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Abstract — In this paper, we adopt unconventional target vectors tadavgthe performance of pattern classification systems
using neural network techniques based on MLP. Instead ofertional target vectors, the new target vectors are hipota
thogonal, and highly dimensional. Since they are orthobwaith bipolar representation, we can take advantage oeimsing
on the Euclidean distance for these vectors when their nufnkia a Euclidean spad@™) of components increases. We define
non-orthogonal bipolar vectors considered as conventiarget vectors for comparison purposes. Those non-oaothaldipolar
vectors provide a fair reference to ensure the effectiveotthe adopted unconventional target vectors and in juistifthe cred-
ibility and validity of experimental results. The convenmtal and unconventional target vectors are used in the iexpsts for
training MLP models by backpropagation algorithm to clgspatterns extracted from actual degraded images. Cosgradf
experimental results lead to conclusions that classifingierformances of MLP models considerably improved withettiopted
unconventional target vectors in classifying degradetepas.

Keywords —Multilayer perceptron model, conventional target veatathogonal bipolar vector, non-orthogonal bipolar vector
degraded image, pattern recognition

1 Introduction

Several artificial neural networks (ANN) have been devetiogned analyzed over the last few decades [1]. Multilayergerc
tron (MLP) as one model of ANN has evolved over the years asyap@verful technique for solving a wide variety of problems
Much progress has been made in improving the MLP performandén understanding how the MLP operates [1]. For instance,
the arising of an effective general method of training MLRs\Wn as backpropagation or the generalized delta rule [2lagkd
a great role in the reemergence of ANN as a tool for solvindgplams [5].

The MLP net as a multilayer, feedforward net trained by baggpgation, can be used to solve problems in several ar-
eas [1,6-11] due to the very general nature of the backpesjmexfraining method [5]. Particularly, the MLP model apglto
pattern recognition [12—16] process has lead to importdwaaces and shown potential as a classification systems lbéen
successfully applied to pattern classification tasks. Shatess is due to the MLP qualification to imitate the leaycapacity
of the human brain. Pattern classification tasks involvepimapa given set of inputs to a specified set of target outpurtthie
nets that are based on supervised training [5].

As a classification system, MLP requires a good approachfalyaing degraded image data, extracting features frosethe
data, generating a set of relevant information, and immits performance.

A strategy to improve the MLP performance consists of trajrthe net to achieve a balance between the ability to rezegni
correctly the input patterns from the training set and thiétglio provide acceptable responses to input that is simibut not
identical (ability for generalization).

Many efforts have attempted to develop a good method foliblayefeature extraction systems [17,18]. However, the need
for additional improvements in training MLPs still exisiae the training process is very chaotic in nature.

Surprisingly, it is quite difficult to find studies on targegators (outputs) or expectation values for learning anu itmpor-
tance to the MLP performance improvement in classifyinggoas. Conventional target vectors that have been widebptzdl
in various applications are binary or bipolar, and theiesiare based on the number of classes of input patterns.

In this work, an approach for improving the MLP ability forrgralization is experimented by breaking away from such
conventional usage of target vectors.

This work experimentally analyzes the performance impnoet of MLP using unconventional target vectors with bipola
representation, orthogonality, and high dimensionali8][ The idea is based on the fact that the MLP performancejuspolar
target vectors is already better than performance withrpioaes [5]. But no work exists, to our knowledge, adoptirthogonal
bipolar vectors as expectation values for learning and ssimegl non-orthogonal bipolar vectors as reference taggbrs to
show a convincing experimental comparison of MLP perforoesn

Section 2 describes the multiclass learning problem arssifieation based on the Euclidean distance for orthogadpaldr
vectors. Section 3 presents the theoretical backgroutddimg the definition of vectors used in the experiments, amalysis
of Euclidean distance increase for proposed orthogonaldnivectors. The strategy of the proposed approach is ipiebén
Section 4. In Section 5, the experimental procedure foruatadg the proposed approach is presented. Section 6 besax-
periments and presents results showing that the orthofgra@ar vectors as target ones improve MLP performance gredied
pattern classification. Section 7 discusses the experahesgults.
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2 Multiclass Classification Using Multilayer Perceptron (MLP)

It is known that connectionist algorithms are more diffidoltapply to multiclass problems [20]. Multiclass classifica
problems correspond to tasks of finding an approximate diefirfor an unknown functiorf («) given training examples of the
form (x;, f(x;)). The unknown functiorf often takes values from a discrete set of “classgs?s, . . ., ¢,. For example, in digit
recognition [21], the function maps each hand-printedtd@one ofk = 10 classes.

