
AUTOMATIC GENERATION OF WRAPPER CODE FOR VIDEO
PROCESSING FUNCTIONS

Daniel Oliveira Dantas Junior Barrera
Instituto de Matemática e Estatı́stica

Universidade de São Paulo
{ddantas,jb}@ime.usp.br

Abstract – Processing video with GPUs requires the use of an API such as OpenGL or CUDA API. Recent advances are
libraries such as GPUCV, with fast operators that take advantage of the GPU processing power but hide from the user its pro-
gramming complexities. However the implementation of new operators is not as simple as it can be, and in GPUCV it is limited
by the built-in templates. Here we describe a code generator that, from two kinds of directives merged in a shader source code,
generates a wrapper code with all the OpenGL or CUDA API calls needed before calling the shader, simplifying the creation and
maintenance of a library of video processing operators. The proposed library performance is better than GPUCV for almost all
the tested operators.

Keywords – Image processing, video processing, GPU, OpenGL, real time.

1. Introduction

The Graphics Processing Units, also known as GPU, are gaining more processing power very quickly. GPU’s are built
to render synthetic scenes faster than the CPU. Graphics processing requires calculations over big data-sets of vertices and
fragments. Vertices are the fundamental elements of the polyhedra that compose a synthetic scene. Fragments are like pixels of
the final image, but with various depths. In the rendering process, fragment colors are combined, or the fragment closer to the
camera is chosen to compose the final image.

The great processing speed of the GPU is obtained through parallelization of the calculations. An example of currently
available GPU is the NVIDIA GeForce GTX 280. It has 240 processors, or CUDA cores, and can process the same number of
vertices or fragments at the same time. That GPU has a wide data bus, with 512 bits, that provides a bandwidth of 140 GBytes/s
between the GPU and the video memory. The communication with the RAM (Random Access Memory) is done through a PCI
Express 2.0 x16 bus, with a bandwidth of 8 GBytes/s.

It is natural to try to use such processing power to accelerate parallelizable calculations, like simulations based in differential
equations, operations with matrices, image and signal processing [1]. In fact, computer vision researchers are creating libraries
to accelerate calculations, like GPUCV [2] and OpenVidia [3].

The libraries GPUCV and OpenVidia were implemented using the OpenGL API (Application Programming Interface). But
OpenGL is a computer graphics API, and using it in an application for which it was not designed is anti-natural and complex.
GPUCV hides from the user the OpenGL complexities, but to add new functions, the user has to write his own wrapper or use
the built-in templates. These templates allow only one output image, and input data must be stored in a data structure.

Shader is the name of the functions that run in the GPU. The two more common kinds of shaders are the vertex shader, that
processes vertices, and the fragment shader, that processes fragments. The goal of this article is to describe how to create shaders
easily, hiding the OpenGL complexities by using a wrapper code generator. Such complexities are not necessary to create video
and image processing functions, induce to errors, make code implementation and maintenance difficult.

We will describe two languages that can be used to implement shaders, GLSL and CUDA. Both languages have advantages,
and both would be useful in a video processing library. We will also describe how to chain code of many shaders easily, making
possible the creation of a high performance video processing pipeline. Such chaining is possible through the use of a wrapper
code, that prepares the data and sends it to the GPU so that the user does not worry about OpenGL. The wrapper code is generated,
in compile time, from the shaders source code plus a few comments that follow some rules.

2. Languages for programming GPU

Here we present two languages used to program GPU. We chose GLSL for being part of the OpenGL specification, and for
being very similar to other popular languages like Cg (C for graphics) and HLSL (High Level Shading Language). We also chose
CUDA, for having a powerful feature absent in GLSL, which is the capacity of choosing which fragments are processed first.

