the traditional operators with the exploitative characteristics
of BPX. We still investigated the impact of using LSFI or not in these two problems.

In the experiments, a new BN is generated every ng = 300 generations (Algorithm 2). Elitism and tournament selection are
used; the size of the tournament pool is 3. The crossover rate is pcross = 0.6 and the mutation rate is pmut = 1

N . The size of the
population is npop = 50 for the experiments with the NK model and npop = 200 for the experiments with other problems. The
number of runs is nruns = 50 and the stop criteria is the number of generations when equal to or greater then twenty thousand
generations.

The algorithms were evaluated according to the following criteria:

1. Mean fitness: for each run, the best fitness is stored. The mean fitness value is the mean of the best fitness over all runs.
20
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2. Percentage of individuals better than parents: for each run, the total number of offspring generated by crossover that
are better than their respective parents is stored. This number value stored is divided by the total number of recombination
operations performed during the run. This is done only for the 1000 first generations because improvements are rare in late
generations. At the end, a percentage of this operations is presented.

3. Percentage of individuals better than best: for each run, the total number of offspring generated by crossover that are
better than the current best individual (found by the GA in the current run). At the end, the total number is divided by the
total number of recombination operations performed during the run. Again, this is done only for the 1000 first generations
and a percentage of this operations is presented.

The Wilcoxon Signed-Rank Test with significance level equal to 95% was used to statistically compare the results of the GA
with the different recombination operators.

4.1. NK Model

The hybrid GA with different crossover operators was applied to the NK Model with N = {100, 300, 500} and with K =
{1, 2, 3, 5, 10} for the adjacent and random neighborhood models. The results for the mean fitness are presented in tables 1
and 2. The results for the percentage of individuals better than parents are presented in tables 3 and 4, while the percentage of
individuals better than best are presented in tables 5 and 6.

Table 1: Mean fitness (and standard deviation) for the hybrid GA with different recombination operators for the experiments with
the NK Landscapes with adjacent neighborhood. A symbol + or − for Alg. A indicates that the result for BPX is respectively
better or worse than the result for Alg. A. The symbol s indicates that the result is statistically significant. The best results are in
bold.

N K UX 2PT PX BPX
100 1 0.7169± 0.0172 (-) 0.7184± 0.0173 (-) 0.7187 ± 0.0172 (-) 0.7162 ± 0.0173
100 2 0.7385± 0.0136 (+) 0.7459± 0.0140 (s-) 0.7479 ± 0.0138 (s-) 0.7394 ± 0.0160
100 3 0.7469± 0.0135 (-) 0.7577± 0.0113 (s-) 0.7630 ± 0.0112 (s-) 0.7442 ± 0.0141
100 5 0.7444± 0.0139 (-) 0.7620± 0.0111 (s-) 0.7670 ± 0.0113 (s-) 0.7417 ± 0.0120
100 10 0.7296± 0.0118 (-) 0.7407 ± 0.0100(s-) 0.7245± 0.0145 (+) 0.7288 ± 0.0122

300 1 0.7158± 0.0100 (-) 0.7172± 0.0099 (-) 0.7201 ± 0.0098 (s-) 0.7155 ± 0.0102
300 2 0.7323± 0.0109 (+) 0.7374± 0.0103 (s-) 0.7473 ± 0.0095 (s-) 0.7336 ± 0.0106
300 3 0.7379± 0.0092 (-) 0.7438± 0.0080 (s-) 0.7632 ± 0.0067 (s-) 0.7379 ± 0.0082
300 5 0.7345± 0.0085 (+) 0.7415± 0.0071 (s-) 0.7596 ± 0.0059 (s-) 0.7351 ± 0.0076
300 10 0.7144± 0.0080 (s+) 0.7220 ± 0.0077 (s-) 0.7138± 0.0080 (s+) 0.7178 ± 0.0077

500 1 0.7114± 0.0082 (-) 0.7132± 0.0090 (-) 0.7199 ± 0.0084 (s-) 0.7112 ± 0.0085
500 2 0.7250± 0.0079 (-) 0.7291± 0.0086 (s-) 0.7473 ± 0.0074 (s-) 0.7247 ± 0.0091
500 3 0.7280± 0.0063 (+) 0.7341± 0.0069 (s-) 0.7641 ± 0.0047 (s-) 0.7286 ± 0.005
500 5 0.7259± 0.0070 (-) 0.7289± 0.0058 (s-) 0.7575 ± 0.0055 (s-) 0.7241 ± 0.0063
500 10 0.7046± 0.0058 (+) 0.7090 ± 0.0066 (s-) 0.7038± 0.0063 (+) 0.7057 ± 0.0065

