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Abstract- In this work, Genetic Algorithm (GA) is employed in feature selection for the classification of medicinal plants 

with snake venom-neutralizing properties. The classification is performed using an Artificial Neural Network (ANN), which 

indicates the medicinal plants with anti-snake venom action as output when an amino acid sequence of snake venom is 

presented in its input. GAs and ANNs are Artificial Intelligence techniques and have been used in several similar optimization 

and classification problems. Here, the feature selection system is implemented using the classification error rate of the training 

set and the number of attributes as the fitness of each individual of the GA. The validation results for the classification system 

indicate that ANNs can be used to aid the selection of medicinal plants with snake venom-neutralizing properties. Also, feature 

selection based on GAs can help researches to select amino acids sequences of the snake venoms which can be important to the 

interaction with medicinal plants compounds. 

Key words- Bioinformatics, Genetic Algorithms, Artificial Neural Networks, Artificial Intelligence, Snake venom, 

Medicinal plants. 

1 Introduction 

Snake bites envenomation is considered a serious public health problem, not only in Brazil, but in all Latin America [1]. Snake 

venoms are complex combinations of proteins including: phospholipase A2 (PLA2), proteolytic enzymes, and others. 

Frequently, envenomation by snake bites is treated by antiophidic serum administration. However, many times, patients do not 

have fast access to the serum since accidents usually occur in remote places. Furthermore, the local damage induced by snake 

venoms, as myonecrosis for example, can be sometimes irreversible [2]. 

In this sense, some fast procedures can help the patient until the usual treatment with serum can be administrated. One 

of these procedures is the use of medicinal plants extracts, which can be found close to the accident local. In the Brazilian 

popular medicine, many plants are employed in snake bites treatment, however few have their effects scientifically 

investigated [1]. 

Artificial Intelligence (AI) techniques have been employed with success in different bioinformatics problems as 

sequences analysis, protein structure prediction, and sequences alignment [3] and can be useful to this problem too. In this 

paper, feature selection based on Genetic Algorithms (GAs), which are an AI technique employed in optimization problems, is 

used to select attributes for classification of medicinal plants with snake venom-neutralizing properties. The classification is 

performed by another AI technique, Artificial Neural Networks (ANNs), which should indicate a medicinal plant with anti-

snake venom in its output when an snake venom amino acid sequence is presented in its input. 

Two are the main objectives of this work. The first one is to generate a classification system (software) that relates a 

medicinal plant with a venom protein. It can aid researches to explore new relations and associate plants which were not 

studied yet to other plants with known anti-venom properties. The second main objective is to select important features of the 

input data in order to improve classification. Then, the feature selection could indicate which subsets of amino acids present in 

the snake venoms proteins are the most important in the interaction with the medicinal plants. Such information is important to 

better understand the snake venom-neutralizing properties of medicinal plants compounds. 

In the next section, the materials and methods used in this work are described. Then the experimental results with two 

medicinal plants are described. It is important to observe that the AI system proposed here can be extended in order to cope 

with more plants and snakes venom. This paper intends to show that the construction of an AI system to classify and select 

features in the problem of relating medicinal plants and snake venoms is possible. 
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2 Material and Methods 

2.1  Data 

The medicinal plants and snake venom amino acid sequences were selected based on [4] and [1]. Table 1 shows the relation 

between the selected medicinal plants and snake species and some antiophidian properties of the selected plants described in 

[1]. Two medicinal plants were used: Casearia sylvestris, popularly known in Brazil as “Guaçatonga” or “Erva-de-bugre” [5] 

and Eclipta prostrata, popularly known as “Erva-botão” [6]. 

Table 1: Relation between Medicinal Plants and Snake species [1]. 