,

130

Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss. 2, pp. 130-137, 2011

© Sociedade Brasileira de Redes Neurais (SBRN)

PBO RAM

FBO

Texture

glBindBuffer(GL_PIXEL_PACK_BUFFER, ...);

glReadPixels((GLvoid*) NULL);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, ...);

glTexImage2D((GLvoid*) NULL);

glBindBuffer(GL_PIXEL_PACK_BUFFER, ...);

glDrawPixels((GLvoid*) NULL);

glGetTexImage((GLvoid*) NULL);
glGetTexImage();

glReadPixels();

glBindTexture();
glBindFramebufferEXT();
glBegin(GL_QUADS);...;glEnd();

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, ...);

glMapBuffer();

memcpy();

glUnmapBuffer();

glTexImage2D();

glDrawPixels();

cudaGLMapBufferObject();
cudaGLRegisterBufferObject();

cudaGLUnregisterBufferObject();
cudaGLUnmapBufferObject();

CUDA

CPUGPU

CUDA context OpenGL context

glFramebufferTexture2DEXT();
glBindFramebufferEXT();

Figure 1: This figure shows the main function calls needed to transfer image data in RAM and in video memory. The proposed
library calls those functions transparently to the user.

2.1 The GLSL language

The GLSL is a high level language, hardware independent, that is part of the OpenGL specification. It was designed following
a series of directives and objectives described succinctly below [4].

The language should work with OpenGL, providing an alternative to its old fixed pipeline. Should expose hardware opti-
mized resources, like data types and instructions present in the GPU. The OpenGL specification changes quickly to follow the
technological developments of the GPU, so, GLSL should be flexible to expose hardware resources not yet invented.

The GLSL was created to be easy to use, and to avoid obsolescence. It was created with the same syntax of C, a popular and
successful language for years, and with which many people who work with computer graphics are accustomed to use.

Supported data types are integer, float and boolean. The language natively supports operations with arrays of up to four posi-
tions, and square matrices. To access the texture memory, there are the data types sampler1D, sampler2D and sampler3D,
for textures with one, two or three dimensions. Functions written in GLSL can have as input built-in variables and parameters,
and can return values only through built-in variables. The names of the built-in variables start with gl.

The GLSL can be used in the implementation of image processing filters or operators, although it was not created with that
objective. Each operator can be implemented as a fragment shader, and the input image must be stored as a texture.

An operation commonly done by fragment shaders is the texture mapping. Such shader can query the texture value from the
correct position and change it in many ways. Can read texture values from a small window and combine them before writing the
output. So, it is possible to implement operators like dilation, erosion, gradient, median filter and many others. The fragment
shader can also combine values from many textures, so, it is possible to implement operators like minimum, maximum, sum and
absolute difference between images.

2.2 The CUDA language

The acronym CUDA stands for Compute Unified Device Architecture. It is a new hardware and software architecture that
allows the use of the GPU without mapping its instructions and data to a graphic API [5]. It is supported by the graphics cards
GeForce 8 Series and newer.

Like GLSL, it is inspired by the C language to ease its learning, but code written in CUDA must be compiled with nvcc,
compiler available in the CUDA SDK.

There are two kinds of functions that run in the GPU. Functions called by code that runs in CPU, which are preceded by the
global qualifier, and functions called by code that runs in GPU, which are preceded by the device qualifier.

In the CUDA compatible GPU, there are many processors grouped together in multiprocessors. The programmer must divide
the data in blocks, and the blocks in threads. Each block will run in a single multiprocessor. This division is done by defining

131

Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss. 2, pp. 130-137, 2011

© Sociedade Brasileira de Redes Neurais (SBRN)

CPU

CUDA context

FBO/Texture

OpenGL context

GPU

Screen

vglDownload();

vglUpload();

CUDA RAM

CUDA shaders GLSL shaders

vglGlToCuda();

vglCudaToGl();

Figure 2: The commands of the proposed library hide from the user a series of API calls.

an execution configuration when calling a global function. An execution configuration contains the number of blocks and the
number of threads per block.

There are four built-in constants visible in every global function: gridDim stores the number of blocks; blockIdx
stores the block index; blockDim stores the number of threads per block; and threadIdx stores the thread index. The
programmer must use these constants to define which index of the array or matrix each block and its threads will process. The
CUDA language, differently from GLSL, requires a low level control by the user of which data will be used in function of the
built-in constants. Such control make code written in CUDA more error prone than GLSL code, although it makes possible to
define the order in which data is processed, feature required by dynamic programming algorithms for example.

