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Abstract – Multiple-input multiple-output (MIMO) Volterra models have applications in different areas, including telecom-
munications. An overview of the modeling of nonlinear communication channels using MIMO Volterra models is presented in
this paper. First, the development of an equivalent baseband discrete-time representation of a single-input single-output (SISO)
Volterra system is carried out. This development constitutes the basis for several versions of discrete-time equivalent base-
band MIMO Volterra systems presented in the sequel. The spectral broadening provided by a Volterra system on the equivalent
baseband received signals is shown by calculating the frequency domain representation of the Volterra channel output. Some
important block structured nonlinear MIMO models are also described, with their link to MIMO Volterra models. Finally, some
applications of such models for communication systems are briefly discussed.

Keywords – MIMO systems, communication systems, nonlinear modeling, Volterra models, Wiener models, Hammerstein
models.

Resumo – Os sistemas MIMO Volterra são poderosas ferramentas utilizadas na modelagem de sistemas não-lineares, possuindo
aplicações em diferentes domı́nios, incluindo as telecomunicações. Este artigo apresenta uma visão geral sobre a modelagem
de canais de comunicação não-lineares utilizando-se modelos MIMO Volterra. Inicialmente, uma representação em banda-base
equivalente e tempo discreto é desenvolvida para um sistema SISO Volterra. Este desenvolvimento constitui a base para as
versões de sistemas MIMO Volterra em banda-base equivalente e tempo discreto apresentadas na seqüência. O espalhamento es-
pectral gerado por um sistema de Volterra nos sinais recebidos em banda de base é mostrado através do desenvolvimento da uma
expressão para estes sinais no domı́nio da freqüência. Alguns modelos de sistemas MIMO não-lineares constituı́dos de cascatas
em série de blocos lineares e não-lineares também são descritos, assim como suas relações com os sistemas MIMO Volterra.
Ademais, algumas aplicações de modelos MIMO Volterra em sistemas de comunicações são discutidas no final do artigo.

Palavras-chave – Sistemas MIMO, sistemas de comunicação, modelos não-lineares, modelo de Volterra, modelo de Wiener,
modelo de Hammerstein.

1. INTRODUCTION

An overview of the modeling of nonlinear communication channels using multiple-input multiple-output (MIMO) Volterra
models is presented in this paper. The Volterra series [1], developed by the italian mathematician Vito Volterra in 1887, is one
of the most common representations of nonlinear systems [2]. It constitutes a class of polynomial models that can be viewed as
an extension of the linear convolution. The Volterra series have received a considerable attention from researchers of different
areas. Among them, it should be highlighted the work of N. Wiener, on the modeling of nonlinear systems using Volterra
series [3]. A main property of this kind of model is that it is linear with respect to its parameters. Another great advantage is its
ability of modeling the behavior of nonlinear real-life phenomena, specially its ability to capture “memory” effects. Due to this
characteristic, applications of Volterra models can be encountered in many areas as, for instance, in biological and physiological
systems [4–6], magnetic recording channels [7] and engine transmission modeling [8].

Volterra models also have many applications in the field of telecommunication. Indeed, due to the presence of nonlinear
devices such as power amplifiers (PA) and optical instruments, communication channels are sometimes corrupted by nonlinear
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distortions such as nonlinear intersymbol interference (ISI), multiple access interference (MAI) and inter-carrier interference
(ICI). These nonlinear distortions can significantly deteriorate the signal reception, leading to poor system performance. In such
cases, linear models fail to characterize the communication channel, providing inexact channel description. Volterra models can
then be used to provide an accurate channel representation, allowing the development of efficient signal processing techniques
capable of eliminating or reducing these nonlinear distortions.

The Volterra model has since longtime being used to represent communication channels in presence of nonlinear distortions.
One of the most important works in this subject is due to Benedetto et al [9], about the modeling and performance evaluation
of satellite communication links with nonlinear PAs using Volterra series. Posterior works of S. Benedetto and E. Biglieri have
significantly contributed to the modeling, estimation and equalization of nonlinear channels using Volterra models, mainly in
the case of satellite communication channels [10–12]. Other important works about nonlinear satellite communication channels
can be found in [13–17]. In fact, all the systems employing PAs are subject to nonlinear distortions that can be modeled as
Volterra models. Orthogonal frequency division multiplexing (OFDM) signals are especially vulnerable to PA nonlinear distor-
tions [18–24], as well as radio-over-fiber (ROF) communication systems [25–28]. Volterra models are also used for modelling
ultra-wideband (UWB) systems [29, 30], nonlinear acoustic echo paths [31–33], software-defined radio systems [34], code di-
vision multiple access (CDMA) systems [35–37], etc. See [6] for more bibliography about applications of nonlinear models in
communication systems.

Nevertheless, most of the works that use Volterra models for communication channels consider the case of single-input single-
output (SISO) systems, and only a few works deal with nonlinear MIMO communication channels. In this paper, we consider that
the multiple-inputs of a MIMO system represent various sources transmitting at the same time and frequency band, which may
correspond to multiple users or a single user with multiple transmit antennas. On the other hand, the multiple-outputs represent
the observations at the receiver obtained through an antenna array. In fact, the multiple observations at the receiver can also
be obtained by oversampling the received signals, however, this approach is not considered in this paper. As well as in SISO
communication channels, MIMO channels are subject to nonlinear distortions due to the presence of nonlinear blocks such as
radio frequency PA and optical devices. Nonlinear MIMO communication channels can be found in OFDM systems [38, 39],
multiuser ROF systems [27, 28, 40], satellite systems [28], CDMA systems [36], wireless communication links [20] and in
ultra-wide-band systems [30].

When the received signals are nonlinear mixtures of transmitted signals, possibly including their delayed versions, MIMO
Volterra models are interesting tools to model the communication channel. Different versions of MIMO Volterra models can be
defined, depending on the generality of the model. Some versions of MIMO Volterra models have been used by a number of
authors in different areas [8,41–43]. However, to the best of our knowledge, few authors have used MIMO Volterra models in the
context of communications systems [30, 36, 38, 39]. Moreover, the systems considered in these works do not correspond to the
most general form of the MIMO Volterra model presented in this paper. Besides, multiple-input-single-output (MISO) Volterra
models were used in [27, 28, 40], while single-input-multiple-output (SIMO) Volterra models were used in [44–46].

For simplifying this overview of nonlinear communication channels using Volterra models, we first consider the SISO case.
Starting from the continuous-time passband received signal, we derive the expression of the continuous-time equivalent baseband
received signal. In order to show the broadening of the spectral support provided by the Volterra system on the equivalent
baseband received signal, the frequency domain representation of the Volterra channel is developed. The expression for the
discrete-time equivalent baseband received signal is also introduced, constituting the basis for the development of MIMO Volterra
models. An important property of these models is that their output is linear with respect to the system parameters, which allows
to write the input-output relationship in a vector form.

At the end of the paper, we briefly present three applications of MIMO Volterra models for communication channels: OFDM,
satellite and ROF systems. An interesting issue about these systems is that they can be modeled as block-structured nonlinear
systems, i.e. series-cascades of nonlinear and linear blocks, such as MIMO Wiener, Hammerstein and Wiener-Hammerstein
models. As it will be shown later, this kind of systems can be viewed as special cases of MIMO Volterra systems.