We can distinguish two approaches to handle these muliclassification tasks as follows:

e We have one-per-class approach when the individual funstfp, fo, ..., fx are learned one for each class. To assign
a new case to one of these classes, each of individual functfpiis evaluated om, and the case is assigned to the
class;j corresponding to the functiofy that returns the highest activation [22]. This classifmatpproach is standard for
conventional target vectors.

e Distributed output code is an alternative approach piattéy Sejnowski and Rosenberg [23] in their widely-known
NETtalk [24] system. In this approach, each class is asdigm@ unique binary string of lengthy these strings refer to
target vectors in MLP. Then binary functions are learned, one for each bit position @sébinary strings. During training
for an example from class the desired outputs of thesebinary functions are specified by the target vector for class
With MLP, thesen functions can be implemented by theoutput units of a single network. A new casés classified by
evaluating each of the binary functions to generate anbit strings. This string is then compared to each of thearget
vectors, ang is assigned to the class whose target vector is closestidicgdo some distance measure, to the generated
strings.

3 Theoretical Foundation

The following defined vectors represent expectation valses! in this experimental analysis.
Vectors are expressed in the form shown in Eq. (1):

V = (e1,e2,...,en)", 1)
whereV is a vector’ indicates transpositiom, represents a componentfoe 1,2, ..., n, andn is the number of components.
3.1 Orthogonal Bipolar Vectors (OBVSs)

Orthogonal bipolar vector (OBV) [19] has bipolar represgion, and the norm di’ as an OBV in an Euclidean spagé is
given by Eq. (2):

U| = V12 + 292 + -+ 2,2 = v/, )

whereU = (x1,1a,...,2,)T, x; represents a component or —1 fori = 1,2,...,n, andn is the number of components.
The usual inner product [25] between two vectBrandV in an Euclidean spadR” is defined by Eq. (3):

UV = T1Y1 + T2Y2 + -+ TnYn, (3)

whereV = (y1,¥2,...,yn)T, y; represents a component or —1fori =1,2,...,n, andn is the number of components.
VectorsU andV are orthogonal (denoted liy | V') if and only if U.V = 0 in Eq. (4):

ULV &UV=0. (4)

The similarity is measured by operating the inner produstatar product (defined by Eq. (4)) on two vectors which poesgu
a scalar. Then, the similarity between two OBVs is null.

3.2 Non-Orthogonal Bipolar Vectors (NOVS)

The following two reasons have led to the definition of notirogonal bipolar vector (NOV) [19] used as reference fayear
vector experimental comparison:

1. An MLP architecture varies with the number of output negronvhich is directly dependent on the size (dimension) of
target vectors. Consequently, it is not possible to usedhgesVILP architecture for training models with differentesiz
of target vectors. In fact, as shown in Fig. 1, the numberdf output neurons¥y, ..., Zx, ..., Z,) will decide the size
“m x n” of the weight matrix {V;;) where § = 1,...,m; k = 1,...,n). Table 1 presents a formal statement of the
MLP architecture in Fig. 1. Since NOV can contain the same emof components as OBV, the same architecture of
backpropagation MLP can be used for experimenting with OB¥Bew target vectors.
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Figure 1: Backpropagation MLP architecture with one hidideer.
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Table 1: A formal statement of the MLP architecture in Fig. 1

| Variables | Description |

P The number of input units
X1,...,X;,..., X, | Theinputunits
m The number of hidden units
Yi,...,Y;, ..., Y, | The hidden units
n The number of output units
Z1yeey Ly, Zyn | The output units
W; Connecting weights between the hidden and output layers
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Table 2: A formal statement for constructing a set of OBVs

| Symbol | Description

2k The number of orthogonal vectors whére- 1,2,3 ...

