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Abstract- The pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical industries as well as in 

agricultural, food and mining. However, due to practical limitations the majority of existing systems have capacities ranging 

from 1 to 400 tones per hour over distances less than 1000 m, mainly because of high power demand per transported unit mass. 
A safe circuit with reduced power demand can be designed using non-conventional control techniques. This work describes a 

fuzzy controller implementation for a 45mm i.d. pneumatic conveying system used to transport Setaria italica seeds over a 

distance of 21 m. Data obtained in a previous study about gas-solid flow regime identification through a self-organizing neural 

network were used in the controller design. Two types of accidents were induced to qualify the controller performance in an 

imminent blockage situation. The results show a safe operation and a reduction in power demand when compared with 

classical non controlled transport. 
 
Keywords- Fuzzy logic, control, energy savings and pneumatic conveying.  

 

1 Introduction 
 

The pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical industries as well as in agricultural, 

food and mining. The main advantages of this transport are: flexibility, security in the transport of high valued products, ease 

of automation/control and low maintenance costs. The range of material that can be pneumatically transported is extensive: 

powders and rocks of up to 50 mm in size to finished manufactured parts such as electronic components for instance. However, 

due to practical limitations the majority of existing systems have capacities ranging from 1 to 400 tones per hour over distances 

less than 1000 m and average particulate size less than 100 mm. Among these limitations probably the most important one 

refers to a high power demand per transported unit mass. 

More specifically, to avoid the formation of dense structures such as dunes and plugs which may cause a violent pressure surge 

or a possible line blockage the system is preferably operated at homogeneous dispersed flow (depending on the characteristics 

of the material and on the availability of a pressure head from the carrier phase). To sustain such a flow regime, high velocities 

are needed (15 to 20 m/s for instance) and, accounting for the resulting higher pressure drops, higher power demand is 

required. Another important problem associated with the increase in the transport velocity is the abrasion of the equipment and 

degradation of the transported particulate. 

From a phenomenological point of view, pneumatic transport can be seen as a special application of gas-solid flows which can 

be described with the help of the so called state diagram, i.e. the curves of specific pressure drop in function of the gas 

superficial velocity. It is also possible to define a state diagram by plotting mass flow ratios in terms of the Froude number, 

which is a more general and convenient representation of the phenomenon. Either way, gas-solid flow state diagrams indicate 

that the transition from dispersed (or light) type flows to dense phase flows is associated to a minimum in the specific pressure 

drop, which would be an ideal operating condition if the above mentioned problems could be avoided. More specifically, the 

problem of operating the transport line near transition velocities lies on the hysteretic behavior of the transition. This can be 

better understood through a test on a horizontal line where the velocity of the carrier phase is slowly varied between zero and a 

maximum value, above which the flow regime is dispersed and does not change. The different stages of this experiment which 

also were observed at the circuit considered in this work are indicated in Figure 1, where the velocity of flowing particles Up is 

plotted against the gas velocity Ug.   
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Figure 1: Schematic representation of the different flow regimes in horizontal gas-solid flow when varying the 

carrier velocity. (Adapt from Savage et al., 1996) 

 
In stage (a) Ug is not sufficiently high to levitate the particles so Up = 0 until a critical value is reached (Ug = U1). After this, in 

stage (b), Ug > U1, the particles are entrained by the gas flow and fully dispersed regime is asymptotically reached (Up → Ug). 

From a maximum gas velocity value, Ug is decreased in stage (c) of the experiment and different flow  regimes  may  appear, 

such as stratified flow, intermittent flow and dune flow, until another critical value Ug = U2 is reached. At this point particles 

are no longer sustained in the core, some of them will segregate and stop and others will roll and bounce over the fixed particle 

layer at Up = U3. Operating the transport line near the light-dense transition means setting Ug between U1 and U2 and handling 

a strong hysteretic behavior of Up as well as of the pressure drop and other relevant flow variables. Therefore, the safe 

operation within these conditions requires special control strategies, which is one of the main objectives of this work. 