The rest of the paper is organized as follows. Section 2 presents the modeling of communication channels using SISO Volterra
models. In Section 3, the discrete-time equivalent baseband MIMO Volterra models are introduced. Section 4 describes some
MIMO systems constituted of series-cascades of linear and nonlinear blocks. Section 5 describes some applications of MIMO
Volterra models for communication systems and the conclusions are drawn in Section 6.

2. SISO Volterra communication channels

The main Volterra models for SISO communication channels are introduced in this section, as well as some of their properties.
The output x̌(ξ) of a real-valued continuous-time SISO Volterra system of finite order Ǩ can be represented by the the following
input-output relationship:

x̌(ξ) =
Ǩ∑

k=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
ȟk(τ1, . . . , τk)

k∏
i=1

š(ξ − τi)dτi , (1)

where ξ is the continuous-time variable, ȟk(τ1, . . . , τk) is the real-valued continuous-time Volterra kernel of order k and š(ξ)
is the real-valued continuous-time input signal. One of the main advantages of the Volterra model is that it can be used for
modeling a wide range of practical physical systems. Indeed, any finite memory causal and time-invariant nonlinear system can
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be approximated by (1) [47]. It must be remarked that, when Ǩ = 1, the Volterra model is equivalent to the convolution of the
input signal with the linear kernel ȟ1(τ1).

A Volterra kernel ȟk(τ1, . . . , τk) is said to be symmetric if it is invariant to any permutation of the indices τ 1, . . . , τk. As
a permutation of the indices τ1, . . . , τk does not change the product

∏k
i=1 š(ξ − τi), an asymmetric Volterra kernel can always

be rewritten as a symmetric kernel [2]. For instance, let us consider a homogeneous Volterra system of order 2, i.e. a Volterra
system containing only the quadratic real-valued kernel:

x̌(ξ) =
∫ ∞

−∞

∫ ∞

−∞
h̄2(τ1, τ2)š(ξ − τ1)š(ξ − τ2)dτ1dτ2 , (2)

where the kernel h̄2(τ1, τ2) is non-symmetric, i.e. h̄2(τ1, τ2) �= h̄2(τ2, τ1). Equation (2) can be rewritten as

x̌(ξ) =
∫ ∞

−∞

∫ ∞

−∞
ȟ2(τ1, τ2)š(ξ − τ1)š(ξ − τ2)dτ1dτ2 , (3)

with ȟ2(τ1, τ2) = (h̄2(τ1, τ2) + h̄2(τ2, τ1))/2 being a symmetric kernel. In this paper, we assume that the Volterra kernels are
symmetric with no loss of generality.

When (1) is used to model a communication channel, x̌(ξ) and š(ξ) can be viewed respectively as the bandpass received
and transmitted signals. In the sequel, we derive the continuous- and discrete-time equivalent baseband representations of the
Volterra system (1).

2.1 Equivalent baseband Volterra channel

The digital signal processing techniques for communications are generally based on discrete-time equivalent baseband repre-
sentations of the received signals, which are obtained by sampling the continuous-time equivalent baseband received signals. The
development of a continuous-time equivalent baseband Volterra system is then needed. A real-valued continuous-time bandpass
signal š(ξ) and its continuous-time equivalent baseband version s(ξ) are related by the following expression:

š(ξ) = Re
{
s(ξ)ej 2πfcξ

}
=

1
2
[
s(ξ)ej 2πfcξ + s∗(ξ)e−j 2πfcξ

]
, (4)

where j =
√−1 is the imaginary unit, fc the carrier frequency and Re {·} denotes the real part of the complex-valued argument.

Let us assume that the baseband signal s(ξ), also known as complex-envelope, is bandlimited, i.e. the Fourier transform and
the power spectral density of s(ξ) have finite support I = [−B, B], B denoting the half of the signal bandwidth, assumed to be
much smaller than fc (B � fc).

First, let us consider the case of a homogeneous Volterra system of order 2. Substituting (4) into (3), we get:

x̌(ξ) =
1
4

∫ ∞

−∞

∫ ∞

−∞
ȟ2(τ1, τ2)

[
s(ξ − τ1)ej 2πfc(ξ−τ1) + s∗(ξ − τ1)e−j 2πfc(ξ−τ1)

]
[
s(ξ − τ2)ej 2πfc(ξ−τ2) + s∗(ξ − τ2)e−j 2πfc(ξ−τ2)

]
dτ1dτ2, (5)

which gives:

x̌(ξ) =
1
4

∫ ∞

−∞

∫ ∞

−∞
ȟ2(τ1, τ2)

[
s(ξ − τ1)s(ξ − τ2)ej 2π(2fc)ξej 2πfc(−τ1−τ2)

+ s(ξ − τ1)s∗(ξ − τ2)ej 2πfc(−τ1+τ2) + s∗(ξ − τ1)s(ξ − τ2)ej 2πfc(τ1−τ2)

+ s∗(ξ − τ1)s∗(ξ − τ2)e−j 2π(2fc)ξej 2πfc(τ1+τ2)
]
dτ1dτ2. (6)

At the receiver, the signal x̌(ξ) is filtered by a bandpass filter centered in f c. Thus, if B � fc, all the frequency components not
centered at fc are suppressed by the bandpass filter1. As we can see in (6), all the frequency components of x̌(ξ) are centered
at the frequencies 0 and 2fc. This means that the received signal is equal to zero after the bandpass filter. In fact, it can be
demonstrated that all the spectral components generated by even-order kernels are not centered at the carrier frequency f c [48].

Similarly as (5), the output of a homogeneous Volterra system of order 3, i.e. a Volterra system containing only the cubic
real-valued kernel, can be written as:

x̌(ξ) =
1
8

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ȟ3(τ1, τ2, τ3)

[
s(ξ − τ1)ej 2πfc(ξ−τ1) + s∗(ξ − τ1)e−j 2πfc(ξ−τ1)

]
[
s(ξ − τ2)ej 2πfc(ξ−τ2) + s∗(ξ − τ2)e−j 2πfc(ξ−τ2)

]
[
s(ξ − τ3)ej 2πfc(ξ−τ3) + s∗(ξ − τ3)e−j 2πfc(ξ−τ3)

]
dτ1dτ2τ3, (7)

1In fact, bandpass filters can also be placed after nonlinear devices such as power amplifiers, in order to suppress all the frequency components lying outside
the passband of the filter at this stage of the transmission.
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or,equivalently,

x̌(ξ) =
1
8

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ȟ3(τ1, τ2, τ3)

[
s(ξ − τ1)s(ξ − τ2)s(ξ − τ3)ej 2π(3fc)ξej 2πfc(−τ1−τ2−τ3)

+ s(ξ − τ1)s(ξ − τ2)s∗(ξ − τ3)ej 2πfcξej 2πfc(−τ1−τ2+τ3) + s(ξ − τ1)s∗(ξ − τ2)s(ξ − τ3)ej 2πfcξej 2πfc(−τ1+τ2−τ3)