s The number of components in a seed vector wketel, 2,3 .. ..
V9 The seed vector with components as part of OBVs

n The number of components in an OBV calculated by Eq. (8)

Vi Theit™ OBV with n components

fee(VO,£V0) | The function to concatenate 2 seed vectors and construet aewor represented by
V4 with 2s components

2. MLP classification performance by the backpropagatigorithm is strongly dependent on the choice of initial wesgh
This algorithm is based on the optimization technique knas/gradient descent where the choice of these initial weight
influences whether the net reaches a global (or only a localymam of the error [5]. Unfortunately, we can not alge-
braically determine exact initial weights to get this glbiméimum of error, and to provide the best performance of aAVIL
model trained with each type (NOV or OBV) of target vector.eféfore, NOVs must be constructed to be able to adopt
the same initial weights for experimenting OBVs as new tavgetors.

For reasons 1 and 2, NOV plays an important role as a faireaterto ensure the effectiveness of OBVs as new target gector
and in justifying the credibility and validity of experim&hresults presented in the next sections.

Non-orthogonal bipolar vectors (NOVs) are highly simil&chuse they are larger than conventional ones, they ar&ahipo
and the angle between them is less th@megrees. In a general form, Eq. (5) defines NOV wittomponents for representing
p'" pattern ing patterns as

p—1 n—p
Vo=(=1,...,—1,1,—1,..., -7, (5)

whereV, is the NOV for representing the” pattern,p = 1,2,...,q, ¢ is the number of patterns, amd> ¢ is the number of
components.

Equation (6) defines a form of NOV used in the experimentalyaig In the experiments, the MLP model classifies patterns
of digits into ten classes.

i—1 n—i
‘/Ti:(_17"'7_1517_17"'7_1)T7 (6)

whereV; is the NOV for representing th&" digit, i = 1,2,...,9, andn > 10 is the number of components.
The digit “0” is defined as a0*" digit by Eq. (7):

9 n—10
Vo=(-1,...,-1,1,—1,...,-1)T. (7)

The similarity value (defined in Section 3.1) between two NG&greater than the corresponding value for OBVs. Also, if
the NOVs expand then the corresponding similarity valuesases.

Defined vectors (OBV, NOV) are used as target vectors to é@xeatally analyze the MLP performance improvement in
classifying degraded patterns (digits).

3.3 Algorithm for Constructing Orthogonal Bipolar Vectors (OBVS)
As defined in Section 3.1, an OBV should satisfy two propsrtie
e Orthogonality. The inner product of any pair of OBVs must beoz
e Bipolarity. A componentin an OBV is-1 or —1.
The number of components in an OBV can be calculated by Eqg. (8)

n = 2Fs. (8)

A set of2¥ mutual OBVs is constructed withf's components [5]. Table 2 presents the formal statement tstaant a set of
OBVs.
The algorithm for constructing the set of vectors is as fe$io

e 15t step: Initializes andk, wheres = 1,2,3... andk =1,2,3....
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Table 3: An example of OBV with 32 components