Considering this task, we look to Artificial intelligence techniques. Artificial intelligence can eliminate many of the common 

pitfalls in operations and designs (Klinzing, 2001) and a fuzzy system can be a suitable solution for a hysteretic behavior (Hai-

chu et al., 2010). Searching for the ideal point considering the security and the energy saving, a preliminary study about the 

regime identification through self-organizing neural network were done (Barbosa et al.,2004) in order to produce data for the 

design of the control strategy proposed in this article.     

 

2 Fuzzy systems 
 

Fuzzy logic was originally proposed by Lofti Zadeh in 1965 with the work “Fuzzy sets” (Zadeh, 1965) and then developed as a 

tool for manipulating and processing vague information in uncertain conditions. One of the main characteristics of this 

approach is the element partial membership which allows smooth transitions from one rule to another (Yager and Filev, 1994). 

In this context, the production of the membership functions, i.e., functions that define the membership degrees for each input 

and output of the system is called “fuzzyfication”. All fuzzy set representing the crisp (physics) variables related by 

membership functions are the so called “knowledge basis”.         

The knowledge basis has uncertain information however significant for the system modeling. Although this uncertain is 

completely solved as the input and output fuzzy sets and the knowledge manipulation strategy are defined. 

A fuzzy algorithm processes the membership functions for each one of the fuzzy sets and the results are aggregating through 

instructions or rules, producing the so called “rule basis”. Often, in order to establish a truth degree for the rules each fuzzy 

output is multiplied by an appropriate scale factor. 

There are basically two types of fuzzy system models differentiating in the ability of representing different kinds of 

information, i.e, in the form of representing the rule basis. The first include the linguistic models based in collections of IF-

THEN rules with vague attributes and have fuzzy reasoning. In this type of model, fuzzy quantities are associating with 

linguistic labels and a fuzzy model is essentially a qualitative expression of the system. The second type of model is based in 

the Takagi-Sugeno-Kang reasoning method (Sugeno, 1985). These models are constructed by logic rules which are 

combination of fuzzy and crisp models (Yager and Filev, 1994). This work adopts the first type of fuzzy system. 

A set of inference rules is adopted to manipulate the knowledge basis. The most used method to represent the human 

knowledge is through natural language expressions as: 

IF (antecedent) THEN (consequent)  

Since decisions are based on the testing of all of the rules in the inference system, the rules must be combined in some manner 

in order to make a decision. Aggregation is the process by which the fuzzy sets that represent the outputs of each rule are 

combined into a single fuzzy set. 

One of the most used is the Mamdani implication method for inference in which the aggregated output is: 
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Often the output of fuzzy process must be a scalar quantity and not fuzzy sets. A crisp value for the system output is obtained 

by the defuzzyfication of the fuzzy output set. In the literature there are some defuzzyfication methods as, for instance, 

centroid, bisector, middle of maximum (the average of maximum values of the output set), largest of maximum, and smallest 

of maximum. Perhaps the most popular defuzzification method is the centroid calculation, which returns the center of area 

under the curve. This was the method used in this work and the crisp value is obtained by the center of area given by the 

gathering of the output membership functions as 
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where y* is the value obtained by the defuzzyfication and Bn
k are the consequent fuzzy sets. 

  

3 The test facilities 
 

The validation tests were done at the experimental facilities of the Thermal and Fluids Engineering Laboratory of the 

University of São Paulo at São Carlos (NETeF-USP). The pneumatic transport loop, drawn schematically in Figure 2, has a 

transparent 45 mm inner diameter test section, extending horizontally through 12 m and vertically through 9 m. Air is supplied 

by a 43 kW screw compressor (1), capable of generating air speeds up to 40 m/s in the transport line. The air flow rate is 

controlled with the help of a servo-valve (2) and measured by an orifice plate (3), instrumented with temperature and pressure 

transmitters (differential and absolute; range = 0-500 mbar). The particulate is introduced in the transport line through a 

