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Faculty of Electrical Engineering - FEELT

Federal University of Uberlândia - UFU

shigueonomura@feelt.ufu.br, josericardo@iftm.edu.br,keiji@ufu.br

Abstract – In this paper, we adopt unconventional target vectors to improve the performance of pattern classification systems
using neural network techniques based on MLP. Instead of conventional target vectors, the new target vectors are bipolar, or-
thogonal, and highly dimensional. Since they are orthogonal with bipolar representation, we can take advantage of increasing
on the Euclidean distance for these vectors when their number (n in a Euclidean spaceRn) of components increases. We define
non-orthogonal bipolar vectors considered as conventional target vectors for comparison purposes. Those non-orthogonal bipolar
vectors provide a fair reference to ensure the effectiveness of the adopted unconventional target vectors and in justifying the cred-
ibility and validity of experimental results. The conventional and unconventional target vectors are used in the experiments for
training MLP models by backpropagation algorithm to classify patterns extracted from actual degraded images. Comparison of
experimental results lead to conclusions that classification performances of MLP models considerably improved with the adopted
unconventional target vectors in classifying degraded patterns.
Keywords –Multilayer perceptron model, conventional target vector,orthogonal bipolar vector, non-orthogonalbipolar vector,
degraded image, pattern recognition

1 Introduction

Several artificial neural networks (ANN) have been developed and analyzed over the last few decades [1]. Multilayer percep-
tron (MLP) as one model of ANN has evolved over the years as a very powerful technique for solving a wide variety of problems.
Much progress has been made in improving the MLP performanceand in understanding how the MLP operates [1]. For instance,
the arising of an effective general method of training MLPs known as backpropagation or the generalized delta rule [2–4]played
a great role in the reemergence of ANN as a tool for solving problems [5].

The MLP net as a multilayer, feedforward net trained by backpropagation, can be used to solve problems in several ar-
eas [1, 6–11] due to the very general nature of the backpropagation training method [5]. Particularly, the MLP model applied to
pattern recognition [12–16] process has lead to important advances and shown potential as a classification system. It has been
successfully applied to pattern classification tasks. Thatsuccess is due to the MLP qualification to imitate the learning capacity
of the human brain. Pattern classification tasks involve mapping a given set of inputs to a specified set of target outputs for the
nets that are based on supervised training [5].

As a classification system, MLP requires a good approach for analyzing degraded image data, extracting features from these
data, generating a set of relevant information, and improving its performance.

A strategy to improve the MLP performance consists of training the net to achieve a balance between the ability to recognize
correctly the input patterns from the training set and the ability to provide acceptable responses to input that is similar, but not
identical (ability for generalization).

Many efforts have attempted to develop a good method followed by feature extraction systems [17, 18]. However, the need
for additional improvements in training MLPs still exists since the training process is very chaotic in nature.

Surprisingly, it is quite difficult to find studies on target vectors (outputs) or expectation values for learning and their impor-
tance to the MLP performance improvement in classifying patterns. Conventional target vectors that have been widely adopted
in various applications are binary or bipolar, and their sizes are based on the number of classes of input patterns.

In this work, an approach for improving the MLP ability for generalization is experimented by breaking away from such
conventional usage of target vectors.

This work experimentally analyzes the performance improvement of MLP using unconventional target vectors with bipolar
representation, orthogonality, and high dimensionality [19]. The idea is based on the fact that the MLP performance using bipolar
target vectors is already better than performance with binary ones [5]. But no work exists, to our knowledge, adopting orthogonal
bipolar vectors as expectation values for learning and same-sized non-orthogonal bipolar vectors as reference targetvectors to
show a convincing experimental comparison of MLP performances.