| Digit | OBV |
T || (4,4,0,-1,4,0,-1,-1,4,4,-1,4,-1,-1,,-1, 1, B4, -1,1,1,-1,-1,1,-1,1,1,-1
2 | @1,4,1,1,0,0,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-440,1,-1,-1,1,1,-1,1,-1,-1,1
3 || (L1,-4,0,-1,1,1,-1,1,-1,-1,4,-1,4,1,-1,-1, 1, B4, 1,1,-1,1,1,-1,1,-1,-1,1
@ | (1,4,1,1,0,0,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-440,1,-1,1,-1,-1,1,-1,1,1,-1
5 || (L,-1,-1,0,1,-1,-1,4,-1,4,1,-1,-1,1,1,-1,-1,1, 54%,1,-1,1,-1,-1,1,1,-1,-1,1
6 || (L-1,-1,0,1,-1,-1,,-1,,1,-1,-1,1,1,-1,1,-1,-1,44,-1,1,-1,1,1,-1,-1,1,1,-1
7 | @1,A11,0,-11,0,-1,-1,1,1,-1,-1,1,-1,1, 54%,1,-1,-1,1,1,-1,-1,1,1,-1
& || (1,40,1,0,-1,0,0,-1,-1,4,1,-1,-1,1,1,-1,-1,44,-1,1,1,-1,-1,1,1,-1,-1.1
o | (@, 11-1,40,-1,0,-1,0,4,1,1,4,1,-1,-1,1,1,8,1,-1,1,-1,1,-1,-1,1,-1,1
0 | (,1,1,-1,-1,0,-1,0,-1,1,-1,1,1,-4,1,-1,1,-1, 541, -1,1,-1,1,-1,1,1,-1,1,-1

— — —

S

—
27d step: Initialize the seed vector withcomponentss V= (1,1, ..., 1)T. For example, it = 2 thenV = (1,1)7.

3'd step: Calculate the number)(of components in an OBV using Eq. (8). For examplésif= 2) and(k = 2) then
n=22x2=_8.

4*h step: Construct

‘/215 = fCC(V:), Vso)v

VZ = fee(VO, —VD0). For exampleVy , = fee(Vy,VY) = (1,1,1, )T andVZ , = fee(Vy, —V3) = (1,1,—1,—-1)T

5" step: Construct

Vis = fee(Vag, Vay),

Vi, = fee(Vds, =Vay),

Vil = fee(Vs, Vi),

Vis = fee(Vy, =Vay).

For example,

Vika = fee(Via, Vaho) = (1,1,1,1,1,1,1,1)7

Vi = fee(Vaya, =Viyo) = (1,1,1,1, -1, -1, =1, =)
Vo = fee(Viia, Vo) = (1,1, -1,-1,1,1, -1, -1)"
‘/;l4><2 = fcc(‘/éQXQ) _‘/22><2) = (17 1) _1) _1) _1) _1) 17 1)T

e 6" step: Continue untit* orthogonal vectors withk components have been constructed,!, - - - ,V,%k. For example,

if (s = 2)and(k = 2) then2* = 4 OBVs with 8 components already have been constructed iitdtep. However, if
k = 3 then the6*™™ step will be executed to constru’t = 8 OBVs with 16 components in each vector.

Table 3 presents an example of OBV with 32 components caststiby the above algorithm.
3.4 Number of Active Neurons for NOV and OBV

In the case of NOV defined in Section 3.2 and adopted as referiarour experimentation, its number of active neurons is
only one as shown in Fig. 2(a). In this case, it means that th@yneuronz1 is active (represented by “1") whereas the others
are not active (represented by “-1").

On the other hand, the minimum number of active neurons fov©iB half of total number() of output neurons as shown
in Fig. 2(b). Also, this number of active neurons increage®aling to the increase in the OBV size. This property ldadke
increase in Euclidean distance between two OBVs as anahgddThen, this evidence explains our experimentatiomthgsis
that OBVs as target vectors can improve the performance d? Mlclassifying degraded patterns.

3.5 Euclidean Distance Analysis for NOVs

Different sizes of NOVs ;! andV,?) defined in Section 3.2 can be constructed to represent tiferetit digits “1” and

“2", and calculate the Euclidean distan@g,) for these vectors in a vector spaké, wheren is the number of components as
follows:
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Figure 2: Number of active neurons for NOV and OBV.

e NOV with 2 components:
vi=0,-17
VP =(-1,1)"
dy=+/(1+1)2+(-1-1)2=2V2
e NOV with 3 components:
Vi =(1,-1,-1)7
V= (-1,1,-1)7
dy = /(1 +1)2 + (-1 -1)2=2V2
e NOV with 4 components:
Vi= (1,71,71,71)T
VE=(-1,1,-1,-1)T
di=/(1+1)2+(-1-1)2=2V2

e NOV with n components:

n—2
—_——
vi=@1,-1,-1,....,-1)7T
n—2
—_——
V2 =(-1,1,-1,....,—1)T

dy =/ (1+1)2+ (-1 -1)2 =22

This analysis shows that the Euclidean distankg {s invariable and equal t2v/2, that is, the distance for non-orthogonal
bipolar vectors does not depend on their size.