Venturi feeder (4), which receives the particulate from a screw conveyor (5). The solids flow rate is controlled by imposing the 

rotation of the screw conveyor with a frequency converter (6). A cyclone separator (7) is placed at the exit of the test section, 

from where the particulate may be returned to a separated storage container (8) for batch operation or, alternatively, to a rotary 

airlock (9) connected to the feeding silo (10) for continuous operation. 
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Figure 2: Schematic representation of the pneumatic transport test loop at the NETeF - USP 
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Besides the pressure transmitters, the circuit has a National Instruments acquisition system constituted by a PXI-1000B 

chassis, Multifunction I/O 6025E acquisition module and PXI8170 processing module, which allows the communications with 

the control computer.     

 

4 Controller design 
 

   

Fuzzy controllers have been successfully used for solving control challenges. Some examples of these applications can be 

found in Watano et al. (2001); Junhua (2010); Alghamdi et al. (2009) and Reddy et al. (2009). Specifically in multiphase flow 

area we can point out recent important works as Karppanen (2000); Huang et al. (2010); Navale and Nelson (2010) and Bhatt 

et al. (2009). 

The controller structure proposed in this article is drawn in Figure 3 where the three calculations steps of a fuzzy controller is 

showed as described in section 2.  

 

Figure 3: Structure of the fuzzy controller 

 

This structure, perhaps the most basic if compared with the ones cited before, uses signals from the process sensors as a 

controller input signals and the controller output as a command value to drive the process actuator. The input variables were 

defined as pressure values from three sensors in the central part of the horizontal section and the absolute pressure in the orifice 

plate (see Fig. 2). In this work the four input variables were called Pmont, Sensor2, Sensor3 and Sensor4. The output variable, 

called Command, represents the command signal (volts) for the valve in the air pipe.     

  

(a) (b) 

Figure 4: Membership functions for the input variables Pmont (a) and Sensor 2 (b). 

 



Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss.4, pp. 256-265, 2011. 

  © Sociedade Brasileira de Redes Neurais (SBRN) 
 

260 

 

The units in Figures 4 and 5 are volts. In Figure 5 the variable Command is ranging from 3 to 4 volts. The pressure transmitter 

ranges are mapping into a voltage range of 1-5 volts, through a 250 Ω shunt resistor. Still in these figures is possible to verify 

that many fuzzy sets were defined in order to represent quantities as small, normal, big, very big, low, high etc. 

 

  
Figure 5: Membership functions for the output variable Command. 

 

The main idea for the rule base design was as discussed before: search a velocity which could be lower as possible to improve 

the power demand and, by other side, high enough to avoid the pipe blockage. In this context and considering that the 

controller must be more severe in operating points near the transition region for the dense phase 24 rules were implemented 

with high weights in more instable situations. The data for this design were collected previously in steady state tests with  

Setaria italica seeds ( average diameter of 2.5 mm and approximately density of 800 kg/m
3 

) as plotted in Figure 6 for a 

constant solid flow rate of 0,0739 kg/s. 
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Figure 6: Input variables behavior when increasing the air flow rate and solid flow rate of 0,0739 kg/s. 

   
This behavior suggest that for values labeled high in anyone of the three sensors and if the Pmont variable presents low values 

the circuit is operating at the decreasing part of the curves and because of this the Command variable must receive a big value 

(increase the air flow rate). By other side, if Pmont presents high values too the circuit is operating at the increasing part of the 

curves and in view of this the value Command can be reduced. Two examples of rules developed according this reasoning are   

 

IF (Pmont is Low) AND (Sensor2 is High) THEN (Command is Big) 

IF (Pmont is High) AND (Sensor3 is High) THEN (Command is Normal)  

 

The fuzzy sets were chosen in this work exactly because they represent this uncertainness or imprecision when mapping the 

measured values in categories like Low, High, Small, Big etc. This uncertainty is involved in the considered system and it can 

be verified through Figure 7 that shows the same test as Figure 6, however by decreasing the air flow rate. 