Plant species Antiophidian properties Snake species 

Casearia sylvestris Anti-PLA2 

Antiedema 

Antimyotoxic 

Antihemorrhagic 

Antilethality 

B. alternatus, B. jararacussu, B. 

moojeni, B. neuwiedi, B. pirajai, 

C. d. terrificus 

Eclipta prostrata Anti-PLA2 

Antihemorrhagic 

Antiproteolytic 

Antimyotoxic 

C. rhodostoma, B. Jararaca, B. 

jararacussu, L. muta 

 

The selected snake species were: B. alternatus, B. jararaca, B. moojeni, L. muta, B. neuwiedi, B. pirajai, C. 

rhodostoma, and C. d. terrificus. The species B. Jararacussu was not employed in this work because both plants (Casearia 

sylvestris and Eclipta prostrata) have antiophidian properties that interact with the compounds of its snake venom. The amino 

acid sequences of venoms’ proteins were acquired from the public database maintained by National Center for Biotechnology 

Information (NCBI). A total of 94 protein sequences of the selected snake species were obtained in FASTA format.  

In the classification system, one of the two selected medicinal plants should be indicated according to an amino acid 

sequence presented in the input of the ANN. In this way, the classifier (ANN) has two outputs, one for each medicinal plant. 

The direct use of the protein sequence as classification engine input is not suitable because the sequences have different length. 

The technique used to encode the protein sequence was based on the n-gram method [7]. Here, the n-gram value of each amino 

acid subsequence consists in computing occurrences of n consecutive amino acids in a protein sequence. In the original 

method, the n-gram value consists in dividing the number of occurrences by the protein length, but in this paper the absolute 

values of each occurrence are used as classification engine inputs. For example, the 2-gram values for the amino acid sequence 

ACLVAC is: 2 for AC, 1 for CL, 1 for LV, 1 for VA, and 0 for the remaining subsequences of two amino acids. Thus, there are, 

respectively, 20, 400 (20
2
), and 8000 (20

3
) different values for 1-gram, 2-gram, and 3-gram codification, if 20 amino acids are 

considered. Hence, the size of the classifier input is the same for every protein. 

The values of 1-gram, 2-gram, and 3-gram codification were used as classifier (ANN) inputs, i.e., the n-gram values 

consist in computing the occurrences of one, two, and three consecutive amino acids in a protein sequence. Consequently, the 

total number of subsequences with one, two, and three amino acids that can be used as inputs (possible features) for the 

classifier is 8420. In order to reduce the number of attributes for the classification task and to identify the subsets of 

subsequences that are most important for the classifier, feature selection is applied to the data. 

2.2  Feature Selection 

The simplest method to select a feature subset is to employ exhaustive search. This method test one classifier for each feature 

subset and the performance obtained for each one is compared. Considering that N is the total number of possible features in 

the data, exhaustive search implies in testing 2
N
 combinations. When N is large, like in this problem, the number of 

combinations is too large, what makes prohibitive the use of exhaustive search. In this way, other methods for feature selection 

have been proposed. 

The most known methods to extract features are probabilistic methods [8]. Nevertheless, these methods need 

knowledge about the probability distributions and are computationally complex. Alternative methods evaluate features 

according to their importance in distinguishing objects and/or computing the correlation between each pair of features [9]. 

Another approach involves the use of Principal Component Analysis (PCA) for feature selection [10]. However, the use of 

correlation analysis requires knowledge about the probability distributions and large sample databases. 

 Feature selection can be seen as an optimization problem, where an optimal subset of attributes should be found. GAs 

have been successfully employed in similar optimization problems. The use of GAs to select attributes for ANNs is not new 

and has been reported in the literature [11], [12], [13] and [14]. In such problems, GA individuals represent a subset of 

features. For each individual, a classifier is constructed, trained, and tested. The classification error rate over the training or test 

set is then used by the GA as fitness function to evaluate the individuals. 
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2.3  System with GA and ANNs 

The GA based system was implemented in Java language. Each GA individual represents a subset of features used as the set of 

attributes for the ANN.  

 Each GA individual is encoded as a binary array, where each array’s position represents the presence or absence of a 

feature. Thus, each individual is represented by a binary array with 8420 positions. An “1” in the n-th position of the array of 

individual i indicates that the n-th subsequence of amino acids are present in the ANN i. 

 The employed ANNs are Multi Layer Perceptrons (MLPs), trained with backpropagation algorithm [15]. The MLP is 

composed by a set of neurons, each one representing a nonlinear function, distributed in layers. In general, training an MLP 

means to find a set of weights (represented by real numbers) that connect the neurons of two consecutive layers. The utilized 

MLP has only one hidden layer with a fixed number of neurons and one output layer with two neurons (one for each class).  