3.6 Euclidean Distance Analysis for OBVs

Different numbersi) of components for OBVs are calculated by Eq. (8) defined ti6e 3.3. For instance, OBV#/{ and
V,2) can be constructed to represent the digits “1” and “2” aridutate the Euclidean distance,( for these vectors in a vector
spaceR™, wheren is the number of components as follows:

e OBV with 2 components:
Vi =(1,-D"
V7= (1,17
dy=+/(1+1)2=12x2
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e OBV with 4 components:
vi=(01,1,1,1)T
VE=(1,1,-1,-1)T
dy=/1+1)2+(1+1)2=2x14
e OBV with 6 components:
Vi =(1,1,1,1,1,»)T
Vé=(01,1,1,-1,-1,-1)T

de =/(1+1)2+(1+1)2+(1+1)2=2x6

e OBV with n = 2s components:

n

—
vi=1,... 1)

—— ———
v2=(1,...1°11,.. D"

dn\/(1+1)2+(1+1)2+...(1+1)2\/ﬁ

m

In using OBVs as target vectors, the Euclidean distadggiQicreases according to the increase in the numbesfcompo-
nents. The distance between two OBVs withomponents is then calculated by the equatipn= /2n.

3.7 Euclidean Distance Increase for NOVs and OBVs

For the distance increase analysis, the number of comp®ireaach vector was varied from 2 to 64 incremented by 2. We
can verify that the distance for 64 component-N@W(©Vs4) compared to the distance for 64 component-OBY BV;,) is

dOBVgy = 82
ANOVyy = 20/2

This increase of Euclidean distance for NOVs and OBVs is gontant aspect to explain the MLP performance improvement
when larger sizes of OBVs are used as target vectors in theemprriments.

}dOBV64 =4 x ANOVj,. 9)

4 Proposed Approach

This work aims to experimentally analyze the improvememattern classification rate using MLP based on the proposed
new target vectors.

To justify the credibility and validity of experimental dgsis presented in this work, the strategy consists of ttleviing
steps:

1. Construct non-orthogonal bipolar vectors to be used ageastional target vectors.

2. Construct orthogonal bipolar vectors to be used as n@etaectors for the classification rate improvement.

3. Define a topology of MLP net to be learned with non-orthag@ectors and orthogonal vectors used as target ones.
4. Compare experimental results using non-orthogonal&ipectors with those results using orthogonal bipolateesc

In summary, this approach takes advantage of non-orthéggrtdar vectors as a fair reference to ensure the effentige of
proposing orthogonal bipolar vectors as target ones.

5 Experimental Procedure

An MLP model is set to experimentally evaluate the proposBiY-Dased approach.

Experimental data originated from license plate photosraatically taken by traffic control radars installed in UBadia
City, Brasil. They are very degraded images with such problas luminosity, contrast, focalization, resolution, aize, all of
which require preprocessing able to extract relevant featfor pattern recognition process. The original prepssicgg methods
proposed in such previous works as adaptive contrast eah@ert [26], adaptive thresholding [27], automatic segetént and
extraction of feature vectors [28] were used.
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Figure 3: The training set of 120 images, digitized dlvax 15 grid.

5.1 Data Representation

Segmented pattern8( x 15) are represented by feature vectors with 300 componerdseach component in the vector
should represent one pixel of the pattern (bipolar vatigor one pixel of the image background (bipolar valug).

Figure 3 shows the 120-image training set representingstigiinput data.

In this work, the adopted data representation is bipolaresthe learning may be improved if the input is represented in
bipolar form and the bipolar sigmoid is used for the actmatiunction [5]. The reason is if one factor in the weight cection
expression is the activation of the lower unit then units sénhactivations are null will not learn [5].