Table 2: Mean fitness of the GA for the NK Landscapes with random neighborhood.
N K UX 2PT PX BPX

100 1 0.7119± 0.0184 (+) 0.7121± 0.0186 (+) 0.7146 ± 0.0179 (-) 0.7121 ± 0.0187
100 2 0.7391± 0.0120 (-) 0.7375± 0.0136 (-) 0.7420 ± 0.0132 (-) 0.7366 ± 0.0144
100 3 0.7498 ± 0.0164 (-) 0.7496± 0.0168 (-) 0.7456± 0.0150 (-) 0.7450 ± 0.0162
100 5 0.7478± 0.0184 (+) 0.7525 ± 0.0143 (-) 0.7470± 0.0140 (+) 0.7498 ± 0.0146
100 10 0.7272± 0.0137 (-) 0.7295 ± 0.0128(-) 0.7268± 0.0146 (+) 0.7268 ± 0.0153

300 1 0.7120± 0.0112 (-) 0.7115± 0.0112 (-) 0.7157 ± 0.0109 (s-) 0.7111 ± 0.0111
300 2 0.7308± 0.0105 (-) 0.7297± 0.0103 (+) 0.7352 ± 0.0102 (s-) 0.7305 ± 0.0098
300 3 0.7395 ± 0.0087 (-) 0.7390± 0.0111 (-) 0.7366± 0.0091 (+) 0.7372 ± 0.0086
300 5 0.7407± 0.0079 (-) 0.7411 ± 0.0090 (-) 0.7399± 0.0082 (-) 0.7391 ± 0.0083
300 10 0.7252 ± 0.0112 (-) 0.7245± 0.0084 (-) 0.7239± 0.0088 (-) 0.7230 ± 0.0100

500 1 0.7059± 0.0081 (+) 0.7056± 0.0082 (+) 0.7142 ± 0.0076 (s-) 0.7060 ± 0.0078
500 2 0.7252± 0.0071 (-) 0.7252± 0.0080 (-) 0.7342 ± 0.0071 (s-) 0.7240 ± 0.0080
500 3 0.7316± 0.0068 (+) 0.7320± 0.0074 (+) 0.7329 ± 0.0056 (-) 0.7323 ± 0.0065
500 5 0.7352± 0.0094 (+) 0.7366 ± 0.0061 (-) 0.7362± 0.0073 (+) 0.7358 ± 0.0075
500 10 0.7211± 0.0073 (-) 0.7230 ± 0.0070 (-) 0.7200± 0.0079 (+) 0.7204 ± 0.0077

One can observe that PX presents the the best results for the percentage of individuals better than parents and for the percent-
age of individuals better than best. This is as expected result, because PX employs the exact VIG for the different instances of the
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Table 3: Percentage of individuals better than parents for the NK Model with adjacent neighborhood.
N K UX 2PT PX BPX

100 1 0.0855 ± 0.0068 (-) 0.0854 ± 0.0072 (-) 0.3842 ± 0.0163 (s-) 0.0821 ± 0.0209
100 2 0.0739 ± 0.0069 (s-) 0.0802 ± 0.0067 (s-) 0.3454 ± 0.0180 (s-) 0.0585 ± 0.0154
100 3 0.0616 ± 0.0058 (s-) 0.0754 ± 0.0066 (s-) 0.3016 ± 0.0165 (s-) 0.0486 ± 0.0130
100 5 0.0491 ± 0.0069 (s-) 0.0708 ± 0.0071 (s-) 0.1409 ± 0.0179 (s-) 0.0355 ± 0.0083
100 10 0.0346 ± 0.0043 (s-) 0.0607 ± 0.0051 (s-) 0.0423 ± 0.0115 (s-) 0.0244 ± 0.0061