3. Solutions available

There are at least three libraries that can be used in video processing: OpenCV, OpenVidia and GPUCV. OpenCV is a very
popular library, quite comprehensive, with functions for image segmentation, object recognition, shape analysis, feature detection
and tracking, and three-dimensional reconstruction [6]. Runs in the CPU, taking advantage of MMX/SSE instructions available
in Intelr processors, but the parallelization is smaller than the reachable with GPU.

OpenVidia is a library with less image processing functions than OpenCV, but can take advantage of the processing power of
the GPU [3]. It has functions implemented in CUDA and Cg. Among the functions available are a Canny edge detector, functions
to register pairs of images, depth map from stereo images, feature tracking, Radon and Hough transforms. But OpenVidia does
not hide from the user the complexities of OpenGL.

The GPUCV main goal is to allow the use of GPU in image processing with minimal effort [2, 7]. It has a subset of the
OpenCV functions ported to GPU. To use GPUCV, it is not necessary to use OpenGL, but to create new functions the user has
to write his own wrapper or use a small set of templates, and demands that the parameters are passed to the GPU through a data
structure.

We will describe a wrapper code generator that hides from the user programming details that can be automatized. The user
does not have to worry about creating wrapper functions that call the shaders, OpenGL API calls nor about how to convert data
from the C++ language context to the context of GLSL and CUDA, focusing in the creation of operators and image filters.

4. Wrappers

Whenever an image is loaded from a file or captured from a camera, it is stored in a memory space belonging to the RAM
context. To use the processing resources of the GPU, it is necessary to store the image in the video memory, in a logical space
that belongs to the OpenGL context. That context is responsible not only for storing the image data, but also for running the
shaders and for showing results in the screen. To be processed by a CUDA operator, it is necessary to transfer the image data
from OpenGL to CUDA context.

132

Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss. 2, pp. 130-137, 2011

© Sociedade Brasileira de Redes Neurais (SBRN)

To implement the wrappers, we created a special image container, of type VglImage, capable of storing the data in all the
three contexts, RAM, OpenGL and CUDA. In RAM, the image is stored in an IplImage, compatible with OpenCV. In OpenGL,
the image is stored in a texture, and the operators output needs a framebuffer, both stored as GLuint type handles. Framebuffer
is the name given to the memory space where output from a shader is stored. In CUDA context, the image is stored in a GPU
memory space defined by a pointer. The transfer between OpenGL and CUDA contexts needs an object called Pixel Buffer
Object, stored as a GLuint type handle.

To control the transfers automatically, the VglImage structure stores the current context of each image. Operators run in a
single context, CUDA or OpenGL. Input images must be in the same context as the operator when it is called; and output images
will be in the same context as the operator when it finishes. So, the library copies automatically input images to the operator
context when it is called, and changes the context of the output image to be the same as the operator when it finishes.

The Figure 1 shows, among other things, the functions used in the transfers between contexts. In the proposed library, the
transfer is done automatically when necessary. It can also be forced by the user with a single function call, as shown in Figure 2.

The proposed library hides from the user the chain of calls to the OpenGL API. These calls are necessary for the pipeline of
shaders to process the images correctly. In the video memory, each image is stored in a texture.

4.1 Wrapper GLSL

To generate the GLSL wrappers in C++ language, we use a Perl program that analyses each shader and generates two output
files: a h file that contains the headers, and a cpp file, with the source code. Each shader is stored in a file with extension frag,
and must contain a function main.

The files with the processed shaders are not changed, and must be available at runtime. The Perl program expects three
arguments: the base name of the output files, the directory that contains the shaders, and the relative path of the shaders files so
that the program can find them at runtime.

In the first time a shader is called by the application, the text file frag is loaded and compiled with glCompileShader.
In case of success, the shader id is stored in a static variable, of type GLuint, inside the respective wrapper function in C++ so
that the loading and compiling process is done only once.