Figure 1 shows an example of an MLP built for a given individual. 

In order to evaluate the GA individual, i.e., the quality of the features subset encoded in the array of the individual, 

one different MLP is built, trained, and evaluated. Two different strategies to compute the fitness (evaluation) of an individual 

were tested in this work. In the first strategy, the fitness of the individual i of the GA population is given only by the 

classification error rate over the training set for the i-th MLP, built with the inputs specified by the array of individual i. In the 

second strategy, the fitness of the individual i is given by a linear composition of the classification error rate over the training 

set for the i-th MLP and of the number of attributes. The second strategy was adopted to further reduce the number of selected 

attributes. 

 
Figure 1. Example of the codification. The i-th MLP is built according to the array of individual i. 

 

After the evaluation of the individuals in a population, the solutions (individuals) are selected to compose the next 

population according to their fitness. Higher fitness implies higher probability of selection. The employed selection methods 

are tournament selection and elitism. Elitism consists in the selection of the best individual of the population, which is not 

modified. In this way, the individual with the best fitness value will always survive. Tournament selection is then used to select 

the remaining individuals of the population. For each new individual, a group of individual of the population is randomly 

chosen and the individual with the best fitness is selected. 

Then, individuals selected by tournament are modified according to transformation operators. Here, crossover and 

mutation are used. In the crossover, parts of the arrays of two selected individuals are exchanged according to the crossover 

rate. In the mutation, each selected individual’s gene (element of the array) is mutated with probability given by the mutation 

rate. When a gene is mutated, its value is changed, i.e., if the stored value is 1, it goes to 0, and vice versa. 

 Figure 2 shows the GA based feature selection system. Initially, a population of individuals (problem solutions, i.e., 

subsequences of features) is randomly generated. The maximum size of each individual was defined as 20. In this way, the 

number of features of each individual is randomly chosen between 1 and 20 and then the features were randomly chosen in the 

binary array with 8420 positions, but considering the same probability into the sets of 1-gram, 2-gram, and 3-gram. 

 Each individual of the population is then evaluated by computing the classification error of the MLP built and trained 

with the attributes specified by the individual. In a second time, to generate the next population, individuals of the population 

are selected by elitism and tournament, and are modified according to crossover and mutation. These steps are repeated until a 

maximum number of iteration is reached. 
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Figure 2. GA based Feature selection system. 

3 Results 

The results of two experiments sets are presented in this section. In the first experiments set (experiments with fitness function 

1), the fitness function of individual i is given by the classification error rate over the training set of the MLP built and trained 

with the attributes (subsets of sequences with one, two, or three amino acids) specified by the i-th individual. In the second 

experiments set (experiments with fitness function 2), the fitness function is given by the weighted sum of the same 

classification error rate employed in the first experiments set and the number of features presented in the individual.  

In the following experiments, the individuals of the current population were selected using tournament and elitism. 

Crossover with rate 0.6 and flip mutation with rate 3/m, where m is the length of the chromosomes, were employed. Each GA 

was executed for 100 generations, and the number of individuals in each population was equal to 100, except for the 

experiments to define fitness function parameters, where the population size was equal to 50. 

Each MLP used is built according to: 

 Input layer: the total of inputs was equal to the number of attributes for the tested individual, i.e., the number of inputs 

was equal to the number of ones in the chromosome of the individual. 

 Hidden layer: only one hidden layer was used. According to previous tests, the number of hidden neurons was set to 

20.  

 Output layer: the number of output neurons was equal to 2, one for each class (Casearia Sylvestris and Eclipta 

prostrata). 

  Also, the MLP was trained during 100 iterations. The learning and momentum rates employed were respectively equal 

to 0.01 and 0.9. The initial weights were randomly generated. 

  The 94 selected sequences were divided in two sets. The first one, with 70% of the examples, is the training set, which 

was used to train the MLP and to compose the fitness function. The second one is the test set, with the remaining examples, 

which were presented to the MLP built according to the array of the best individual found in the last generation of the GA in 

order to test the generalization of the classification. 