5.2 MLP Topology

The adopted multilayer neural network in the experimenisisted of the architecture with one layer of hidden neurons

Such usual strategies in MLP [29] as one parameter keepidghenvariation of remaining parameters defined the ap-
propriate topology. Conventional experiments get ademjtggiology for classifying input digit2( x 15) represented by the
300-dimensional feature vectors. An experimental MLP nhodasists of 300 neurons in the input layer. The adequateoeum
of neurons in the hidden layer is set according to each exgati. The number of neurons in the output layer is defined by th
target vector type or its size selected for each experiment.

5.3 Training Stage

The standard backpropagation algorithm [5] was adoptetietetirning algorithm of each MLP model. Since all experi-
mental target vectors are bipolar, the adopted activatiantfon is the typical bipolar sigmoid [5], which has a ramdgé¢—1, 1).
Initial weights are generated as random values betwee5 and0.25. The learning rate parameter is seDa¥. The criterion
for stopping the learning algorithm is to require that theximaum value of the average squared error be equal to or lesstiie
tolerance.

Training data set is constituted by 120 pattern-images almriging to the testing data set. It contains input pattéons
training the MLP model to classify digits extracted fromelitse plates into categories. Each category is representeziinput
patterns.

5.4 Testing Stage
The classification rate is calculated by Eq. (10):
N s
2 G (10)

wherecr is classification rately is number of testing patterns, andis defined as
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Figure 4: MLP performance using NOVs with 16 components agetavectors.
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wherep; is a classified pattern (output of the MLP model), ané the corresponding category (correct response).
Testing data set that contains 1352 images of extractes @fgi’,“1", . . . ,“9”) from license plate images after image prepro-

cessing [26-28, 30]. A trained MLP model task consists aggifging extracted digits of the testing data set into t@sss.
6 Experiments and Results

The experimentation was proceeded using NOV and OBV astteegeors defined in Sections 3.1and 3.2. We evaluated the
degraded pattern classification performance of MLP adgptia proposed OBVs as target vectors and the NOVs as otlget tar
ones for comparison of classification results. Figures feévsthe graphs with the number of epochs and the correspgndin
tolerance value for training convergence of the MLP modgrtavide the degraded pattern classification rate duringeiing
stage.

6.1 Influence of OBV on number of epochs and classification rat

To evaluate the influence of OBVs as target vectors on the ruoflepochs for training MLP models and their classification
performance, the experiment consisted of the followinatety:

1. Construct NOVs of the same size as OBVs.
2. Adopt the same set of initial weights for training the MLBahels defined by NOV and OBV as target vectors.

3. Compare the highest classification results of a pair of Midelels trained with different types of target vectors buthwi
same sizes.

Figures 4—-6 show testing stage results (pattern classificedte) using NOV with 16, 32, and 64 components, respelgtiv
The similarity values calculated by Eq. (3) are 12, 28, and&§pectively.

Figures 7-9 show testing stage results (pattern classificedte) using OBV with 16, 32, and 64 components, respelgtiv
In this case, the similarity values are null because all tretors are orthogonal.

Table 4 presents the highest classification rate and thesmwnding number of epochs selected from each graph of4=igs.
The values (classification rate and number of epochs) asgllia Table 4 for comparison purposes after adopting NO\s an
OBVs as target vectors on the MLP model. Also, the last rowadfld 4 shows the corresponding tolerance value to achieve
the number of epochs during the training stage. We adopte@dhy stopping criterion by considering the balance betwe
memorization and generalization. Based on this criterfondt necessarily advantageous to continue training urilerror
actually reaches a minimum [5].

6.2 Improvement on MLP performance due to OBV size variation

In this section, the influence of OBV size on MLP pattern dfasgtion performance improvement is presented. The exper-
imental analysis consisted of adopting 64, 128, 256, or &48ponents as OBV sizes [19]. Consequently, each experahent
MLP topology consisted of 64, 128, 256, or 448 neurons in titpwt layer accordingly to the adopted OBV size.
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Figure 5: MLP performance using NOVs with 32 components agetasectors.
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Figure 6: MLP performance using NOVs with 64 components @getavectors.
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Table 4: Relevant results from the graphs of Figs. 4-9

[ NOV16] NOV32] NOV64 [ OBV16] OBV32] OBV64]

Classificatiorfs || 71.70 | 71.70 | 73.20 || [80.00 | (80.33 | (81.40
Epochs 1301 | 4318 | 5260 (821
Tolerancex10~* 2 0.7 0.6 200 11 250
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Figure 10: Performance evolution of MLP based on the OBV isizeease.