The file vglMipMap.frag has, inserted in the GLSL compilable code, three kinds of comments that are interpreted by the
preprocessor Perl to generate the wrapper function. The name of the function is the name of the frag file without extension.

The first comment, a multiple line comment between the lines 1 and 3, is a documentation comment. It is copied exactly to
the output files h and cpp. With these comments, it is possible to generate documentation by using, for example, doxygen.

The second comment, a single line comment occupying the whole line 4, is a declaration comment. Its contents define
the input parameters of the C++ function vglMipMap. It is a list, between parenthesis, of pairs <data type, variable name>,
separated by comma like a C++ function parameter list. Valid types are float, int and VglImage. The VglImage type
is used to store images, and must be preceded by one of the three semantic binding words: IN TEX, OUT FBO or IN OUT, to
indicate if the image is used as input, output, or both, respectively.

Source code of vglMipMap.frag
1. /** vglMipmap
2. Get specified level of detail
3. */
4. // (IN TEX: VglImage* src, OUT FBO: VglImage* dst, float lod)
5. uniform sampler2D sampler0;
6. uniform float level; // lod
7. void main(void){
8. gl FragColor = texture2DLod(sampler0, gl TexCoord[0].xy, level);
9. }

The third type of comment, the attribution comment, is the single line comment that appears after the definition of a uniform
variable, like in line 6. Defines which value the C++ code will attribute to the GLSL uniform variable. Each variable uniform
of type sampler is related to a VglImage with input semantics in order of appearance in the code. In this case, the attribution
comments are ignored.

It is necessary that each operator stores the output pixels in the exact position they should be, without translating the image
after each call to an image operator. That is possible if we render a rectangle that occupies exactly the field of view of the camera,
and mapping the texture that contains the output image to the rectangle using the desired fragment shader. As modelview matrix
we use the identity, and the textures are mapped to a rectangle with extremities in (-1, -1) and (1, 1).

Each VglImage stores a handle to a texture and another to a FBO (framebuffer object). When the texture is attached to a
FBO by calling glBindFramebufferEXT(), the shader output goes directly to the texture without the need of copying large
regions of memory. In case of multiple output images, the output is also written to a single FBO, which must be temporarily
attached to the multiple destination textures, each one corresponding to a different GL COLOR ATTACHMENT of this FBO. So
it is possible to create functions that support multiple output images. These OpenGL features allow us to assemble a pipeline
where both the input and output of each shader are stored in textures.

133

Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss. 2, pp. 130-137, 2011

© Sociedade Brasileira de Redes Neurais (SBRN)

When there is a single output image, it is accessed from the GLSL code by writing on the built-in variable gl FragColor.
When there are two or more output images, they are accessed by writing on the gl FragData[] array. The first output image
has index 0 and so on.

Code generated from vglMipMap.frag
1. /** VglMipmap
2. Get specified level of detail.
3. */
4. void vglMipmap(VglImage* src, VglImage* dst, float lod){
5. vglCheckContext(src, VGL GL CONTEXT);
6. GLint viewport[4];
7. glGetIntegerv(GL VIEWPORT, viewport);
8. static GLuint f = 0;
9. if (f == 0){
10. fprintf(stdout, "FRAGMENT SHADER\n====================\n");
11. f = vglShaderLoad(GL FRAGMENT SHADER, (char*) "FS/vglMipmap.frag");
12. if (! f){
13. fprintf(stderr, "%s:%s: Error loading fragment shader.\n", FILE , FUNCTION);
14. exit(1);
15. }
16. }
17. glUseProgram(f);
18. glActiveTexture(GL TEXTURE0);
19. glBindTexture(GL TEXTURE 2D, src->tex);
20. glUniform1i(glGetUniformLocation(f, "sampler0"), 0);
21. glBindFramebufferEXT(GL FRAMEBUFFER EXT, dst->fbo);
22. glUniform1f(glGetUniformLocation(f, "level"), lod);
23. glViewport(0, 0, 2*dst->width, 2*dst->height);
24. glBegin(GL QUADS);
25. glTexCoord2f(0.0, 0.0);
26. glVertex3f (-1.0, -1.0, 0.0); //Left Up
27. glTexCoord2f(1.0, 0.0);
28. glVertex3f (0.0, -1.0, 0.0); //Right Up
29. glTexCoord2f(1.0, 1.0);
30. glVertex3f (0.0, 0.0, 0.0); //Right Bottom
31. glTexCoord2f(0.0, 1.0);
32. glVertex3f (-1.0, 0.0, 0.0); //Left Bottom
33. glEnd();
34. glUseProgram(0);
35. glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
36. if (dst->has mipmap){
37. glBindTexture(GL TEXTURE 2D, dst->tex);
38. glGenerateMipmapEXT(GL TEXTURE 2D);
39. }
40. glActiveTexture(GL TEXTURE0);
41. vglSetContext(dst, VGL GL CONTEXT);
42. }