3.1  Experiments with fitness function 1 

The first experiments set was executed considering the fitness function as the percentage of the incorrectly classified patterns 

of the training set (classification error rate) by the MLP built and trained with the attributes specified by individual i. In this 

way, the fitness function, which should be minimized during the evolutionary process of the GA, for individual i is given by: 

 )()( ie=if  (1) 

where e (i) is the classification error rate over the training set for the MLP specified by individual i. As the initial population 

and the initial weights of the MLP are random, each experiment was repeated 9 times with different random seeds. Table 2 
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shows the results for each random seed for the best individual in the last generation of the GA. The classification rate (number 

of correctly classified examples) for the training and test sets and the number of attributes related to the best individual are 

presented in Table 2. The median, mean, and standard deviation (std) are also presented. 

 

Table 2: Results of the experiments with fitness function 1. 

 

Classification rate for the 

training set (%) 

Classification rate for 

the test set (%) 

Number of 

Attributes 

seed 0 89.394 71.429 18 

seed 1 89.394 71.429 18 

seed 2 89.394 71.000 7 

seed 3 92.424 67.857 19 

seed 4 90.909 82.143 7 

seed 5 93.939 71.429 14 

seed 6 89.394 75.000 17 

seed 7 90.909 64.286 19 

seed 8 90.909 78.571 12 

median 90.909 71.429 17 

mean 90.741 72.572 14.556 

std 1.597 5.371 4.876 

 

The best results for the classification rate for the training set, which is inversely related to the fitness of the best 

individual, was obtained in the experiment with random seed 5 (Table 2). However, one can observe that the best classification 

rate for the test set was obtained for seed 4. In this way, it is possible to observe that the best classification rate for the training 

set does not necessarily means the best classification rate for the test set. 

Table 3 shows the amino acids subsets selected for the best individual found in each execution. 

 
Table 3: Selected attributes in the experiments with fitness function 1. 

Seed Selected attributes 

0 M, Q, R, WM, QA, MQ, LG, IE, HQ, EH, CM, 

AW, AR, WAA, VYV, TPW, QEN, MHT 

1 M, N, Q, R, S, W, Y, WE, NR, IN, HW, FW, DS, 

AY, YDL, QNF, LNW, IFA 

2 VV, PK, NQ, HY, WSA, VTW, PKS 

3 H, K, N, YR, WN, WD, MC, FW, ET, EC, CC, 

CA, YDG, WSL, VRG, SIY, NTW, KYF, GKC 

4 H, K, Y, RE, NR, CH, WQY 

5 E, G, K, L, R, V, IL, GL, FW, DT, CL, YRP, TWF, 

RKR, LLV, GDM 

6 H, I, L, W, Y, TC, SR, RF, MG, IV, VAM, SLP, 

EFQ 

7 H, L, M, P, Q, T, W, Y, MH, IS, FC, EC, CC, AW, 

AA, WVF, KEE, HHP, ENQ 

8 H, N, S, PI, IN, GQ, FA, CM, CL, AY, SGK, DKL 
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3.2  Experiments with fitness function 2 

In order to reduce the attributes in the MLP, the fitness function was changed by adding a term to punish individuals with 

many attributes. In this way, the new fitness function for individual i is given by a linear function composed by the 

classification error rate over the training set, e(i), for the i-th MLP and number of attributes (number of ones in the array), l(i), 

for individual i. Thus, the fitness of the individual i is given by: 

 )()()( ilbiea=if  (2) 

where the parameters a and b are non-negative real numbers. 

Some experiments were initially done in order to define the best parameters of the fitness function given by Eq. (2). 

Nine combinations of a and b values were tested. Table 4 shows, for the best individual in each execution, the classification 

rate for the training set and the number of attributes specified by the individual in these experiments, which were executed with 

50 individuals in each population. 