Section 2 describes the multiclass learning problem and classification based on the Euclidean distance for orthogonal bipolar
vectors. Section 3 presents the theoretical background including the definition of vectors used in the experiments, andanalysis
of Euclidean distance increase for proposed orthogonal bipolar vectors. The strategy of the proposed approach is presented in
Section 4. In Section 5, the experimental procedure for evaluating the proposed approach is presented. Section 6 describes ex-
periments and presents results showing that the orthogonalbipolar vectors as target ones improve MLP performance on degraded
pattern classification. Section 7 discusses the experimental results.
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2 Multiclass Classification Using Multilayer Perceptron (MLP)

It is known that connectionist algorithms are more difficultto apply to multiclass problems [20]. Multiclass classification
problems correspond to tasks of finding an approximate definition for an unknown functionf(x) given training examples of the
form 〈xi, f(xi)〉. The unknown functionf often takes values from a discrete set of “classes”c1, c2, . . . , ck. For example, in digit
recognition [21], the function maps each hand-printed digit to one ofk = 10 classes.

We can distinguish two approaches to handle these multiclass classification tasks as follows:

• We have one-per-class approach when the individual functionsf1, f2, . . . , fk are learned one for each class. To assign
a new casep to one of these classes, each of individual functionfi is evaluated onp, and the casep is assigned to the
classj corresponding to the functionfj that returns the highest activation [22]. This classification approach is standard for
conventional target vectors.

• Distributed output code is an alternative approach pioneered by Sejnowski and Rosenberg [23] in their widely-known
NETtalk [24] system. In this approach, each class is assigned to a unique binary string of lengthn; these strings refer to
target vectors in MLP. Thenn binary functions are learned, one for each bit position in these binary strings. During training
for an example from classi, the desired outputs of thesen binary functions are specified by the target vector for classi.
With MLP, thesen functions can be implemented by then output units of a single network. A new casep is classified by
evaluating each of then binary functions to generate ann-bit strings. This string is then compared to each of thek target
vectors, andp is assigned to the class whose target vector is closest, according to some distance measure, to the generated
strings.

3 Theoretical Foundation

The following defined vectors represent expectation valuesused in this experimental analysis.
Vectors are expressed in the form shown in Eq. (1):

V = (e1, e2, . . . , en)
T , (1)

whereV is a vector,T indicates transposition,ei represents a component fori = 1, 2, . . . , n, andn is the number of components.

3.1 Orthogonal Bipolar Vectors (OBVs)

Orthogonal bipolar vector (OBV) [19] has bipolar representation, and the norm ofU as an OBV in an Euclidean spaceRn is
given by Eq. (2):

|U | =
√

x1
2 + x2

2 + · · ·+ xn
2 =

√
n, (2)

whereU = (x1, x2, . . . , xn)
T , xi represents a component+1 or−1 for i = 1, 2, . . . , n, andn is the number of components.

The usual inner product [25] between two vectorsU andV in an Euclidean spaceRn is defined by Eq. (3):

U.V = x1y1 + x2y2 + · · ·+ xnyn, (3)

whereV = (y1, y2, . . . , yn)
T , yi represents a component+1 or−1 for i = 1, 2, . . . , n, andn is the number of components.

VectorsU andV are orthogonal (denoted byU ⊥ V ) if and only ifU.V = 0 in Eq. (4):

U ⊥ V ⇔ U.V = 0. (4)

The similarity is measured by operating the inner product orscalar product (defined by Eq. (4)) on two vectors which produces
a scalar. Then, the similarity between two OBVs is null.

3.2 Non-Orthogonal Bipolar Vectors (NOVs)

The following two reasons have led to the definition of non-orthogonal bipolar vector (NOV) [19] used as reference for target
vector experimental comparison:

1. An MLP architecture varies with the number of output neurons, which is directly dependent on the size (dimension) of
target vectors. Consequently, it is not possible to use the same MLP architecture for training models with different sizes
of target vectors. In fact, as shown in Fig. 1, the number “n” of output neurons (Z1, . . . , Zk, . . . , Zn) will decide the size
“m × n” of the weight matrix (Wjk) where (j = 1, . . . ,m; k = 1, . . . , n). Table 1 presents a formal statement of the
MLP architecture in Fig. 1. Since NOV can contain the same number of components as OBV, the same architecture of
backpropagation MLP can be used for experimenting with OBVsas new target vectors.
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Figure 1: Backpropagation MLP architecture with one hiddenlayer.