The graph in Fig. 10 shows that the performance of MLP impsavaen trained with a larger OBV size following the
increase of Euclidean distance for OBVs [19]. A significart% increase in the classification rate is verified from 81(6%
component-OBV) to 82.5% (448 component-OBV).

7 Discussion

Essentially, the same parameters such as initial weighlesaince, and learning rate were adopted for training nsoateh
different types of target vectors to provide a fair compamief results. The main comparison focuses on analyzing Mirfop
mances by adopting NOVs and OBVs as target vectors. SinceNO\OBV can contain the same number of components, it was
possible to use the same net topology for experimentinglnath vectors to provide a fair comparison of MLP performance

Relevant results from the graphs of Figs. 4-9 show that thesilcation rate results using MLP models trained with OBVs
as target vectors are better than the results with NOVSs fdiifiérent sizes. Also, Table 4 reveals that the correspapdumber
of epochs necessary to train each MLP model decreased wh¥s @B adopted as target vectors. In the case of vectors ith 6
components, OBVs increase the classification rate 8.2% T®.20%6 to 81.4% over NOVs and significantly decrease the numbe
of epochs from 5260 to 43 in Table 4.

8 Conclusion

The orthogonality of OBVs leads to the enlargement of ouimatce created during the supervised learning (input-outpu
mapping) of an MLP model. In other words, an MLP model base®®&YVs as target vectors can be learned with higher
ability to generalize by higher tolerance than a similar eldthsed on NOVs as target vectors. Also, the model has a faste
convergence speed to reach the training stop conditiom,hguitable avoidance of overfitting or overtraining ismiging too.
Consequently, the topology design using OBVs provided ebBtLP performance to classify degraded patterns.

9 Acknowledgment

This work is supported by the PROPP-UFU grant from Federaléssity of Uberlandia under Agreement No. 72/2010.

References

[1] W. H. Delashmit and M. T. Manry. Recent developments iritilmyer perceptron neural networkBroceedings of thg'®
Annual Memphis Area Engineering and Science Conferdvié&SC 2005.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Leamimternal representations by error propagation. In D. E.
Rumelhart and J. L. McClelland, ed®arallel Distributed Processing: Explorations in the Mistructure of Cognition
vol. 1, pp. 318-362, MIT Press, Cambridge, MA, 1986.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Leampiepresentations by back-propagating errblature 323:533—
536, 1986.

251



Learning and Nonlinear Models (L&NLM) — Journal of the Brazi lian Neural Network Society, Vol. 8, Iss. 4, pp. 240-252, 201
(© Sociedade Brasileira de Redes Neurais

[4] J. L. McClelland and D. E. RumelhatExplorations in Parallel Distributed Processing: A Handiloof Models, Programs,
and ExercisesMIT Press, Cambridge, MA, 1988.

[5] L. V. Fausett. Fundamentals of Neural Networks: Architectures, Algarith and ApplicationsPrentice Hall, Englewood
Cliffs, NJ, 1994.

[6] M. Collins and B. Roark. Incremental parsing with the gegstron algorithmProceedings of thé2"! Annual Meeting on
Association for Computational Linguistigsages 111-118,2004.

[7] M. V. Ribeiro, J. G. A. Barbedo, J. M. T. Romano, and A. Lep&ourier-lapped multilayer perceptron method for speech
quality assessmenEURASIP Journal on Advances in Signal Processthj425—-1434, June 2005.

[8] M. T. Manry, H. Chandrasekaran, and C. Hsieh. Signal @ssing using the multilayer perceptron. In Y. H. Hu and J.
Hwang, eds.Handbook of Neural Network Signal Processipg. 2.1-2.29, CRC Press, 2001.