+ s(ξ − τ1)s∗(ξ − τ2)s∗(ξ − τ3)e−j 2πfcξej 2πfc(−τ1+τ2+τ3) + s∗(ξ − τ1)s(ξ − τ2)s(ξ − τ3)ej 2πfcξej 2πfc(τ1−τ2−τ3)

+ s∗(ξ − τ1)s(ξ − τ2)s∗(ξ − τ3)e−j 2πfcξej 2πfc(τ1−τ2+τ3) + s∗(ξ − τ1)s∗(ξ − τ2)s(ξ − τ3)e−j 2πfcξej 2πfc(τ1+τ2−τ3)

+ s∗(ξ − τ1)s∗(ξ − τ2)s∗(ξ − τ3)e−j 2π(3fc)ξej 2πfc(τ1+τ2+τ3)
]
dτ1dτ2τ3. (8)

Note that the first and the last terms inside the brackets in (8) are centered at 3f c and, consequently, they are suppressed by
bandpass filtering. Thus, assuming that the kernel ȟ3(τ1, τ2, τ3) is symmetric, we get the following expression for the bandpass
received signal after the bandpass filter:

x̄(ξ) =
3
8

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ȟ3(τ1, τ2, τ3)

[
s(ξ − τ1)s(ξ − τ2)s∗(ξ − τ3)ej 2πfc(−τ1−τ2+τ3)

ej 2πfcξ + s∗(ξ − τ1)s∗(ξ − τ2)s(ξ − τ3)ej 2πfc(τ1+τ2−τ3)e−j 2πfcξ
]
dτ1dτ2τ3, (9)

where we assumed that the bandpass filter is perfectly flat in the passband. Thus,

x̄(ξ) = Re

{(
3
4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ȟ3(τ1, τ2, τ3)s(ξ − τ1)s(ξ − τ2)s∗(ξ − τ3)ej 2πfc(−τ1−τ2+τ3)dτ1dτ2τ3

)
ej 2πfcξ

}
. (10)

The equivalent baseband received signal is then given by:

x(ξ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h3(τ1, τ2, τ3)s(ξ − τ1)s(ξ − τ2)s∗(ξ − τ3)dτ1dτ3τ3, (11)

where

h3(τ1, τ2, τ3) =
3
4
ȟ3(τ1, τ2, τ3)ej 2πfc(−τ1−τ2+τ3). (12)

In a similar way, it can be shown that the equivalent baseband received signal for a Volterra system of order 2K + 1 can be
written as [48]:

x(ξ) =
K∑

k=0

∫ ∞

−∞
· · ·
∫ ∞

−∞
h2k+1(τ1, . . . , τ2k+1)

k+1∏
i=1

s(ξ − τi)
2k+1∏

i=k+2

s∗(ξ − τi)dτ1dτ2 . . . dτ2k+1, (13)

where the equivalent baseband kernel is given by:

h2k+1(τ1, . . . , τ2k+1) =
C2k+1,k

22k
ȟ2k+1(τ1, . . . , τ2k+1)ej2πfc(−

Pk+1
i=1 τi+

P2k+1
i=k+2 τi). (14)

with Ci,p = (i + p − 1)!/(i − 1)!p! denoting the number of combinations with repetition of p elements drawn from a set of i
elements.

Three characteristics of the equivalent baseband Volterra system (13) should be highlighted. The first one is that it includes
only the odd-order kernels with one more non-conjugated term than conjugated terms, the other terms being suppressed by the
bandpass filter. The second one is that the Volterra coefficients (14) are complex-valued, while the bandpass Volterra coefficients
in (1) are real-valued. The last one is that, due to the asymmetry of indices on the phase of the exponential term in (14):
ϕ(τ1, ..., τ2k+1) = −∑k+1

i=1 τi +
∑2k+1

i=k+2 τi, the equivalent baseband Volterra kernels h2k+1(τ1, . . . , τ2k+1) are not symmetric.

2.2 Fourier transform of the Volterra channel output

The understanding of the behavior of a Volterra system can be improved in computing the spectrum of its output signal. In
the sequel, the frequency domain representation of the equivalent baseband Volterra system (13) is developed. Using the inverse
Fourier transform formula, we may rewrite (13) as:

x(ξ) =
K∑

k=0

∫ ∞

−∞
· · ·
∫ ∞

−∞
h2k+1(τ1, . . . , τ2k+1)

k+1∏
i=1

(∫ ∞

−∞
S(fi)ej 2πfi(ξ−τi)dfi

)
2k+1∏

i=k+2

(∫ ∞

−∞
S∗(−fi)ej 2πfi(ξ−τi)dfi

)
dτ1 . . . dτ2k+1, (15)
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where S(f) denotes the Fourier transform of s(ξ). Denoting by H 2k+1(f1, . . . , f2k+1) the multidimensional Fourier transform
of h2k+1(τ1, . . . , τ2k+1) given by:

H2k+1(f1, . . . , f2k+1) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
h2k+1(τ1, . . . , τ2k+1)e−j 2π(P2k+1

i=1 fiτi)dτ1 . . . dτ2k+1, (16)

equation (15) can be expressed as:

x(ξ) =
K∑

k=0

∫ ∞

−∞
· · ·
∫ ∞

−∞
H2k+1(f1, . . . , f2k+1)

k+1∏
i=1

S(fi)
2k+1∏

i=k+2

S∗(−fi)ej 2π(P2k+1
i=1 fi)ξdf1 . . . df2k+1. (17)

Defining υi = υi−1 + fi, for i = 1, 2, ..., 2k + 1, with υ0 = 0, (17) can be rewritten as:

x(ξ) =
∫ ∞

−∞

(
K∑

k=0

∫ ∞

−∞
· · ·
∫ ∞

−∞
H2k+1(υ1, υ2 − υ1, . . . , υ2k+1 − υ2k)

k+1∏
i=1

S(υi − υi−1)
2k+1∏

i=k+2

S∗(−(υi − υi−1))dυ1 . . . dυ2k

)
ej 2πυ2k+1ξdυ2k+1. (18)

Using

x(ξ) =
∫ ∞

−∞
X(υ2k+1)ej 2πυ2k+1ξdυ2k+1, (19)

we get:

X(f) =
K∑

k=0

∫ ∞

−∞
· · ·
∫ ∞

−∞
H2k+1(υ1, υ2 − υ1, . . . , f − υ2k)

k+1∏
i=1

S(υi − υi−1)
2k∏

i=k+2

S∗(−(υi − υi−1))S∗(−(f − υ2k))

dυ1 . . . dυ2k, (20)

where X(f) denotes the Fourier transform of x(ξ) and υ2k+1 was replaced by f for the sake of simplifying the notation.
To get a better understanding of (20), let us consider a linear-cubic Volterra system (K = 1) and use the fact that S(f) is zero

outside I = [−B, B]:

X(f) = H1(f)S(f) +
∫ B

−B

∫ 2B

−2B

H3(υ1, υ2 − υ1, f − υ2)S(υ1)S(υ2 − υ1)S∗(−(f − υ2))dυ1dυ2. (21)

From (20), it can be concluded that the frequency support X(f) is equal to [−3B, 3B], which means that the output signal x(ξ)
may have spectral components outside the frequency support of the input signal I = [−B, B].