Table 1: A formal statement of the MLP architecture in Fig. 1

Variables Description

p The number of input units
X1, . . . , Xi, . . . , Xp The input units

m The number of hidden units
Y1, . . . , Yj , . . . , Ym The hidden units

n The number of output units
Z1, . . . , Zk, . . . , Zn The output units

Wjk Connecting weights between the hidden and output layers
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Table 2: A formal statement for constructing a set of OBVs

Symbol Description

2k The number of orthogonal vectors wherek = 1, 2, 3 . . .
s The number of components in a seed vector wheres = 1, 2, 3 . . .
V 0
s The seed vector withs components as part of OBVs
n The number of components in an OBV calculated by Eq. (8)
V i
n Theith OBV with n components

fcc(V 0
s ,±V 0

s ) The function to concatenate 2 seed vectors and construct a new vector represented by
V 1
2s with 2s components

2. MLP classification performance by the backpropagation algorithm is strongly dependent on the choice of initial weights.
This algorithm is based on the optimization technique knownas gradient descent where the choice of these initial weights
influences whether the net reaches a global (or only a local) minimum of the error [5]. Unfortunately, we can not alge-
braically determine exact initial weights to get this global minimum of error, and to provide the best performance of a MLP
model trained with each type (NOV or OBV) of target vector. Therefore, NOVs must be constructed to be able to adopt
the same initial weights for experimenting OBVs as new target vectors.

For reasons 1 and 2, NOV plays an important role as a fair reference to ensure the effectiveness of OBVs as new target vectors
and in justifying the credibility and validity of experimental results presented in the next sections.

Non-orthogonal bipolar vectors (NOVs) are highly similar because they are larger than conventional ones, they are bipolar,
and the angle between them is less than90 degrees. In a general form, Eq. (5) defines NOV withn components for representing
pth pattern inq patterns as

Vp = (

p−1

︷ ︸︸ ︷

−1, . . . ,−1, 1,

n−p
︷ ︸︸ ︷

−1, . . . ,−1)T , (5)

whereVp is the NOV for representing thepth pattern,p = 1, 2, . . . , q, q is the number of patterns, andn > q is the number of
components.

Equation (6) defines a form of NOV used in the experimental analysis. In the experiments, the MLP model classifies patterns
of digits into ten classes.

Vi = (

i−1

︷ ︸︸ ︷

−1, . . . ,−1, 1,

n−i
︷ ︸︸ ︷

−1, . . . ,−1)T , (6)

whereVi is the NOV for representing theith digit, i = 1, 2, . . . , 9, andn > 10 is the number of components.
The digit “0” is defined as a10th digit by Eq. (7):

V0 = (

9

︷ ︸︸ ︷

−1, . . . ,−1, 1,

n−10

︷ ︸︸ ︷

−1, . . . ,−1)T . (7)

The similarity value (defined in Section 3.1) between two NOVs is greater than the corresponding value for OBVs. Also, if
the NOVs expand then the corresponding similarity value increases.

Defined vectors (OBV, NOV) are used as target vectors to experimentally analyze the MLP performance improvement in
classifying degraded patterns (digits).

3.3 Algorithm for Constructing Orthogonal Bipolar Vectors (OBVs)

As defined in Section 3.1, an OBV should satisfy two properties:

• Orthogonality. The inner product of any pair of OBVs must be zero.

• Bipolarity. A component in an OBV is+1 or−1.

The number of components in an OBV can be calculated by Eq. (8):

n = 2ks. (8)

A set of2k mutual OBVs is constructed with2ks components [5]. Table 2 presents the formal statement to construct a set of
OBVs.