[9] J. M. Nazzal, I. M. EI-Emary, and S. A. Najim. Multilayeepceptron neural network (MLPs) for analyzing the prosrti
of Jordan Oil ShaleWorld Applied Sciences Journ&i(5):546-552, 2008.

[10] W. H. Delashmit and M. T. Manry. Enhanced robustness olfilayer perceptron trainingThirty-Sixth Annual Asilomar
Conference on Signals, Systems and Computeiges 1029-1033, Pacific Grove, CA, 2002.

[11] W. H. Delashmit. Multilayer perceptron structuredtialization and separating mean processirith.D. Dissertation
University of Texas at Arlington, May 2003.

[12] R. O. Duda and P. E. HarRattern Classification and Scene Analyslshn Wiley & Sons, New York, 1973.
[13] K. S. Fu.Syntactic Methods in Pattern Recognitiokcademic Press, New York, 1974.

[14] L. Kanal. Patterns in pattern recognition: 1968—19T8EE Transactions on Information Theor®0(6):697—722, Nov.
1974.

[15] J. R. Ullman.Pattern Recognition TechniqueButterworth, London, 1973.

[16] H. Andrews.Introduction to Mathematical Techniques in Pattern Redtign. John Wiley & Sons, New York, 1972.
[17] R. O. Duda, P. E. Hart, and D. G. StorfRattern ClassificationJohn Wiley & Sons, New York, 2001.

[18] A. Browne.Neural Network Analysis, Architectures, and Applicatioimstitute of Physics Pub., Bristol, 1997.

[19] S. Nomura, K. Yamanaka, O. Katai, H. Kawakami, and T.oS&ai Improved MLP learning via orthogonal bipolar target
vectors.Journal of Advanced Computational Intelligence and Iingelht Informatics9(6):580-589, 2005.

[20] T. G. Dietterich and G. Bakiri. Solving multiclass leamg problems via error-correcting output codésurnal of Artificial
Intelligence Researcl2:263—-286, 1995.

[21] VY. LeCun, B. Boser, J. S. Denker, B. Henderson, R. E. Hdw&/. Hubbard, and L. D. Jackel. Backpropagation applied to
handwritten zip code recognitioNeural Computationl(4):541-551, 1989.

[22] N. J. Nilsson.Learning MachinesMcGraw-Hill, New York, 1965.

[23] T.J. Sejnowski and C. R. Rosenberg. Parallel netwdreislearn to pronounce english tetomplex System&:145-168,
1987.

[24] T. J. Sejnowski and C. R. Rosenberg. NETtalk: A parailetiwork that learns to read aloud. John Hopkins University
Department of Electrical Engineering and Computer Scieiieehnical Report36/01, 1986.

[25] B. Noble and J. W. DanielApplied Linear AlgebraPrentice Hall, Englewood Cliffs, New Jersey, second ed;jtl977.

[26] S. Nomura, K. Yamanaka, O. Katai, and H. Kawakami. A neethrod for degraded color image binarization based on
adaptive lightning on grayscale versiohSICE Trans. on Information and SystengE87-D(4):1012—-1020, 2004.

[27] S. Nomura and K. Yamanaka. New adaptive methods apfaibtharization of printed word images. In N. Younan, editor
Proceedings of the Fourth IASTED International ConfereB@mal and Image Processingages 288-293, Kauai, USA,
2002.

[28] S. Nomura, K. Yamanaka, O. Katai, H. Kawakami, and ToS&i A novel adaptive morphological approach for segmgntin
characters in degraded imag@&sttern Recognitioy38:1961-1975, Nov. 2005.

[29] S. Haykin.Neural Networks: A Comprehensive Foundati®nentice Hall, New Jersey, second edition, 1999.

[30] S.Nomura and K. Yamanaka. New adaptive approach baseththematical morphology applied to character segmentati
and code extraction from number plate images.Ptac. of 6 World Multi-Conference on Systemics, Cybernetics and
Informatics volume IX, Florida, USA, Jul. 2002.

252