Table 4: Results of the experiments to determine the parameters a and b for fitness function 2. 
A B Classification rate for the 

training set (%) 

Number of 

Attributes 

0.1 0.9 57.576 1 

0.2 0.8 72.727 3 

0.3 0.7 80.303 3 

0.4 0.6 77.273 5 

0.5 0.5 75.757 3 

0.6 0.4 80.303 4 

0.7 0.3 83.333 5 

0.8 0.2 84.848 9 

0.9 0.1 87.879 15 

 

One can observe that the attributes number generally increases when the value of b decreases. The values a=0.8 and 

b= 0.2 were chosen in the remaining experiments presented in this section because they correspond to a good compromise 

between a high classification rate and a small number of attributes. Table 5 shows the experimental results for each random 

seed for the best individual of the GA for fitness function 2 with a=0.8 and b= 0.2. The classification rate (the number of 

correctly classified examples) for the training and test sets and the attributes number related to the best individual are presented 

in Table 5. The median, mean, and standard deviation (std) are also presented. 

Table 5: Results of the experiments with fitness function 2 with a=0.8 and b= 0.2. 

 

Classification rate for 

the training set (%) 

Classification rate for 

the test set (%) 

Number of 

Attributes 

seed 0 92.424 71.429 19 

seed 1 87.879 71.429 3 

seed 2 95.454 64.286 12 

seed 3 90.909 75.000 5 

seed 4 89.394 64.286 4 

seed 5 89.394 64.286 4 

seed 6 87.879 78.571 8 

seed 7 89.394 64.286 9 

seed 8 89.394 64.286 8 

median 89.394 64.286 8 

mean 90.236 68.651 8 

Std 2.409 5.584 5.050 

 

Table 6 shows the amino acids subsets selected for the best individual of the population for each execution. 
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Table 6: Selected attributes in the experiments with fitness function 2 and a=0.8 and b= 0.2. 

Seed Selected attributes 

0 H, L, M, T, YN, TS, SH, RE, QE, PK, LW, FG, 

EW, ET, EA, CD, YCV, DWS, AGQ 

1 VA, RW, MH, DR, DF, TMH 

2 W, QV, PH, PE, LC, GK, ET, EI, STK, FQP, DKE, 

DDV 

3 H, IV, CH, YSA, NDK 

4 MV, DR, CC, KWK 

5 SN, RA, QC, PV, MQ, MD, KH, GK, CF, SAS, 

QLE, GQC, CWM 

6 H, V, RF, IN, GD, CP, ITC, DSG  

7 M, N, R, VE, SF, PK, ME, MYF, HDW 

8 W, YD, SR, YVV, LGI, FGF, EQK, APE 

 

4 Analysis of the Results and Conclusions 

One can observe that, according to tables 2 and 5, the mean number of attributes is smaller for fitness function 2. This fact 

occurs because the attributes number information is used in fitness function 2, enabling the GA search for solutions with high 

classification rate and small attributes number. The use of the number of attributes as a criterion for the optimization is 

important to this problem because, as can be observed in the experimental results, different subsets of subsequences of one, 

two, and three amino acids (tables 3 and 6) can generate classifiers with good performance. This occurs because the number of 

possible subsets of subsequences of amino acids is much larger than the number of examples. In this way, the classifier can use 

different sequences in order to reach good performance and the number of attributes reduction can indicate a smaller subset of 

subsequences to be analyzed. 

 According to tables 3 and 6, some attributes were selected (isolated or in a subsequence of two or three amino acids) 

by both experiments. Histidine, Triptophan, Methionine, Lysine, and Tyrosine residues were frequently selected in the 1-gram, 

2-gram and 3- gram subsets. In the proteins set used in this work, there are mainly Phospolipases (PLA2), Serin proteinases, 

and Myotoxins. Studies involving PLA2 have been increasing mainly due to the interest in myonecrosis research [1], [16].  

 In [17], where Bothrops moojeni venom was used to study PLA2, chemical modifications were introduced in residues 

in the follows positions: Histidine 48, Triptophan 77, Tyrosine 119, Tyrosine 52, Lysine 49, and Methionine 8. These 

modifications affected toxic and pharmacological effects of PLA2s. Similar results were obtained using different snake 

venoms. The chemical modification (carboxymethylation) of the Methionine 8 (M8) residue, which is highly conserved in 

PLA2s of snake venoms [17], isolated in Pseudechis Australis PLA2s [18] decreased the lethality and the enzymatic effects. 