It should be highlighted that a signal is never truly bandlimited in practice, as a bandlimited signal would require an infinite
time support. Furthermore, due to causality, a system can not be truly bandlimited in practice neither. Thus, the bandwidth of
a signal is usually considered as the range of frequencies where its Fourier transform has a power above a certain threshold.
The signal bandwidth is then understood as the width of the frequency range where the main part of its power is located. Thus,
when the envelope spectral broadening provided by the Volterra system is not important, the signal bandwidth may not change
significantly.

Section 2.1 and present section show an important phenomenon caused by nonlinear channels called spectral broadening,
which corresponds to spreading the spectrum of the transmitted signal. In fact, for a passband modulated signal, this phe-
nomenon can be viewed as the sum of two different phenomena: the spectral broadening of the signal carrier and envelope. The
broadening of the carrier implies that the received signal will have spectral components centered in frequencies different from
the transmitted signal carrier. However, this phenomenon is canceled by using bandpass filters (zonal filters). On the other hand,
the spectral broadening of signal envelope implies that the frequency support of the received signal envelope is higher than the
frequency support of the transmitted signal envelope. This may lead to a significant increase of the signal bandwidth. The spec-
tral broadening of the signal envelope can be partially canceled by a bandpass filter. However, sometimes it can be interesting to
maintain all the spectral components of the signal envelope in order to exploit this information at the receiver.

Concerning the bandwidth of the bandpass filter considered in Section 2.1, two cases can be considered. The first one is
when the bandpass filter bandwidth is wide enough to cover the spectral broadening provided by the Volterra system [13, 49].
In this case, it is generally assumed that the bandpass filter causes no significant signal distortion in the components centered at
the frequency fc, in such a way that this filter can be considered as transparent with respect to the equivalent baseband signal.
The second case is when the bandpass filter bandwidth is not large enough to cover the spectral broadening, i.e. the bandpass
filter partially rejects the nonlinear interference introduced by the Volterra filter at the frequency f c [10, 50–52]. In this case, the
bandpass filter can not be considered as transparent with respect to the equivalent baseband input signals.
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2.3 Discrete-time equivalent baseband Volterra channel

A discrete-time representation of the equivalent baseband Volterra channel studied in Section 2.1 is developed in this section.
Let us consider that the received signal (13) is sampled with a rate equal to W , assumed to be higher than or equal to the Nyquist
rate 2B of the input signal. As pointed out earlier, a nonlinear system increases the signal bandwidth, which means that it is not
possible to reconstruct the continuous-time channel output x(ξ) from the discrete-time channel output x(n) using a sampling rate
of W = 2B. However, it was demonstrated that the Nyquist rate 2B of the input signal is sufficient to identify and compensate
nonlinear systems [53, 54]. Indeed, the input signal sampled at the Nyquist rate W = 2B leads to [55]:

S(f) =
∞∑

n=−∞
s(n)e−j 2πnf/2B . (22)

In the sequel, the Volterra kernel h2k+1(τ1, . . . , τ2k+1) is assumed to be bandlimited, i.e. H(f1, ..., f2k+1) = 0 for |fi| > B,
∀i = 1, 2, ..., 2k + 1. In fact, from (20), it can be viewed that the form of H(f 1, ..., f2k+1) outside the hypercube I × · · · × I
(I = [−B, B]) is of no consequence since S(f) vanishes outside I [54]. Thus, sampling the Volterra kernel h 2k+1(τ1, . . . , τ2k+1)
along the first dimension with the Nyquist rate of input signal as:

h2k+1(n, τ2, . . . , τ2k+1) =
1

2B
h2k+1(τ1, τ2, . . . , τ2k+1)|τ1=

n
2B

, (23)

leads to:

H2k+1(f, τ2, . . . , τ2k+1) =
1

2B

∞∑
n=−∞

h2k+1(n, τ2, . . . , τ2k+1)e−j 2πnf/2B. (24)

Thus, sampling the Volterra kernel as:

h2k+1(n1, . . . , n2k+1) =
1

(2B)2k+1
h2k+1(τ1, . . . , τ2k+1)|τ1=

n1
2B ,··· ,τ2k+1=

n2k+1
2B

, (25)

leads to:

H2k+1(f1, ..., f2k+1) =
1

(2B)2k+1

∞∑
n1=−∞

· · ·
∞∑

n2=−∞
h2k+1(n1, . . . , n2k+1)e−j 2π(P2k+1

i=1 nifi)/2B. (26)

From (17), (22) and (26), the output signal sampled at the Nyquist rate of input signal can be written as:

x(n) =
1

(2B)2k+1

K∑
k=0

∫ B

−B

· · ·
∫ B

−B

∞∑
n1=−∞

· · ·
∞∑

n2k+1=−∞
h2k+1(n1, . . . , n2k+1)e−j 2π(P2k+1

i=1 nifi)/2B

k+1∏
i=1

∞∑
n
′
i=−∞

s(n
′
i)e

−j 2πn
′
ifi/2B

2k+1∏
i=k+2

∞∑
n
′
i=−∞

s∗(n
′
i)e

−j 2πn
′
ifi/2Bej 2π(P2k+1

i=1 fi)n/2Bdf1 . . . df2k+1, (27)

which leads to

x(n) =
1

(2B)2k+1

K∑
k=0

∞∑
n1=−∞

· · ·
∞∑

n2k+1=−∞
h2k+1(n1, . . . , n2k+1)

∫ B

−B

· · ·
∫ B

−B

e−j 2π(P2k+1
i=1 nifi)/2B

∞∑
n
′
1=−∞

· · ·
∞∑

n
′
2k+1=−∞

k+1∏
i=1

s(n
′
i)

2k+1∏
i=k+2

s∗(n
′
i)e

−j 2π
“P2k+1

i=1 n
′
ifi

”
/2B

ej 2π(P2k+1
i=1 fi)n/2Bdf1 . . . df2k+1, (28)

or, yet,

x(n) =
1

(2B)2k+1

K∑
k=0

∞∑
n1=−∞

· · ·
∞∑

n2k+1=−∞

∞∑
n
′
1=−∞

· · ·
∞∑

n
′
2k+1=−∞

h2k+1(n1, . . . , n2k+1)
k+1∏
i=1

s(n
′
i)

2k+1∏
i=k+2

s∗(n
′
i)

2k+1∏
i=1

∫ B

−B

e
j 2π

“
n−ni−n

′
i

”
fi/2B

dfi, (29)

which implies:

x(n) =
K∑

k=0

∞∑
n1=−∞

· · ·
∞∑

n2k+1=−∞

∞∑
n
′
1=−∞

· · ·
∞∑

n
′
2k+1=−∞

h2k+1(n1, . . . , n2k+1)
k+1∏
i=1

s(n
′
i)

2k+1∏
i=k+2

s∗(n
′
i)

2k+1∏
i=1

sinc
(
π
[
n − ni − n

′
i

])
, (30)
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where

sinc (θ) =
{

1, for θ = 0
sin θ

θ , otherwise.
(31)

Equation (30) can then be rewritten as:

x(n) =
K∑

k=0

∞∑
n1=−∞

· · ·
∞∑

n2k+1=−∞
h2k+1(n1, . . . , n2k+1)

k+1∏
i=1

s(n − ni)
2k+1∏

i=k+2

s∗(n − ni). (32)

The output x(n) of a causal complex-valued discrete-time baseband equivalent Volterra system of finite memory M can then be
represented by the following relationship:

x(n) =
K∑

k=0

M∑
m1=0

· · ·
M∑

m2k+1=0

h2k+1(m1, . . . , m2k+1)
k+1∏
i=1

s(n − mi)
2k+1∏

i=k+2

s∗(n − mi). (33)

Note that (33) corresponds to the output of a linear finite impulse response (FIR) filter of order (M + 1) when K = 0, the
coefficients of which are given by the linear kernel h1(m1), for 0 ≤ m1 ≤ M .