The listing above shows the code generated from the source file vglMipMap.frag. The lines from 1 to 3 contain the
multiple line documentation comment. Line 4 is generated from the declaration comment without the semantic bindings.

For each input image, that is, images with input semantics, which are IN TEX or IN OUT, a line like 5 is generated. It checks
if the input images are in OpenGL context, that is, if the last time the image was changed, it was by an OpenGL function. If the
image is in any other context, it is copied to the OpenGL context. Line 11 calls the function that loads, compiles and links the
code from the file vglMipMap.frag.

Three lines, like the ones from 18 to 20, are generated for each parameter of type VglImage* with input semantics. Each
input image receives an index, starting from zero, and is appended to the constant name GL TEXTURE, and is input parameter
of the function glUniform1i. The input images obtained from the declaration comment are associated to the sampler2D
variables contained in the shader source file in order of appearance.

The line 21 is generated for the first and only output image called dst. The output images are the ones with OUT FBO or
IN OUT semantics. If there is more than one output image, unfortunately, the generated code is not very simple. Suppose that
there is another output image called dst1. The code generated, placed after the line 21 would be like this:

134

Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss. 2, pp. 130-137, 2011

© Sociedade Brasileira de Redes Neurais (SBRN)

21a. glFramebufferTexture2DEXT(GL FRAMEBUFFER EXT, GL COLOR ATTACHMENT1 EXT,
GL TEXTURE 2D, dst1->tex, 0);

21b. glPushAttrib(GL VIEWPORT BIT | GL COLOR BUFFER BIT);
21c. GLenum buffers[] = {
21d. GL COLOR ATTACHMENT0 EXT,
21e. GL COLOR ATTACHMENT1 EXT, };
21f. glDrawBuffers(2, buffers);

Besides images, other supported input types are float and int. Line 22 shows the function call that attributes the value
of the variable lod, in the C context, to the variable level, in the GLSL context. When the variable is of type int, we call
glUniform1i instead of calling glUniform1f.

For each output image, four lines like the ones from 36 to 39 are generated. They are responsible for filling the mipmap data
if the texture was created with mipmaps.

Finally, for each output image, a line like 41 is generated. It saves the information that the correct image is in OpenGL
context, and the information stored in RAM and CUDA context shall be ignored.

4.2 Wrapper CUDA

To generate the wrappers of CUDA in C++, we also use a Perl program, that analyses a list of files with extension kernel,
and generates three output files: a file with extension cu containing all the wrappers of CUDA shaders; a file with extension h
with all the prototypes of the wrapper functions; and a file with extension kernel with the CUDA shaders. The file kernel
generated is nothing but the concatenation of every kernel file processed by the Perl program. It is included in the cu file by a
C++ #include directive.

The Perl program expects two arguments: the base name of the output files; and the directory that contains the kernel
files that define the shaders. Notice that in CUDA the operators are not loaded at runtime like in GLSL, so, the path to the files
with shaders is not necessary. As can be noticed in the source code of vglCudaInvert.kernel, there are three kinds of
comments like in the GLSL shaders. The name of the wrapper function is defined by the base name of the kernel file, so, our
wrapper function will be called vglCudaInvert.