The algorithm for constructing the set of vectors is as follows:

• 1st step: Initializes andk, wheres = 1, 2, 3 . . . andk = 1, 2, 3 . . . .
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Table 3: An example of OBV with 32 components

Digit OBV T

“1” (1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1)
“2” (1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1)
“3” (1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1)
“4” (1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1)
“5” (1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1)
“6” (1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1)
“7” (1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1)
“8” (1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1)
“9” (1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1)
“0” (1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1)

• 2nd step: Initialize the seed vector withs components⇒ V 0
s = (

s
︷ ︸︸ ︷

1, 1, . . . , 1)T . For example, ifs = 2 thenV 0
2 = (1, 1)T .

• 3rd step: Calculate the number (n) of components in an OBV using Eq. (8). For example, if(s = 2) and(k = 2) then
n = 22 × 2 = 8.

• 4th step: Construct

V 1
2s = fcc(V 0

s , V
0
s ),

V 2
2s = fcc(V 0

s ,−V 0
s ). For example,V 1

2×2
= fcc(V 0

2
, V 0

2
) = (1, 1, 1, 1)T andV 2

2×2
= fcc(V 0

2
,−V 0

2
) = (1, 1,−1,−1)T

• 5th step: Construct

V 1
4s = fcc(V 1

2s, V
1
2s),

V 2
4s = fcc(V 1

2s,−V 1
2s),

V 3
4s = fcc(V 2

2s, V
2
2s),

V 4
4s = fcc(V 2

2s,−V 2
2s).

For example,

V 1
4×2

= fcc(V 1
2×2

, V 1
2×2

) = (1, 1, 1, 1, 1, 1, 1, 1)T

V 2
4×2

= fcc(V 1
2×2

,−V 1
2×2

) = (1, 1, 1, 1,−1,−1,−1,−1)T

V 3
4×2 = fcc(V 2

2×2, V
2
2×2) = (1, 1,−1,−1, 1, 1,−1,−1)T

V 4
4×2 = fcc(V 2

2×2,−V 2
2×2) = (1, 1,−1,−1,−1,−1, 1, 1)T.

• 6th step: Continue until2k orthogonal vectors withn components have been constructed⇒ V 1
n , · · · , V 2

k

n . For example,
if (s = 2) and(k = 2) then2k = 4 OBVs with 8 components already have been constructed until5th step. However, if
k = 3 then the6th step will be executed to construct2k = 8 OBVs with 16 components in each vector.

Table 3 presents an example of OBV with 32 components constructed by the above algorithm.

3.4 Number of Active Neurons for NOV and OBV

In the case of NOV defined in Section 3.2 and adopted as reference in our experimentation, its number of active neurons is
only one as shown in Fig. 2(a). In this case, it means that onlythe neuronZ1 is active (represented by “1”) whereas the others
are not active (represented by “-1”).

On the other hand, the minimum number of active neurons for OBVs is half of total number (n) of output neurons as shown
in Fig. 2(b). Also, this number of active neurons increases according to the increase in the OBV size. This property leadsto the
increase in Euclidean distance between two OBVs as analyzednext. Then, this evidence explains our experimentation hypothesis
that OBVs as target vectors can improve the performance of MLP in classifying degraded patterns.

3.5 Euclidean Distance Analysis for NOVs

Different sizes of NOVs (V 1
n andV 2

n ) defined in Section 3.2 can be constructed to represent two different digits “1” and
“2”, and calculate the Euclidean distance(dn) for these vectors in a vector spaceRn, wheren is the number of components as
follows:
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Figure 2: Number of active neurons for NOV and OBV.