The discrete-time Volterra model (33) can be rewritten in a compact form as:

x(n) = hT w(n), (34)

where w(n) ∈ CQ×1 is the nonlinear regression vector given by:

w(n) = [sT (n) ⊗3
∗ sT (n) · · · ⊗2K+1

∗ sT (n)]T , (35)

with the operator ⊗2k+1
∗ defined as:

⊗2k+1
∗ s(n) =

[⊗k+1s(n)
]⊗ [⊗ks∗(n)

] ∈ C
(M+1)2k+1×1, (36)

s(n) = [s(n) s(n − 1) . . . s(n − M)]T ∈ C(M+1)×1 being the linear regression vector, ⊗ks(n) the power of order k of the
Kronecker product of s(n) and Q the number of channel coefficients (nonlinear terms) of the Volterra filter, given by:

Q =
K∑

k=0

(M + 1)2k+1. (37)

Note that w(n) contains all the products like
∏k+1

i=1 s(n − mi)
∏2k+1

i=k+2 s∗(n − mi) of (33). Moreover, the vector h ∈ CQ×1

containing the Volterra coefficients is given by:

h =
[(

h(1)
)T (

h(3)
)T

. . .
(

h(2K+1)
)T
]T

, (38)

with h(2k+1) ∈ C(M+1)2k+1×1, for 0 ≤ k ≤ K . Moreover, the q th element of h(2k+1) can be written as h
(2k+1)
q =

h2k+1(m1, . . . , m2k+1), with

q = m2k+1 + m2k(M + 1) + · · · + m2(M + 1)2k−1 + m1(M + 1)2k

=
2k+1∑
i=1

mi(M + 1)2k+1−i, (39)

for 0 ≤ m1, m2, ..., m2k+1 ≤ M + 1.
From (34), it can be viewed that the output x(n) is linear with respect to the system parameters h 2k+1(m1, . . . , mk). This

means that a Volterra filter can be viewed as a linear system where the output is a weighted sum of Q virtual-sources or quasi-
sources, these sources being given by the nonlinear products w q(n) of the input, where wq(n) denotes the qth element of the
nonlinear regression vector w(n). In fact, this property corresponds to one of the main advantages of Volterra models, as it may
simplify the estimation of the system coefficients and the recovery of the input signals.

2.4 Triangular form

Let us go back to the discrete-time baseband equivalent Volterra model (33). One of the main drawbacks of this model is its
high number of coefficients. It can be viewed in (37) that the number of parameters Q grows exponentially with the nonlinearity
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order 2K + 1. However, it can be noted that some terms of the nonlinear regression vector (35) are redundant. They can be
eliminated by rewriting (33) as a triangular Volterra system:

x(n) =
K∑

k=0

M∑
m1=0

M∑
m2=m1

· · ·
M∑

mk+1=mk

M∑
mk+2=0

· · ·
M∑

m2k+1=m2k

h̃2k+1(m1, m2, . . . , m2k+1)

k+1∏
i=1

s(n − mi)
2k+1∏

i=k+2

s∗(n − mi). (40)

with

h̃2k+1(m1, m2, . . . , m2k+1) =
M∑

m̃1=0

· · ·
M∑

m̃k+1=0︸ ︷︷ ︸
{m̃1,...,m̃k+1}∈
π(m1,...,mk+1)

M∑
m̃k+2=0

· · ·
M∑

m̃2k+1=0︸ ︷︷ ︸
{m̃k+2,...,m̃2k+1}∈
π(mk+2...,m2k+1)

h2k+1(m̃1, m̃2, . . . , m̃2k+1), (41)

where π(m1, . . . , mk+1) denotes the set of all the permutations of {m1, . . . , mk+1}. Note that, in (40), we have m1 ≤ · · · ≤
mk+1 and mk+2 ≤ · · · ≤ m2k+1.

The vector form of a triangular Volterra model is given by:

x(n) = h̃
T

w(n), (42)

where the nonlinear regression vector w(n) ∈ CQ×1 is given by:

w(n) = [sT (n) 	3
∗ sT (n) · · · 	2K+1

∗ sT (n)]T ∈ C
Q×1, (43)

the operator 	2k+1
∗ being defined as:

	2k+1
∗ s(n) =

[	k+1s(n)
]⊗ [	ks∗(n)

]
(44)

and 	ks(n) being the power of order k of the truncated Kronecker product of s(n) (see Appendix). The vector h̃ ∈ CQ×1

contains the parameters of the triangular Volterra model h̃2k+1(m1, m2, . . . , m2k+1) and the number of parameters Q can be
deduced from (85) in Appendix:

Q =
K∑

k=0

CM+1,kCM+1,k+1. (45)

If the input signals have a constant modulus, as in Phase Shift Keying (PSK) modulations, the triangular Volterra model (40)
can be rewritten with a smaller number of coefficients, as some power terms of s(n) can be viewed as power terms of smaller
order. Indeed, if mi = mj , for i ∈ {1, ..., k + 1} and j ∈ {k + 2, ..., 2k + 1}, the term |s(n)|2 reduces to a multiplicative
constant that can be absorbed by the associated channel coefficient. As a consequence, some nonlinear terms degenerate in terms
of smaller order.

For instance, for constant modulus input signals with |s(n)| = A, the Volterra model (33) can be reexpressed as:

x(n) =
M∑

m1=0

h1(m1)s(n − m1) +
M∑

m1=0

M∑
m2=m1

M∑
m3=0

m3 �=m1,m2

h3(m1, m2, m3)s(n − m1)s(n − m2)s∗(n − m3), (46)

where h3(m1, m2, m3) = h̃3(m1, m2, m3), for 0 ≤ m1 ≤ m2 ≤ M , 0 ≤ m3 ≤ M and m3 �= m1, m2, and

h1(m1) = h̃1(m1) +
M∑

m̃=0
m̃≤m1

h̃3(m̃, m1, m̃)A2 +
M∑

m̃=0
m̃>m1

h̃3(m1, m̃, m̃)A2. (47)

In this case, we have Q = M + 1 + (M+1)2M
2 .

PSK signals provide then less nonlinear distortions than non-constant modulus signals, like quadrature amplitude modulation
(QAM) signals, due to the fact that PSK symbols have less amplitude fluctuations than QAM symbols, which makes the use
of PSK signals interesting for transmissions over nonlinear channels. The performance of PSK signals over nonlinear satellite
channels was investigated by several authors [10, 13] and some properties of nonlinearly distorted PSK signals were established
in [56].
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3. MIMO Volterra channels

As well as SISO communication channels, MIMO channels are also subject to nonlinear distortions. In these cases, MIMO
Volterra models can be used for providing an accurate description of the channel. Some applications of MIMO Volterra models
for modeling communication systems are discussed in Section 5. The models described in the sequel correspond to the most
general forms of MIMO Volterra systems, considering discrete-time equivalent baseband representations.