Source code of vglCudaInvert.kernel
1. /** vglCudaInvert
2. Inverts image in CUDA context.
3. */
4. // <<<in->h, 384>>>(IN PBO: VglImage* In, OUT PBO: VglImage* Out)
5. // (In->cudaPtr, Out->cudaPtr, In->width, In->height, In->nChannels)
6. template<typename T>
7. global void global Invert(T* in, T* out, int w, int h, int nCh){
9. T* arrIn = in + blockIdx.x * nCh * w;
10. T* arrOut= out+ blockIdx.x * nCh * w;
11. int minj = threadIdx.x;
12. int maxj = nChan * w;
13. int dj = blockDim.x;
14. for (int j = minj; j < maxj; j += dj){
15. arr out[j] = -arr in[j];
16. }
17. }

The first comment, a multiple line documentation comment in lines 1 to 3, is copied to both h and cpp output files. The
objective of the copy is to allow the use of doxygen to generate documentation.

In line 4 is a declaration comment. Its contents define the parameters of the C++ function vglCudaInvert. The first
item in this comment, between the symbols “<<<” and “>>>”, is an execution configuration, necessary in calls to CUDA
functions. The shader defined in the kernel file will be called with that execution configuration. The second item is a list,
between parenthesis, of pairs <data type, variable name> separated by comma, like in C++. Valid types are float, int and
VglImage. The VglImage type is used to pass input and output images as parameters, and must be preceded by one of the
three semantic binding words: IN PBO, OUT PBO or IO PBO. The semantic binding indicates if the image is used as input,
output, or both, respectively, and will be stored in a Pixel Buffer Object. In future implementations we may allow the use of
textures, so, other semantics may be created.

The third type, the attribution comment in line 5, defines the values that will be used to call the CUDA shader. It is a list,
between parenthesis, of values separated by comma. These values will be used in the call of the shader, and the number of
elements must be the same as the parameters the shader requires.

In CUDA the chanining of operators is easier than in GLSL, as there is no distinction between the memory regions used as
input and output. The semantic binding is required only for updating the image context.

135

Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss. 2, pp. 130-137, 2011

© Sociedade Brasileira de Redes Neurais (SBRN)

Code generated from vglCudaInvert.kernel
1. /** vglCudaInvert
2. Inverts image stored in cuda context.
3. */
4. void vglCudaInvert(VglImage* In, VglImage* Out){
5. vglCheckContext(In, VGL CUDA CONTEXT);
6. vglCheckContextForOutput(Out, VGL CUDA CONTEXT);
7. switch (In->depth){
8. case (IPL DEPTH 8U):
9. global Invert<<<In->height,384>>>((unsigned char*) In->cudaPtr,

(unsigned char*) Out->cudaPtr,
In->width, In->height, In->nChannels);

10. break;
11. default:
12. fprintf(stderr, "vglCudaInvert:

Error: unsupported img->depth = %d in file ’%s’ in line %i.\n",
input->depth, FILE , LINE);

13. exit(1);
14. }
15. vglSetContext(Out, VGL CUDA CONTEXT);
16. }

The listing above shows the code generated from the source file vglCudaInvert.kernel. The lines from 1 to 3 contain
the multiple line documentation comment. Line 4 is generated from the declaration comment without the semantic bindings and
the execution configuration.

For each input image, that is, images with input semantics, which are IN PBO or IO PBO, a line like 5 is generated. It checks
if the input images are in CUDA context, that is, if the last time the image was changed, it was by a CUDA function. If the image
is in any other context, it is copied to the CUDA context.

For each output image, that is, images with output semantics, which are OUT PBO or IO PBO, a line like 6 is generated. It
checks if the output image was already allocated in CUDA context. When an image is created, the OpenGL texture is always
allocated to allow the exhibition on screen. The CUDA space however is allocated only on demand.

The function call in line 9 contains the execution configuration extracted from the declaration comment, and the parameters
are defined by the attribution comment. For each output image, a line like 15 is generated. It saves the information that the
correct image is in CUDA context, and the information stored in RAM and OpenGL context shall be ignored.