300 1 0.1175 ± 0.0085 (s+) 0.0981 ± 0.0067 (s+) 0.3979 ± 0.0144 (s-) 0.1400 ± 0.0175
300 2 0.1045 ± 0.0078 (s+) 0.0917 ± 0.0074 (s+) 0.3559 ± 0.0182 (s-) 0.1124 ± 0.0200
300 3 0.0926 ± 0.0072 (s+) 0.0887 ± 0.0064 (s+) 0.3217 ± 0.0167 (s-) 0.0998 ± 0.0116
300 5 0.0802 ± 0.0072 (s+) 0.0808 ± 0.0063 (s+) 0.2881 ± 0.0179 (s-) 0.0874 ± 0.0133
300 10 0.0574 ± 0.0062 (s+) 0.0710 ± 0.0059 (s-) 0.1260 ± 0.0191 (s-) 0.0624 ± 0.0131

500 1 0.1320 ± 0.0074 (s+) 0.1030 ± 0.0056 (s+) 0.4048 ± 0.0154 (s-) 0.1596 ± 0.0169
500 2 0.1178 ± 0.0065 (s+) 0.0963 ± 0.0054 (s+) 0.3779 ± 0.0183 (s-) 0.1288 ± 0.0170
500 3 0.1108 ± 0.0066 (s+) 0.0924 ± 0.0045 (s+) 0.3359 ± 0.0173 (s-) 0.1220 ± 0.0144
500 5 0.0946 ± 0.0071 (s+) 0.0860 ± 0.0065 (s+) 0.3112 ± 0.0195 (s-) 0.1049 ± 0.0111
500 10 0.0738 ± 0.0075 (s+) 0.0768 ± 0.0057 (s+) 0.1722 ± 0.0180 (s-) 0.0806 ± 0.0108

Table 4: Percentage of individuals better than parents for the NK Model with random neighborhood.
N K Uniform 2-Points PX BPX

100 1 0.0894 ± 0.0082 (s+) 0.0767 ± 0.0070 (s+) 0.3815 ± 0.0154 (s-) 0.0974 ± 0.0201
100 2 0.0758 ± 0.0072 (s+) 0.0661 ± 0.0064 (s+) 0.2901 ± 0.0191 (s-) 0.0667 ± 0.0155
100 3 0.0662 ± 0.0068 (s+) 0.0561 ± 0.0051 (s+) 0.1507 ± 0.0209 (s-) 0.0572 ± 0.0116
100 5 0.0515 ± 0.0062 (s+) 0.0471 ± 0.0052 (s+) 0.0713 ± 0.0155 (s-) 0.0394 ± 0.0119
100 10 0.0346 ± 0.0047 (s-) 0.0347 ± 0.0048 (s-) 0.0168 ± 0.0082 (s+) 0.0264 ± 0.0066

300 1 0.1186 ± 0.0080 (s+) 0.0938 ± 0.0056 (s+) 0.3963 ± 0.0142 (s-) 0.1827 ± 0.0239
300 2 0.1060 ± 0.0065 (s+) 0.0850 ± 0.0049 (s+) 0.3671 ± 0.0200 (s-) 0.1339 ± 0.0163
300 3 0.0941 ± 0.0074 (s+) 0.0761 ± 0.0063 (s+) 0.2841 ± 0.0199 (s-) 0.1076 ± 0.0166
300 5 0.0807 ± 0.0074 (+) 0.0631 ± 0.0055 (s+) 0.1776 ± 0.0171 (s-) 0.0827 ± 0.0106
300 10 0.0558 ± 0.0065 (s+) 0.0476 ± 0.0052 (s+) 0.0989 ± 0.0162 (s-) 0.0639 ± 0.0136

500 1 0.1366 ± 0.0067 (s+) 0.1017 ± 0.0049 (s+) 0.3956 ± 0.0181 (s-) 0.2114 ± 0.0202
500 2 0.1218 ± 0.0072 (s+) 0.0909 ± 0.0050 (s+) 0.3859 ± 0.0161 (s-) 0.1567 ± 0.0160
500 3 0.1082 ± 0.0071 (s+) 0.0821 ± 0.0054 (s+) 0.3427 ± 0.0175 (s-) 0.1252 ± 0.0187
500 5 0.0935 ± 0.0072 (s+) 0.0709 ± 0.0045 (s+) 0.2257 ± 0.0165 (s-) 0.1031 ± 0.0119
500 10 0.0714 ± 0.0057 (s+) 0.0552 ± 0.0049 (s+) 0.1464 ± 0.0158 (s-) 0.0751 ± 0.0095