This behavior agrees with the phenomenon described at introduction section. At this point we find maybe the most important 

advantage of this application, i.e., the controller solves this situation of imprecision, eliminating a problem previously unsolved 

for the classical control techniques. Although it produces an unfamiliar shape (see Fig. 4) for a view out of this context, this is 

exactly a very practical feature of the proposed methodology once dispenses any type of processing to solve this intrinsical 

characteristic. 
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Figure 7: Variables behavior when decreasing the air flow rate and solid flow rate of 0,0739 kg/s. 

 

.  

 

  
Figure 8: Rules surfaces. 

 

 
The Figure 8 presents two output surfaces, i.e., the mapping considering Pmont, Sensor 2 and Command; and Pmont, Sensor 3 

and Command. From these surfaces it is possible to identify critical regions where the Command has a high values and more 

usual regions where Command assumes low values. 

 
 

5 Experimental tests 
 

At first moment, the data acquisition was started in different operational points (different solid and air flow rates) and then the 

controller was activated to demonstrate its ability of setting the circuit according to the fuzzy inference result, without 

oscillations. Two pressure histories of these tests can be seen in Figure 9 where the command value (Command) is placed on 

right vertical axis. 

The initial air flow rate, final air flow rate and solid flow rate were called Qair-in, Qair-fin and Qsol respectively. In these tests the 

controller stabilized the flow in a certain air flow rate (approximately 0.014 kg/s) that can be changed by the fine setting of the 

output surface. This can be made through the modification of  the membership functions. Although, as discussed before, this 

flow rate represents the trade off between security and energy saving. 
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Qair-in = 0.017 kg/s , Qair-fin = 0.015 kg/s and Qsol = 0.0739 kg/s Qair-in = 0.013 kg/s, Qair-fin = 0.016 kg/s and Qsol = 0.1228 kg/s 

Figure 9: Histories of pressures and commands. 

 

In order to analyze the controller output in an imminent blockage situation two types of accidents were considered: The first, 

indicated by “Type 1” on Figure 10 consists of leakage in air pipe simulated by opening intentionally an emergency valve. This 

emergency valve was placed between the orifice plate and the feeding section. The second type of accident indicated by “Type 

2” on Figure 10 consists of suddenly increasing the solid flow rate for values over the design operation conditions.  

Figure 10 is a state diagram sketch which represents the relationship among pressure drop, superficial air velocity and the solid 

flow rate (each line represents a constant solid flow rate). The dotted line represents the minimum pressure line. According to 

the figure both types of accident take the circuit to the region of instability (dense).        
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Figure 10: State diagram and the two types of accidents. 

 

 

The pressure histories and the command signal for the type 1 tests are shown in Figure 11 with two different solid flow rates.  

In Figure 11(a) the initial air flow rate was 0.013 Kg/s, i.e., slightly lower than the “ideal” according the controller (fuzzy 

inference). The correction for the ideal flow rate can be identified by the initial behavior of the curves, once that controller was 

activated at 3 seconds. Then starts the leakage and it was slowly increased. The effect of this in terms of pressure curves was 

the decreasing behavior contrasting with the increasing behavior of the command curve showing that the controller decided to 

compensate the leakage.  

In Figure 11 (b) the test was done with a higher solid flow rate and the behavior was similar, however the emergency valve 

was opened and closed again. The effect of this can be seen in the final seconds of the test showing that the controller stabilizes 

the flow as the valve is closed.           
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(a) Qsol = 0.0739 kg/s (b) Qsol = 0.1437 kg/s 

Figure 11:  Histories of pressures and command signal for type 1 accidents.  