• NOV with 2 components:

V 1
2
= (1,−1)T

V 2
2
= (−1, 1)T

d2 =
√

(1 + 1)2 + (−1− 1)2 = 2
√
2

• NOV with 3 components:

V 1
3 = (1,−1,−1)T

V 2
3
= (−1, 1,−1)T

d3 =
√

(1 + 1)2 + (−1− 1)2 = 2
√
2

• NOV with 4 components:

V 1
4
= (1,−1,−1,−1)T

V 2
4
= (−1, 1,−1,−1)T

d4 =
√

(1 + 1)2 + (−1− 1)2 = 2
√
2

• NOV with n components:

V 1
n = (1,−1,

n−2

︷ ︸︸ ︷

−1, . . . ,−1)T

V 2
n = (−1, 1,

n−2

︷ ︸︸ ︷

−1, . . . ,−1)T

dn =
√

(1 + 1)2 + (−1− 1)2 = 2
√
2

This analysis shows that the Euclidean distance (dn) is invariable and equal to2
√
2, that is, the distance for non-orthogonal

bipolar vectors does not depend on their size.

3.6 Euclidean Distance Analysis for OBVs

Different numbers (n) of components for OBVs are calculated by Eq. (8) defined in Section 3.3. For instance, OBVs (V 1
n and

V 2
n ) can be constructed to represent the digits “1” and “2” and calculate the Euclidean distance (dn) for these vectors in a vector

spaceRn, wheren is the number of components as follows:

• OBV with 2 components:

V 1
2
= (1,−1)T

V 2
2
= (1, 1)T

d2 =
√

(1 + 1)2 =
√
2× 2
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• OBV with 4 components:

V 1
4
= (1, 1, 1, 1)T

V 2
4
= (1, 1,−1,−1)T

d4 =
√

(1 + 1)2 + (1 + 1)2 =
√
2× 4

• OBV with 6 components:

V 1
6 = (1, 1, 1, 1, 1, 1)T

V 2
6 = (1, 1, 1,−1,−1,−1)T

d6 =
√

(1 + 1)2 + (1 + 1)2 + (1 + 1)2 =
√
2× 6

• OBV with n = 2s components:

V 1
n = (

n
︷ ︸︸ ︷

1, 1, . . . , 1)T

V 2
n = (

m
︷ ︸︸ ︷

1, 1, . . . , 1,

m
︷ ︸︸ ︷

−1,−1, . . . ,−1)T

dn =
√

(1 + 1)2 + (1 + 1)2 + . . . (1 + 1)2
︸ ︷︷ ︸

m

=
√
2n

In using OBVs as target vectors, the Euclidean distance (dn) increases according to the increase in the number (n) of compo-
nents. The distance between two OBVs withn components is then calculated by the equationdn =

√
2n.

3.7 Euclidean Distance Increase for NOVs and OBVs

For the distance increase analysis, the number of components in each vector was varied from 2 to 64 incremented by 2. We
can verify that the distance for 64 component-NOV (dNOV64) compared to the distance for 64 component-OBV (dOBV64) is

dOBV64 = 8
√
2

dNOV64 = 2
√
2

}

dOBV64 = 4× dNOV64. (9)

This increase of Euclidean distance for NOVs and OBVs is an important aspect to explain the MLP performance improvement
when larger sizes of OBVs are used as target vectors in the next experiments.

4 Proposed Approach

This work aims to experimentally analyze the improvement ofpattern classification rate using MLP based on the proposed
new target vectors.

To justify the credibility and validity of experimental analysis presented in this work, the strategy consists of the following
steps:

1. Construct non-orthogonal bipolar vectors to be used as conventional target vectors.

2. Construct orthogonal bipolar vectors to be used as new target vectors for the classification rate improvement.

3. Define a topology of MLP net to be learned with non-orthogonal vectors and orthogonal vectors used as target ones.

4. Compare experimental results using non-orthogonal bipolar vectors with those results using orthogonal bipolar vectors.

In summary, this approach takes advantage of non-orthogonal bipolar vectors as a fair reference to ensure the effectiveness of
proposing orthogonal bipolar vectors as target ones.