For developing the input-output relationship of a discrete-time equivalent baseband MIMO Volterra model, let us first consider
a nonlinear single-input-multiple-output (SIMO) communication channel. That corresponds to the case where a single source
transmits to an array of R receive antennas. The results presented in Section 2 for SISO Volterra models can be developed in
a similar way for SIMO Volterra channels, the link between each antenna element and the source being modeled as the SISO
discrete-time baseband equivalent Volterra system (33). Thus, the discrete-time signal received by the r th antenna element can
be expressed as:

xr(n) =
K∑

k=0

M∑
m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(m1, . . . , m2k+1)

k+1∏
i=1

s(n − mi)
2k+1∏

i=k+2

s∗(n − mi).

(48)

where h
(r)
2k+1(m1, . . . , m2k+1) are the Volterra kernels coefficients associated with the r th output.

In the case of MIMO channel, if the link between each source (transmit antenna or user) and each receive antenna is modeled
as a Volterra system, the rth output signal is expressed by:

xr(n) =
T∑

t=1

K∑
k=0

M∑
m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(t, m1, . . . , m2k+1)

k+1∏
i=1

st(n − mi)
2k+1∏

i=k+2

s∗t (n − mi). (49)

where st(n) is the tth input signal (1 ≤ t ≤ T ) and h
(r)
k (t, m1, . . . , mk) are the Volterra kernels coefficients associated with the

rth output and the tth input signal.
Note that the discrete-time baseband equivalent MIMO Volterra system (49) have products of the input signals in the form∏k+1

i=1 st(n−mi)
∏2k+1

i=k+2 s∗t (n−mi), which means that it does not contain products of different sources. This corresponds to the
case where the signal of each source is corrupted by nonlinear ISI and, then, the signal of all the sources are linearly mixed, i.e.
the nonlinearities are applied to the input signals individually, before mixing the sources. This kind of model can be viewed as a
parallel-cascade of T SIMO Volterra systems. Thus, although (49) corresponds to a MIMO Volterra model, it does not represent
the case where the sources are nonlinearly mixed. In order to develop a generical expression for a MIMO Volterra model taking
this case into account, let us consider the SIMO Volterra system (48) with the input signal s(n) being the mixture of T different
sources:

s(n) =
T∑

t=1

atst(n), (50)

leading to:

xr(n) =
K∑

k=0

M∑
m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(m1, . . . , m2k+1)

k+1∏
i=1

(
T∑

t=1

atst(n − mi)

)
2k+1∏

i=k+2

(
T∑

t=1

a∗
t s

∗
t (n − mi)

)
, (51)

or, equivalently,

xr(n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

t2k+1=1

M∑
m1=0

· · ·
M∑

m2k+1=0

[
h

(r)
2k+1(m1, . . . , m2k+1)

k+1∏
i=1

ati

2k+1∏
i=k+2

a∗
ti

]

k+1∏
i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti
(n − mi). (52)

The MIMO Volterra model (52) contains products of different sources
∏k+1

i=1 sti(n−mi)
∏2k+1

i=k+2 s∗ti
(n−mi), as it corresponds

to the case where the nonlinearities are applied to the input signals after mixing the sources. Based on (52), the general discrete-
time equivalent baseband MIMO Volterra model with T inputs and R outputs is defined as:

xr(n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

t2k+1=1

M∑
m1=0

. . .

M∑
m2k+1=0

h
(r)
2k+1(t1, . . . , t2k+1, m1, . . . , m2k+1)

k+1∏
i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti
(n − mi). (53)

where h
(r)
2k+1(t1, . . . , t2k+1, m1, . . . , mk) are the Volterra kernels coefficients associated with the r th output and the product∏k+1

i=1 sti(n − mi)
∏2k+1

i=k+2 s∗ti
(n − mi). When the diversity at the reception is provided by an antenna array, equation (53) can
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be viewed as a “spatial-temporal Volterra” model in contrast with the “temporal Volterra” model (33). Indeed, in this case, the
Volterra kernels have multiple time (t1, . . . , tk) and space (m1, . . . , mk) indices, instead of only time indices, as in the SISO
Volterra system (33), or multiple time indices and only one space index, as in the MIMO Volterra model (49).

As well as for the SISO case, the discrete-time MIMO Volterra model (53) can be rewritten in a triangular form, in such a
way that the redundant terms are eliminated:

xr(n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

tk+1=tk

T∑
tk+2=1

· · ·
T∑

t2k+1=t2k

M∑
m1=0

. . .

M∑
mk+1=m

′
k+1

M∑
mk+2=0

· · ·
M∑

m2k+1=m
′
2k+1

h̃
(r)
2k+1(t1, . . . , t2k+1, m1, . . . , m2k+1)

k+1∏
i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti
(n − mi). (54)

with

m
′
k =

{
mk−1 if tk = tk−1,
0 if tk �= tk−1,

(55)

It is also possible to define a MIMO Volterra model in order to take into account the fact that the system has different memories
with respect to the inputs. Thus, a more general representation of discrete-time baseband equivalent MIMO Volterra systems can
be written as:

xr(n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

tk+1=tk

T∑
tk+2=1

· · ·
T∑

t2k+1=t2k

Mt1∑
m1=0

· · ·
Mtk+1∑

mk+1=m
′
k+1

Mtk+2∑
mk+2=0

· · ·
Mt2k+1∑

m2k+1=m
′
2k+1

h̃
(r)
2k+1(t1, . . . , t2k+1, m1, . . . , m2k+1)

k+1∏
i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti
(n − mi), (56)

where Mti is the memory of the system with respect to the tth
i input, for 1 ≤ ti ≤ T . The system model (56) can still be rewritten

in a different way:

xr(n) =
K∑

k=0

M̄∑
m̄1=1

· · ·
M̄∑

m̄k+1=m̄k

M̄∑
m̄k+2=1

· · ·
M̄∑

m̄2k+1=m̄2k

h̃
(r)
2k+1(m̄1, . . . , m̄2k+1)

k+1∏
i=1

s̄m̄i(n)
2k+1∏

i=k+2

s̄∗m̄i
(n), (57)

where M̄ = M1 + · · · + MT + T and s̄m̄i(n) corresponds to the m̄th
i component of the linear input vector defined as:

s̄(n) = [s̄1(n) s̄2(n) . . . s̄M̄ (n)]T ∈ C
M̄×1

= [s1(n) ... s1(n − M1) · · · sT (n) ... sT (n − MT )]T . (58)

The Volterra models (56) and (57) are equivalent and can be represented in the following compact way:

x(n) = H̃w(n), (59)

where x(n) = [x1(n) x2(n) . . . xR(n)]T ∈ CR×1 and the nonlinear input vector w(n) ∈ CQ×1 is given by:

w(n) = [̄sT (n) 	3
∗ s̄T (n) · · · 	2K+1

∗ s̄T (n)]T ∈ C
Q×1, (60)

with s̄(n) given by (58). Moreover, H̃ = [h̃1 h̃2 . . . h̃R]T ∈ CR×Q, with h̃r ∈ CQ×1 (1 ≤ r ≤ R) containing the coefficients
of the triangular Volterra system associated with r th output. In this case, the length of the Volterra filter is given by:

Q =
K∑

k=0

CM̄,kCM̄,k+1 . (61)

Discrete-time MIMO Volterra models have being studied in a few works. However, some of these works deal with MIMO
Volterra systems less generical than (53) [8, 30, 36, 38, 39, 41, 43], while some others deal with a real-valued version [42] or with
a memoryless version of this model [57–62]. To the best of our knowledge, the techniques that we proposed in [63, 64] are only
works that use the generical complex-valued equivalent baseband MIMO Volterra model (53). However, these works did not
presented the above developments.
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4. Block-structured nonlinear MIMO systems

Most nonlinear MIMO communication channels used in the literature are constituted of series-cascades of nonlinear and
linear systems. In this section, three block-structured nonlinear systems are considered: the Wiener, Hammerstein and Wiener-
Hammerstein systems. These block-structured nonlinear systems have important applications in many areas [65] and especially
in telecommunication systems, as we will see in Section 5. The next developments concern discrete-time equivalent baseband
MIMO models, the SISO case corresponding to T = R = 1.

It will be shown that these block-structured nonlinear systems can be viewed as particular cases of MIMO Volterra systems.
One of the main advantages of these block-structured models is that they are characterized by less parameters than their associated
Volterra representations. On the other hand, an important drawback of such kind of models is that they are not linear with respect
to their parameters, contrarily to Volterra models.

4.1 The MIMO Wiener model

Figure 1: A MIMO Wiener system.

A SISO Wiener system is the cascade of a linear filter followed by a static nonlinearity. In its most general form, a MIMO
Wiener system with T inputs and R outputs is composed of a linear convolutional mixer followed by memoryless nonlinearities,
as shown in Fig. 1. Let us denote by zr(n) (1 ≤ r ≤ R) the outputs of the linear mixer and by w

(r)
t (m) (0 ≤ m ≤ M ) the

(m + 1)th element of the impulse response associated with the tth input and the rth output. It is considered that the system has
the same memory M with respect to all inputs. Thus, we may write:

zr(n) =
T∑

t=1

M∑
m=0

w
(r)
t (m)st(n − m). (62)

Denoting by xr(n) (1 ≤ r ≤ R) the outputs of the MIMO Wiener system, we have:

xr(n) = f (r) (zr(n)) , (63)

where f (r) (·) (1 ≤ r ≤ R) is a polynomial function. Considering an equivalent baseband representation, similarly as for the
Volterra models (53)-(57), the functions f (r) (·) can be represented by a polynomial of the form:

xr(n) =
K∑

k=0

f
(r)
2k+1 |zr(n)|2k

zr(n), (64)

where | · | denotes the magnitude of a complex number and {f (r)
1 , f

(r)
3 , . . . , f

(r)
2K+1} are the baseband equivalent coefficients of

the polynomial function f (r) (·). As in (53)-(57), the polynomial terms that do not have the form shown in (64) correspond to
spectral components lying outside the system bandwidth.

Substituting (62) into (64), we get:

xr(n) =
K∑

k=0

f
(r)
2k+1

∣∣∣∣∣
T∑

t=1

M∑
m=0

w
(r)
t (m)st(n − m)

∣∣∣∣∣
2k T∑

t=1

M∑
m=0

w
(r)
t (m)st(n − m), (65)

or, equivalently,

xr(n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

t2k+1=1

M∑
m1=0

· · ·
M∑

m2k+1=0

f
(r)
2k+1

k+1∏
i=1

w
(r)
ti

(mi)sti(n − mi)

2k+1∏
i=k+2

[
w

(r)
ti

(mi)sti(n − mi)
]∗

. (66)
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Thus, by defining the following kernel:

h
(r)
2k+1(t1, . . . , t2k+1, m1, . . . , m2k+1) = f

(r)
2k+1

k+1∏
i=1

w
(r)
ti

(mi)
2k+1∏

i=k+2

[
w

(r)
ti

(mi)
]∗

, (67)

equation (66) can be rewritten as:

xr(n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

t2k+1=1

M∑
m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(t1, . . . , t2k+1, m1, . . . , m2k+1)

k+1∏
i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti
(n − mi). (68)

From (68) and (67), it can be concluded that a MIMO Wiener system is equivalent to a MIMO Volterra model with separable
kernels. Moreover, it should also be highlighted that a MIMO Wiener system can be viewed as convolutive post nonlinear
(CPNL) [66] or post nonlinear (PNL) [67, 68] mixtures with polynomial nonlinearities.

4.2 The MIMO Hammerstein model

A SISO Hammerstein system is composed of a memoryless nonlinear block followed by a linear filter, while a MIMO
Hammerstein model is composed of memoryless nonlinear blocks in parallel, followed by a linear mixer, as shown in Fig. 2.
Note that the Hammerstein system corresponds to the Wiener system with the order of the blocks being inverted.

Figure 2: A MIMO Hammerstein system.

Let zt(n) (1 ≤ t ≤ T ) be the outputs of the memoryless nonlinearities f (t) (·) (1 ≤ t ≤ T ). Using the same assumption
about the nonlinear functions as for the Wiener model, we can write:

zt(n) =
K∑

k=0

f
(t)
2k+1 |st(n)|2k

st(n), (69)

where {f (t)
1 , f

(t)
3 , . . . , f

(t)
2K+1} are the baseband equivalent coefficients of the polynomial function f (t) (·). Denoting by w

(r)
t (m)

(0 ≤ m ≤ M ) the (m + 1)th element of the impulse response associated with the tth input and the rth output, we have:

xr(n) =
T∑

t=1

M∑
m=0

w
(r)
t (m)zt(n − m). (70)

Substituting (69) into (70), we get:

xr(n) =
K∑

k=0

T∑
t=1

M∑
m=0

f
(t)
2k+1w

(r)
t (m) |st(n − m)|2k

st(n − m). (71)

Thus, by defining the following kernel

h
(r)
2k+1(t1, . . . , t2k+1, m1, . . . , m2k+1) =

⎧⎨
⎩

f
(t1)
2k+1w

(r)
t1 (m1), if t1 = . . . = t2k+1

and m1 = . . . = m2k+1,
0, otherwise,

(72)

it is possible to write the output of the MIMO Hammerstein system (71) as the output of the MIMO Volterra model (68). So, it
can be concluded that a MIMO Hammerstein system can be viewed as a diagonal MIMO Volterra system.

82



Learning and Nonlinear Models (L&NLM) - Journal of the Brazilian Society on Neural Networks, Vol. 8, Iss. 2, pp. 71-92, 2010

c© Sociedade Brasileira de Redes Neurais (SBRN)

4.3 The MIMO Wiener-Hammerstein model

A SISO Wiener-Hammerstein system is composed of a static nonlinearity sandwiched between two linear filters, and its
MIMO version is composed of static nonlinear blocks in parallel, sandwiched between two linear mixers (see Fig. 3). Note that
the Wiener and the Hammerstein models can be viewed as particular cases of a Wiener-Hammerstein system.