 
The type 2 tests produced results as the showed in Figure 12 where the solid flow rate ranged from 0.0739 kg/s to 0.16 kg/s. 
The increase of pressures caused by the solid segregation that occur as the solid flow rate is suddenly increased is clearly 

observed. This situation continues until a certain moment (approximately 110 seconds) where the controller produces air pulses 

trying to clean the pipe.     

In this situation and in the others showed in type 1 tests the circuit would be certainly damaged by the blockage without the 

controller. This demonstrates that the proposed fuzzy controller offer a safe operation of the circuit.      

  

Command

Pmont

Sensor 2
Sensor 3

Sensor 4

C
o
m

m
a
n
d

 [
V

o
lt
s
]

P
re

ss
u

re
 [

k
P

a]

time [s]
 

Figure 12: Histories of pressures in case of accident where the solid flow rate increases over the transport 

capacity in disperse phase – the system produce air pulses as it was coughing. 

 

6 Improving the power demand 
 

The necessary power (Taylor, 1998) using the controller was measured to verify the reduction percentage. These powers were 

calculated by assuming isothermal flow (RT = constant) and imposing energy balance for a pipe stretch, that is    
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where P1 is the pressure at the inlet of the test section (1.5m downstream from the solids feeder), and P2 the pressure at its 
outlet (1.5 m upstream from the cyclone)      

The average saving was calculated considering the transport with 18 m/s of air velocity, according technical recommendations 

for  Setaria italica seeds. The difference between nominal and controlled situations is showed in the following table.  

  

TABLE 1: NECESSARY POWER (KW) WITHOUT AND WITH THE FUZZY 

CONTROLLER. 

Qsol (kg/s) 0,0739 0,1037 0,1228 0,1343 0,1395 0,1437 

Without control 1,707 1,871 1,893 1,798 1,704 1,510 

With control 1,04 1,171 1,011 0,984 0,995 0,908 

Reductions 39,1% 37,4% 46,5% 45,2% 41,6% 39,8% 

 
According to Table 1 if we consider a solid flow rate of 0,0739 kg/s, for example, in nominal conditions, a power of 1,707 kW 

would be necessary for the system operation.  For this same test, if we consider the methodology proposed in this work a 

power necessary for the system operation decreases to 1,04 kW producing a reduction of 39,1 %.  If we continue this reasoning 

for the others solid flow rates, the last line of table 1 will be fulfilled. As a global indicator it is possible to assert that the 

results show an important average saving of 41% .  

In the literature it’s possible to find other kinds of applications of fuzzy control with similar energy savings as, for instance, the 

48% of energy saving in a water source heat pump system (Li et al., 2009) and the 50% of energy saving in a tunnel lighting 

system (Yang et al., 2011).  

 

7 Conclusions  
 

A technique for the control of gas-solids flow occurring in pneumatic transport system was proposed in this work. The control 

algorithm is based on a fuzzy structure. The controller inputs were defined as pressure values measured in four different 

locations and the controller output were defined as the command for the valve in the air pipe. 

The controller was designed to allow a safe operation and improve the power demand. More specifically, the controller allows 

an air flow rate reduction resulting in an energy saving. At the same time it guarantees the security of the system once the 

operation point is closer the transition for the dense phase.  

In order to analyze the ability to keep the system operating in hard situations and to avoid a pipe blockage, two types of 
accidents were simulated. In the first type a leakage was simulated in the air pipe by opening an emergency valve. In the 

second type of accident the solid feeding was increased abruptly causing a situation above the transport capacity in disperse 

phase. In both cases the controller kept the system operating safely and avoided the blockage. In particular in the second type 

of accident, the controller behavior was similar to a choke situation in which air jet are produced aiming to clean the transport 

line as occurs when a person chokes and coughs.  

Experimental tests with Setaria italica seeds using the proposed methodology in a 45 mm i.d. pneumatic conveying line 

showed an important average saving of 41% in power demand for the same amount of solids transported. 

These results show that the application of fuzzy logic reasoning may solve complex industrial problems, specifically in 

multiphase flow area. 