The presence of 9 conserved residues of Tyrosine in PLA2s suggests that they perform some important function in the 

molecule [16], [19]. The modification of Tyrosine 52 (Y52) and Tyrosine 119 (Y119) showed that these residues could be 

related to mytotoxic and neurotoxic activities. The chemical modification of Triptophan 77 (W77) suggests this residue may 

have participation in neurotoxic activities [17]. In [20] and [19], tests using Bothrops moojeni venom showed a possible 

relation of Lysine 36 (K36) and Lysine 38 (K38) residues with neurotoxic, myotoxic, cytotoxic, and bactericidal effects.  

 Among 18 PLA2s sequences used in this work, 3 sequences have the H48 residue conserved and 10 have the M8 

residue conserved. Neither of PLA2s sequences used here have Y52, but 4 sequences have Y119, while only one PLA2 

sequence used here has W77. The analysis of PLA2s used here showed that 8 sequences have K38, but none K36. 

 In this work, some amino acids selected by the GA were reported in literature as important to the interactions between 

medicinal plants and snake venom. The amino acids selected by GA with importance recognized are: Histidine, Lysine, 

Metionine, Triptophan, Tyrosine. Also, the amino acids Asparagine and Phenylalanine, reported in the literature as important, 

were selected in the 2-gram and 3-gram subsets. However, it is important to observe that, in general, the attributes selected by 

the GA are those which can help to discriminate between the two subsets of venoms sequences, i.e. the subset of sequences 

classified as Casearia Sylvestris or Eclipta Prostrata, and, many times, these subsequences do not coincide with the 

subsequences of amino acids with recognized importance in the interaction between the venom and the substances in the 

plants. 

 In order to investigate why the attributes shown in tables 3 and 6 were selected by the GA, a multiple alignment was 

performed with all protein sequences employed here, using ClustalW2 software [21] available at EBI (European 

Bioinformatics Institute) homepage. The default software’s parameters were used. The obtained alignment tree (Figure 3) 
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shows that the sequences employed in this work can be arranged in groups. In Figure 3, the sequences classified as Casearia 

Sylvestris are shown in red, while the sequences classified as Eclipta Prostrata are shown in black.  

 

Figure 3. Alignment tree. 
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Figure 4. Alignment fragment. 

 

 The alignment indicates that some amino acids are conserved in some snake venoms’ sequences and can be used to 

classify the sequences related to Eclipta Prostrata and Casearia Sylvestris classes. Some of these amino acids shown in the 

alignment coincide with those selected by the GA as attributes for the classification. It is an expected result because the GA 

selects amino acids subsequences important to discriminate sequences related to the two classes considered in this work. For 

example, the alignment indicates that the amino acids subsequence CH can be used to classify the sequences 23, 35, 30, 86, 31, 

92, 45, 32, 84 and 83 (Figure 4 shows with more details this fragment of the alignment). These sequences clustered by the 

alignment belong to the Crotamine family, a Neurotoxin from Crotalus Durissus Terrificus, related to Casearia Sylvestris class 

in this work. The subsequence CH was selected by the GA for random seed 3 (Table 6), with others subsequences, as 

important to the data classification. Moreover, the subsequences DSG, CP, GD and IN selected by GA and shown in the 

alignment were found in sequences related to Eclipta Prostrata, while the subsequences CC were founded in sequences related 

to Casearia Sylvestris. However, it is important to observe that the alignment shown in Figure 3 is not the only way to separate 

the classes. Other groups of subsequences can be used to discriminate sequences related to the two plants, as can be observed 

in the results obtained by the GA.  

 The analysis of the results indicates that the system with GA and ANN is able to select features important to classify 

venom protein sequences in medicinal plants classes, as it can be seen in the obtained classification rates. The results still 

showed that some amino acids had been reported in the literature as important to the relation between medicinal plants and 

snake venoms.  

 This paper indicated that the construction of an AI system to classify and select features in the problem of relating 

medicinal plants and snake venoms is possible, and can help researches to select amino acids sequences of the snake venoms 

which can be important to the interaction with medicinal plants compounds. 

 A possible direction for future work is to investigate whether other amino acids selected by GA have relevance to the 

interaction among the medicinal plants and the snake venom’s proteins studied here. 
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