5 Experimental Procedure

An MLP model is set to experimentally evaluate the proposed OBV-based approach.
Experimental data originated from license plate photos automatically taken by traffic control radars installed in Uberlândia

City, Brasil. They are very degraded images with such problems as luminosity, contrast, focalization, resolution, andsize, all of
which require preprocessing able to extract relevant features for pattern recognition process. The original preprocessing methods
proposed in such previous works as adaptive contrast enhancement [26], adaptive thresholding [27], automatic segmentation and
extraction of feature vectors [28] were used.
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Figure 3: The training set of 120 images, digitized on a20× 15 grid.

5.1 Data Representation

Segmented patterns (20 × 15) are represented by feature vectors with 300 components, and each component in the vector
should represent one pixel of the pattern (bipolar value+1) or one pixel of the image background (bipolar value−1).

Figure 3 shows the 120-image training set representing digits as input data.
In this work, the adopted data representation is bipolar since the learning may be improved if the input is represented in

bipolar form and the bipolar sigmoid is used for the activation function [5]. The reason is if one factor in the weight connection
expression is the activation of the lower unit then units whose activations are null will not learn [5].

5.2 MLP Topology

The adopted multilayer neural network in the experiments consisted of the architecture with one layer of hidden neurons.
Such usual strategies in MLP [29] as one parameter keeping and the variation of remaining parameters defined the ap-

propriate topology. Conventional experiments get adequate topology for classifying input digits (20 × 15) represented by the
300-dimensional feature vectors. An experimental MLP model consists of 300 neurons in the input layer. The adequate number
of neurons in the hidden layer is set according to each experiment. The number of neurons in the output layer is defined by the
target vector type or its size selected for each experiment.

5.3 Training Stage

The standard backpropagation algorithm [5] was adopted as the learning algorithm of each MLP model. Since all experi-
mental target vectors are bipolar, the adopted activation function is the typical bipolar sigmoid [5], which has a rangeof (−1, 1).
Initial weights are generated as random values between−0.25 and0.25. The learning rate parameter is set as0.02. The criterion
for stopping the learning algorithm is to require that the maximum value of the average squared error be equal to or less than the
tolerance.

Training data set is constituted by 120 pattern-images not belonging to the testing data set. It contains input patternsfor
training the MLP model to classify digits extracted from license plates into categories. Each category is represented by 12 input
patterns.

5.4 Testing Stage

The classification rate is calculated by Eq. (10):

cr =

∑N

i ci

N
, (10)

wherecr is classification rate,N is number of testing patterns, andci is defined as
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Figure 4: MLP performance using NOVs with 16 components as target vectors.

ci =

{
1 : pi = ri
0 : pi 6= ri

, (11)

wherepi is a classified pattern (output of the MLP model), andri is the corresponding category (correct response).
Testing data set that contains 1352 images of extracted digits (“0”,“1”, . . . ,“9”) from license plate images after image prepro-

cessing [26–28,30]. A trained MLP model task consists of classifying extracted digits of the testing data set into ten classes.

6 Experiments and Results

The experimentation was proceeded using NOV and OBV as target vectors defined in Sections 3.1and 3.2. We evaluated the
degraded pattern classification performance of MLP adopting the proposed OBVs as target vectors and the NOVs as other target
ones for comparison of classification results. Figures 4–9 show the graphs with the number of epochs and the corresponding
tolerance value for training convergence of the MLP model toprovide the degraded pattern classification rate during thetesting
stage.

6.1 Influence of OBV on number of epochs and classification rate

To evaluate the influence of OBVs as target vectors on the number of epochs for training MLP models and their classification
performance, the experiment consisted of the following strategy:

1. Construct NOVs of the same size as OBVs.

2. Adopt the same set of initial weights for training the MLP models defined by NOV and OBV as target vectors.

3. Compare the highest classification results of a pair of MLPmodels trained with different types of target vectors but with
same sizes.