 

8 Acknowlegments 
 
The authors would like to acknowledge the financial support provided by FAPESP through grant 02/00472-5, and by CNPq 

through grant 62.0012/99-4.  

 

9 References 
 
Alghamdi, A. S., Eren H. and Mansour A. (2009).  Application of fuzzy logic control in automated transport systems. 

Proceedings of Sensors Applications Symposium. Ireland. p. 216-219. 

 



Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss.4, pp. 256-265, 2011. 

  © Sociedade Brasileira de Redes Neurais (SBRN) 
 

265 

 

Barbosa, P.R.,  Crivelaro, K.C.O. and Seleghim JR, P. (2004). Identification of flow regimes in pneumatic conveying systems 

through self-organizing neural networks. III Congresso Nacional de Engenharia Mecânica, Belém-PA, Brazil.  
 

Bhatt, T.U., Madala, K.C., Shimjith, S.R. and Tiwari, A.P. (2009). Application of fuzzy logic control system for regulation of 

differential pressure in Liquid Zone Control System. Annals of Nuclear Energy 36: 1412–1423. 

 

Hai-chu, C., Hui, Y., Hua, Z. and Rui-Hua, Z. (2010). Study of proportion and fuzzy control method upon Precision Micro-

flow Valve. Proceedings of  2nd International Conference on Future Computer and Communication. China.V3:581-585.    
 

Huang, H.P., Yan,J.L. and Cheng, T.H. (2010). Development and Fuzzy Control of a Pipe Inspection Robot. IEEE 

Transactions on industrial electronics 57 (3): 1088-1095.  

 

Junhua, G. (2010). Development of fuzzy control system for frozen food environment. Proceedings of the International 
Conference on Biomedical Engineering and Computer Science. China. p. 1-5.   

 

Karppanen, E. (2000). Advanced control of an industrial circulating fluidized bed boiler using fuzzy logic. Academic 

dissertation. University of Oulu. Finland. 134 p. 

 

Klinzing, G.E. (2001). Pneumatic conveying: transport: solutions, pitfalls, and measurements. In: Handbook of Conveying and 

Handling of Particulate Solids, Levy, A. and Kalman, H. (eds.). Elsevier. The Netherlands. 870 p. 

 

Li, L., Xiang-long, L., Xiao, C., Ming, L., Zhu, L.H. (2009).  The utilization of fuzzy control in energy saving control system 

of water source heat pump. Proceedings of the International Conference on Energy and Environment Technology, p. 471-474. 

 

Navale, R.L. and Nelson, R.M. (2010). Use of genetic algorithms to develop an adaptive fuzzy logic controller for a cooling 
coil. Energy and Buildings 42: 708–716. 

 

Reddy, N.P., Mathur, G. and Hariharan, S.I. (2009). Toward a fuzzy logic control of the infant incubator. Annals of 

Biomedical Engineering  37(10): 2146–2152. 

  

Savage, B.S.; Pfeffer, R.; Zhao, Z.M. (1996). Solids transport, separation and classification. Powder technology 88:323-333. 

 

Sugeno, M. (1985). Industrial applications of fuzzy control, Elsevier Science Pub. Co. 

 

Taylor, T. (1998). Specific energy consumption and particle attrition in pneumatic conveying. Powder technology 95:1-6. 

 
Watano, S., Numa, T., Miyanami, K. and Osako, Y. (2001). A fuzzy control system of high shear granulation using image 

processing. Powder Technology 115:124–130. 

 

Yager, R.R. and Filev, D.P. (1994). Essentials of fuzzy modeling and control. New York, John Wiley & Sons. 

 

Yang, C., Fan, S., Wang, Z. and Li, W. (2011). Application of fuzzy control method in a tunnel lighting system. Mathematical 
and Computer Modelling. Article in press. doi:10.1016/j.mcm.2010.11.018.  

 

Zadeh, L. (1965). Fuzzy sets. Information and control 8: 338-353. 

 

 

 
  