Table 5: Percentage of individuals better than best for the NK Model with adjacent neighborhood.
N K Uniform 2-Points PX BPX

100 1 0.0186 ± 0.0038 (s+) 0.0181 ± 0.0040 (s+) 0.0707 ± 0.0114 (s-) 0.0318 ± 0.0109
100 2 0.0159 ± 0.0035 (s+) 0.0159 ± 0.0031 (s+) 0.0779 ± 0.0108 (s-) 0.0221 ± 0.0076
100 3 0.0127 ± 0.0029 (s+) 0.0135 ± 0.0027 (s+) 0.0630 ± 0.0130 (s-) 0.0171 ± 0.0057
100 5 0.0090 ± 0.0029 (s+) 0.0109 ± 0.0027 (s+) 0.0371 ± 0.0124 (s-) 0.0112 ± 0.0044
100 10 0.0050 ± 0.0019 (+) 0.0067 ± 0.0021 (s-) 0.0202 ± 0.0078 (s-) 0.0051 ± 0.0029
300 1 0.0408 ± 0.0053 (s+) 0.0337 ± 0.0037 (s+) 0.1022 ± 0.0117 (s-) 0.0675 ± 0.0103
300 2 0.0363 ± 0.0041 (s+) 0.0303 ± 0.0035 (s+) 0.1257 ± 0.0127 (s-) 0.0525 ± 0.0121
300 3 0.0314 ± 0.0043 (s+) 0.0288 ± 0.0037 (s+) 0.1219 ± 0.0118 (s-) 0.0444 ± 0.0080
300 5 0.0268 ± 0.0043 (s+) 0.0227 ± 0.0031 (s+) 0.1002 ± 0.0136 (s-) 0.0363 ± 0.0089
300 10 0.0176 ± 0.0035 (s+) 0.0157 ± 0.0035 (s+) 0.0705 ± 0.0150 (s-) 0.0206 ± 0.0069
500 1 0.0514 ± 0.0043 (s+) 0.0406 ± 0.0029 (s+) 0.1228 ± 0.0140 (s-) 0.0819 ± 0.0114
500 2 0.0449 ± 0.0033 (s+) 0.0365 ± 0.0028 (s+) 0.1613 ± 0.0124 (s-) 0.0640 ± 0.0101
500 3 0.0424 ± 0.0041 (s+) 0.0337 ± 0.0029 (s+) 0.1483 ± 0.0121 (s-) 0.0588 ± 0.0090
500 5 0.0358 ± 0.0037 (s+) 0.0293 ± 0.0037 (s+) 0.1274 ± 0.0146 (s-) 0.0460 ± 0.0065
500 10 0.0260 ± 0.0039 (s+) 0.0223 ± 0.0033 (s+) 0.1002 ± 0.0129 (s-) 0.0304 ± 0.0058

NK Landscapes. PX preserves the linkage between the decision variables. BPX estimates the VIG, as well the contribution of
the subfunctions. Thus, it presents worse results than PX. However, the results are better than those for the traditional operators
for both neighborhood models.

It is also important to observe that the impact of increasing K is bigger for PX than for BPX. As discussed before, BPX
uses a constant value for vertices degree of the BN. Higher mean vertices degree implies in less connected components in the
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Table 6: Percentage of individuals better than best for the NK Model with random neighborhood.
N K Uniform 2-Points PX BPX

100 1 0.0201 ± 0.0033 (s+) 0.0169 ± 0.0042 (s+) 0.0696 ± 0.0090 (s-) 0.0370 ± 0.0112
100 2 0.0164 ± 0.0038 (s+) 0.0135 ± 0.0034 (s+) 0.0704 ± 0.0127 (s-) 0.0254 ± 0.0087
100 3 0.0154 ± 0.0038 (s+) 0.0105 ± 0.0029 (s+) 0.0584 ± 0.0133 (s-) 0.0226 ± 0.0076
100 5 0.0104 ± 0.0034 (s+) 0.0084 ± 0.0022 (s+) 0.0363 ± 0.0114 (s-) 0.0131 ± 0.0071
100 10 0.0051 ± 0.0016 (+) 0.0048 ± 0.0018 (+) 0.0078 ± 0.0054 (-) 0.0058 ± 0.0031