Figures 4–6 show testing stage results (pattern classification rate) using NOV with 16, 32, and 64 components, respectively.
The similarity values calculated by Eq. (3) are 12, 28, and 60, respectively.

Figures 7–9 show testing stage results (pattern classification rate) using OBV with 16, 32, and 64 components, respectively.
In this case, the similarity values are null because all the vectors are orthogonal.

Table 4 presents the highest classification rate and the corresponding number of epochs selected from each graph of Figs.4–9.
The values (classification rate and number of epochs) are listed in Table 4 for comparison purposes after adopting NOVs and
OBVs as target vectors on the MLP model. Also, the last row of Table 4 shows the corresponding tolerance value to achieve
the number of epochs during the training stage. We adopted the early stopping criterion by considering the balance between
memorization and generalization. Based on this criterion is not necessarily advantageous to continue training until the error
actually reaches a minimum [5].

6.2 Improvement on MLP performance due to OBV size variation

In this section, the influence of OBV size on MLP pattern classification performance improvement is presented. The exper-
imental analysis consisted of adopting 64, 128, 256, or 448 components as OBV sizes [19]. Consequently, each experimental
MLP topology consisted of 64, 128, 256, or 448 neurons in the output layer accordingly to the adopted OBV size.
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Figure 5: MLP performance using NOVs with 32 components as target vectors.
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Figure 6: MLP performance using NOVs with 64 components as target vectors.
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Figure 7: MLP performance using OBVs with 16 components as target vectors.
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Figure 8: MLP performance using OBVs with 32 components as target vectors.
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Figure 9: MLP performance using OBVs with 64 components as target vectors.

Table 4: Relevant results from the graphs of Figs. 4–9

NOV16 NOV32 NOV64 OBV16 OBV32 OBV64

Classification% 71.70 71.70 73.20
✄

✂

�

✁
80.00

✄

✂

�

✁
80.33

✄

✂

�

✁
81.40

Epochs 1301 4318 5260
✄

✂

�

✁
38

✄

✂

�

✁
821

✄

✂

�

✁
43

Tolerance×10−4 2 0.7 0.6 200 11 250
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Figure 10: Performance evolution of MLP based on the OBV sizeincrease.

The graph in Fig. 10 shows that the performance of MLP improves when trained with a larger OBV size following the
increase of Euclidean distance for OBVs [19]. A significant 1.4% increase in the classification rate is verified from 81.1%(64
component-OBV) to 82.5% (448 component-OBV).

7 Discussion

Essentially, the same parameters such as initial weights, tolerance, and learning rate were adopted for training models with
different types of target vectors to provide a fair comparison of results. The main comparison focuses on analyzing MLP perfor-
mances by adopting NOVs and OBVs as target vectors. Since NOVand OBV can contain the same number of components, it was
possible to use the same net topology for experimenting withboth vectors to provide a fair comparison of MLP performances.

Relevant results from the graphs of Figs. 4–9 show that the classification rate results using MLP models trained with OBVs
as target vectors are better than the results with NOVs for all different sizes. Also, Table 4 reveals that the corresponding number
of epochs necessary to train each MLP model decreased when OBVs are adopted as target vectors. In the case of vectors with 64
components, OBVs increase the classification rate 8.2% from73.2% to 81.4% over NOVs and significantly decrease the number
of epochs from 5260 to 43 in Table 4.

8 Conclusion

The orthogonality of OBVs leads to the enlargement of outputspace created during the supervised learning (input-output
mapping) of an MLP model. In other words, an MLP model based onOBVs as target vectors can be learned with higher
ability to generalize by higher tolerance than a similar model based on NOVs as target vectors. Also, the model has a faster
convergence speed to reach the training stop condition. Then, a suitable avoidance of overfitting or overtraining is promising too.
Consequently, the topology design using OBVs provided a better MLP performance to classify degraded patterns.
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