5 Results

We compared the functions of the proposed library, which we will call VGL (or VisionGL), with equivalent functions of
OpenCV and GPUCV. We used the command runbench from the application GPUCVConsole, available with the GPUCV
library. To test our code, we added the calls to our functions to the GPUCVConsole source code and recompiled it.

The tests were done in an Athlon X2 with 2 GBytes of RAM and a GeForce 8800 GTS. Each operator was tested fifty times
per library. The Table 1 show the average time in milliseconds for processing an RGB image with 1024×1024 pixels.

The VGL library gave results close to the GPUCV, some faster, and one, the GPU to CPU copy, slower as shown in Table 1,
where we present all the operators of Farrugia [2] for comparison. The times do not include the compilation time of the shaders.
The transfers between RAM (CPU) and video memory (GPU) are shown in the last two lines. The transfer from OpenGL to
CUDA context is 8.8 ms, and the opposite is 0.3 ms. There are many functions implemented in the library but not shown in the
table, for example parallel thinning, dense stereo calculation and background subtraction.

The tested shaders are written in GLSL in both GPUCV and VGL. The GPUCV library used was the revision 503 from its
SVN repository. The OpenCV library used was the version 1.0.0.

6 Conclusion

We present in this article a library for processing video in real time, with better performance than GPUCV in all but one of the
tested operators. The main advantage of our library is in the fact that it allows the creation of new operators easily in GLSL and
in CUDA, and generates automatically their wrapper code. The generated wrapper code also transfers the image data between
OpenGL, CUDA and RAM contexts automatically when necessary, or by calling a single function. It is also possible to create
operators that support multiple output images.

A disadvantage of our library compared to GPUCV is the absence of a direct mapping between its functions and the ones in
OpenCV. Future work may include to allow creation of shaders in CUDA that use texture fetch. We also plan to add support to
OpenCL code.

The authors thank CNPq for the grant 142683/2006-0.

136

Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss. 2, pp. 130-137, 2011

© Sociedade Brasileira de Redes Neurais (SBRN)

Table 1: Average time in milliseconds to process an image with 1024×1024 pixels
OpenCV GPUCV VGL

Erosion 3×3 38.4 1.6 0.8
Erosion 5×5 63.4 3.3 2.1
RGB to XYZ 11.9 0.8 0.2
RGB to HSV 21.0 1.0 0.3

Threshold 2.2 0.7 0.2
Copy 3.1 1.3 0.2

Subtraction 7.8 0.9 0.3
CPU to GPU 10.3 5.1
GPU to CPU 5.3 8.5

References

[1] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn and T. J. Purcell. “A Survey of General-Purpose
Computation on Graphics Hardware”. In Eurographics 2005, State of the Art Reports, pp. 21–51, August 2005.

[2] J. P. Farrugia, P. Horain, E. Guehenneux and Y. Alusse. “GPUCV: A Framework for Image Processing Acceleration with
Graphics Processors”. In Multimedia and Expo, 2006 IEEE International Conference on, pp. 585–588, 2006.

[3] J. Fung and S. Mann. “OpenVIDIA: parallel GPU computer vision”. In MULTIMEDIA ’05: Proceedings of the 13th annual
ACM international conference on Multimedia, pp. 849–852, New York, NY, USA, 2005. ACM.

[4] R. J. Rost. OpenGL(R) Shading Language. Addison-Wesley, second edition, 2005.

[5] NVIDIA Corporation. NVIDIA CUDA Architecture: introducion & overview, April 2009. Version 1.1.

[6] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly, Cambridge, MA, 2008.

[7] Y. Allusse, P. Horain, A. Agarwal and C. Saipriyadarshan. “Gpucv: an opensource gpu-accelerated framework forimage
processing and computer vision.” In MM ’08: Proceeding of the 16th ACM international conference on Multimedia, pp.
1089–1092. ACM, 2008.

137

Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 9, Iss. 2, pp. 130-137, 2011

© Sociedade Brasileira de Redes Neurais (SBRN)