300 1 0.0415 ± 0.0046 (s+) 0.0335 ± 0.0033 (s+) 0.1032 ± 0.0123 (s-) 0.0895 ± 0.0147
300 2 0.0371 ± 0.0037 (s+) 0.0302 ± 0.0030 (s+) 0.1489 ± 0.0181 (s-) 0.0626 ± 0.0109
300 3 0.0322 ± 0.0042 (s+) 0.0264 ± 0.0030 (s+) 0.1311 ± 0.0121 (s-) 0.0491 ± 0.0096
300 5 0.0276 ± 0.0034 (s+) 0.0210 ± 0.0031 (s+) 0.1004 ± 0.0130 (s-) 0.0341 ± 0.0076
300 10 0.0183 ± 0.0033 (s+) 0.0141 ± 0.0027 (s+) 0.0531 ± 0.0107 (s-) 0.0238 ± 0.0077

500 1 0.0531 ± 0.0038 (s+) 0.0407 ± 0.0030 (s+) 0.1178 ± 0.0134 (s-) 0.1089 ± 0.0120
500 2 0.0469 ± 0.0043 (s+) 0.0362 ± 0.0027 (s+) 0.1790 ± 0.0145 (s-) 0.0779 ± 0.0115
500 3 0.0421 ± 0.0036 (s+) 0.0324 ± 0.0031 (s+) 0.1685 ± 0.0135 (s-) 0.0609 ± 0.0120
500 5 0.0359 ± 0.0037 (s+) 0.0270 ± 0.0024 (s-) 0.1340 ± 0.0130 (s-) 0.0452 ± 0.0076
500 10 0.0267 ± 0.0034 (s+) 0.0195 ± 0.0025 (s+) 0.0827 ± 0.0111 (s-) 0.0289 ± 0.0058

recombination graph. As a consequence, less recombining components are found.
It is clear from the analysis of Tables 3 to 6, that BPX generates better offspring than UX and 2PT for the NK Landscapes.

However, better offspring does not necessarily implies in better performance for the algorithm. This can be observed in tables 1
and 2. This occurs because BPX is too greedy for this problem. Thus, the diversity of the population is decreased. Diversity is
important in order that individuals be improved by mutation and local search. BPX is strongly exploitative, while UX and 2PT
are strongly explorative. A combination of such characteristics would be desirable.

4.2. 0-1 Knapsack Problem

In the experiments with the 0-1 Knapsack Problem, the weights and profits are positive real numbers randomly chosen from
a defined range of 5 to 20 for weights and from 40 to 100 for profit. The knapsack capacity is equal to C = 0.5Sw, where Sw is
the sum of the weights of all items. The chromosome size is N = 100.

The results for the experiments with the 0-1 Knapsack Problem are presented in tables 7, 8, and 9. Experiments with the
hybrid GA with and without local search are presented.

In the experiments with the 0-1 Knapsack Problem, UX obtained the better performance, followed by 2PT and BPX. The
results are explained because this problem has constraints. BPX estimates the contributions of the recombining components
because they cannot be directly computed by analyzing the fitness function. However, solutions are penalized in the fitness
function (Equation 6) and the penalties are not computed when analyzing the recombining components in BPX. This is an
disadvantage of BPX, i.e., offspring are evaluated without taking in consideration the penalties. A possible improvement for
BPX in this case is to estimate the subfunctions taking in consideration the penalties. However, this would imply in using a
different method for estimation, that can be explored in future works.

Table 7: Mean fitness for the 0-1 Knapsack Problem.
UX 2PT BPX BPX+UN BPX+2PT

With LSFI 4557.15 ± 106.11 (-) 4556.85± 105.03 (-) 4555.05 ± 103.50 4556.20± 106.70 (-) 4555.25± 104.75 (-)
Without LSFI 4553.26± 106.74 (+) 4553.64± 105.17 (+) 4553.87 ± 103.51 4553.05± 105.23 (+) 4551.69± 102.45 (+)

Table 8: Percentage of individuals better than parents for the 0-1 Knapsack Problem.
UX 2PT BPX BPX+UN BPX+2PT

With LSFI 0.0795 ± 0.007 (s-) 0.0554± 0.004 (s-) 0.0109 ± 0.002 0.0386± 0.004 (s-) 0.0324± 0.0037 (s-)
Without LSFI 0.0353 ± 0.007 (s-) 0.0220± 0.004 (s-) 0.0100 ± 0.002 0.0257± 0.004 (s-) 0.0202± 0.004 (s-)

Table 9: Percentage of individuals better than best for the 0-1 Knapsack Problem.
UX 2PT BPX BPX+UN BPX+2PT

With LSFI 0.0031± 0.000 (s-) 0.0027± 0.000 (s-) 0.0016 ± 0.000 0.0038 ± 0.001 (s-) 0.0029± 0.001 (s-)
Without LSFI 0.0084 ± 0.002 (s-) 0.0062± 0.001 (s-) 0.0022 ± 0.001 0.0067± 0.001 (s-) 0.0059± 0.002 (s-)

23



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 17, Iss. 2, pp. 15–26, 2019

c© Brazilian Computational Intelligence Society

4.3. Deceptive Functions

In the experiments with deceptive functions, N = 50, a = 0.80, b = 1, and z = 48 [26]. The results are presented in tables
10-12.

All algorithms presented the same mean fitness (Table 10). This is a hard problem for the GAs and the local optimum
was reached in all runs. However, tables 11 and 12 indicate that BPX resulted in a better performance for the percentage of
individuals better than parents and individuals better than best. This result indicates that BPX was able to find good hyperplanes
that improved the population.

Table 10: Mean fitness for the deceptive functions.
UX 2PT BPX BPX+UN BPX+2PT

Without LsFi 0.8000± 0.00 0.8000± 0.00 0.8000 ± 0.00 0.8000± 0.00 0.8000± 0.00

Table 11: Percentage of individuals better than parents for the deceptive functions.
UX 2PT BPX BPX+UN BPX+2PT

Without LsFi 0.0511± 0.0068 (s+) 0.0389± 0.007 (s+) 0.0643 ± 0.012 0.0618± 0.011 (s+) 0.0579± 0.009 (s+)

Table 12: Percentage of individuals better than best for the deceptive functions.
UX 2PT BPX BPX+UN BPX+2PT

Without LsFi 0.0133± 0.003 (s+) 0.0107± 0.003 (s+) 0.0206 ± 0.007 0.0179± 0.006 (s+) 0.0186± 0.006 (+)

5. Conclusion and Future Work

The investigation of recombination operators that preserve good hyperplanes is recent in evolutionary computing. In this
work, we presented a new recombination operator (BPX). BPX is a partition crossover, but unlike other operators of this type, it
can be used in problems where the variable interaction graph is not known a priori. BPX estimates the variable interaction graph
by using methods employed in BOA to estimate Bayesian Networks that model the interaction between decision variables. BPX
uses the common information contained in parents to partition the variable interaction graph. The connected components of the
resulting graph are recombining components, i.e., they indicate the recombination mask.

The experimental results indicated that BPX generated better offspring, when compared to traditional crossover operators, in
two of the three problems investigated in this paper. BPX increased the percentage of offspring better than parents and offspring
better than the best current solution in the population. The only problem where BPX did not result in better offspring was the
0-1 knapsack problem. This is a problem with penalties and the way the recombining components are evaluated for this problem
proved to be misleading.

The main limitation of the proposed algorithm is that BNs need to be constructed and this consumes computational time.
This affects the scalability of the algorithm when the method is compared to simple GAs. When the termination criterion is
based on a fixed time, BPX presented inferior performance compared to other crossover operators. This behaviour is mainly due
to the creation of a centralized storage model of genetic linkage information (VIG) during the execution of the algorithm. The
investigation of new ways of building the VIG is a possible future work.

In this way, a future work is to investigate better ways to evaluate recombining components, especially for optimization
problems with constraints. Now, the recombining components are evaluates using the knowledge provided by the fitness function.
However, this can be avoided by using, instead, the individuals of the population for sampling the partial evaluations of the
recombining components.

In the experiments, generating better offspring did not necessarily imply in better performance for the evolutionary algorithm.
In fact, BPX resulted in worse performance for the NK Landscapes. BPX is too greedy for this problem, what resulted in low
diversity populations. BPX is strongly exploitative, while traditional recombination operators are strongly explorative. Another
relevant future work is to explore the combination of such characteristics in a new recombination operator.
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