Figure 3: A MIMO Wiener-Hammerstein system.

Let R
′

be the number of outputs of the first mixer, zr′ (n) (1 ≤ r
′ ≤ R

′
) the outputs of the first mixer, qr′ (n) (1 ≤ r

′ ≤ R
′
)

the outputs of the nonlinear blocks, w
(r

′
)

t (m) (0 ≤ m ≤ Mw) the (m + 1)th element of the impulse response of the first mixer
associated with the tth input and the (r

′
)th output, and Mw the memory of the first mixer. From (66), we can write:

qr′ (n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

t2k+1=1

Mw∑
m1=0

· · ·
Mw∑

m2k+1=0

f
(r

′
)

2k+1

k+1∏
i=1

w
(r

′
)

ti
(mi)

2k+1∏
i=k+2

[
w

(r
′
)

ti
(mi)

]∗
k+1∏
i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti
(n − mi). (73)

On the other hand, the outputs of the MIMO Wiener-Hammerstein system can be expressed as:

xr(n) =
R

′∑
r′=1

Ml∑
m=0

l
(r)

r′ (m)qr′ (n − m), (74)

where l
(r)

r′ (m) (0 ≤ m ≤ Ml) is the (m + 1)th element of the impulse response of the second mixer associated with the (r
′
)th

input and the rth output, and Ml is the memory of the second mixer. Substituting (73) into (74), we get:

xr(n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

t2k+1=1

Mw∑
m1=0

· · ·
Mw∑

m2k+1=0

R
′∑

r′=1

Ml∑
m=0

l
(r)

r′ (m)f (r
′
)

2k+1

k+1∏
i=1

w
(r

′
)

ti
(mi)

2k+1∏
i=k+2

[
w

(r
′
)

ti
(mi)

]∗ k+1∏
i=1

sti(n − mi − m)
2k+1∏

i=k+2

s∗ti
(n − mi − m). (75)

By defining:

h
(r)
2k+1(t1, . . . , t2k+1, m̄1, . . . , m̄2k+1) =

Ml∑
m=0

R
′∑

r′=1

l
(r)

r′ (m)f (r
′
)

2k+1

(
k+1∏
i=1

w
(r

′
)

ti
(m̄i − m)

)(
2k+1∏

i=k+2

[
w

(r
′
)

ti
(m̄i − m)

]∗)
, (76)

with m̄2k+1 = m2k+1 + m, equation (75) can be rewritten as the output of a MIMO Volterra filter:

xr(n) =
K∑

k=0

T∑
t1=1

· · ·
T∑

t2k+1=1

M∑
m̄1=0

· · ·
M∑

m̄2k+1=0

h
(r)
2k+1(t1, . . . , t2k+1, m̄1, . . . , m̄2k+1)

k+1∏
i=1

sti(n − m̄i)
2k+1∏

i=k+2

s∗ti
(n − m̄i), (77)

where M = Mw + Ml.
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4.4 Volterra models associated with block-structured nonlinear systems

Note that the MIMO Wiener, Hammerstein and Wiener-Hammerstein models can be viewed as particular cases of MIMO
Volterra models. A link between Wiener, Hammerstein and Wiener-Hammerstein models, and the Volterra model was developed
in [69] for SISO systems. The above developments linking these MIMO block-structured models with MIMO Volterra models
constitute a generalization of the results of [69].

The main advantage of representing Wiener, Hammerstein and Wiener-Hammerstein systems in terms of the parameters of
the subsystems, i.e. the linear mixers and memoryless nonlinearities, is that the total number of parameters of these subsystems
is, in general, smaller than the number of coefficients of the associated Volterra model. On the other hand, the system output
is not linear with respect to the parameters of these subsystems, as we can see in (66), (71) and (75), contrarily to the output
of the associated Volterra model. Moreover, a Volterra model allows to take other possible channel nonlinearities into account,
contrarily to block-structured models

5. Applications in communication systems

This section is dedicated to some applications of MIMO Volterra models in communication systems, based on the nonlinear
MIMO models presented in the previous sections. These applications correspond to situations where the received signals are
corrupted by nonlinear ISI, MAI and/or ICI. Applications of Volterra models in other kinds of MIMO communication channels
can be found in [20,30,36]. In all the following examples, it is assumed perfect symbol synchronization and that the receive filter
is matched to the transmit pulse shape filter.

5.1 MIMO channels with nonlinear power amplifiers

In general, all the wireless communication systems employing power amplifiers (PAs) are subject to nonlinear distortions.
However, when the signal at the input of the PA is characterized by a high peak-to-average power ratio (PAPR), the introduced
nonlinear distortions are particularly important. For these signals, the maximal signal amplitude is high compared to the root
mean square (RMS) value. Thus, if the PA operates near the saturation region to obtain a good power efficiency, some components
of the input signal fall in the saturation region due to the large fluctuations on the signal envelope. The PA exhibits a nonlinear
characteristic at saturation, resulting in the introduction of nonlinear bandlimited distortions. That may lead to significant signal
distortion and system performance deterioration.

Some models can be encountered in the literature to represent the nonlinearity of the PA. The Saleh model represents the
traveling wave tube (TWT) PA as a frequency independent memoryless nonlinearity characterized by the following amplitude to
amplitude (AM/AM) and amplitude to phase (AM/PM) conversions [70]:

A(r) =
αar

1 + βar2
(78)

and

Φ(r) =
αφr2

1 + βφr2
, (79)

where r is the amplitude of the PA input signal, A(r) and Φ(r) are respectively the amplitude and phase gains of the PA output
signal, and αa, βa, αφ and βφ are positive scalar constants.

Radio frequency PAs can also be modeled using polynomial models such as Volterra models. The simplest polynomial model
for a PA is given by the following equivalent baseband input-output relationship [17, 71, 72]:

x(n) =
K∑

k=0

f2k+1 |s(n)|2k s(n). (80)

If the polynomial coefficients f2k+1 are real-valued, the model (80) is strictly memoryless, which means that the PA introduces
only amplitude distortion (AM/AM conversion). However, if the coefficients f 2k+1 are complex-valued, the model (80) allows
representing a more general class of models called quasi-memoryless PA [71–73]. In this case, if the memory of the PA is short
compared to the time variations of the input signal envelope, equation (80) may represent the output of a PA with amplitude and
phase distortions (AM/AM and AM/PM conversions).

Nevertheless, when the bandwidth of the input signal is large, in general, the memory of the PA can not be considered short
with respect to the time variations of the input signal [17, 71]. More complex models must then be used to take the memory
effects of the PA into account. In this case, among the nonlinear models usually considered in the literature for modeling the PA,
the most general is given by the SISO Volterra model (40) [71, 72, 74]. Several special cases of the Volterra model can also be
used for modeling the PA nonlinearities as SISO Wiener, Hammerstein and Wiener-Hammerstein models [71,72,75]. Moreover,
PAs with memory effects are also often modeled as a diagonal Volterra model [22, 71, 72, 74, 76–78]:

x(n) =
K∑

k=0

M∑
m=0

f2k+1(m) |s(n − m)|2k
s(n − m). (81)
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This model is also referred to as memory polynomial model and can be viewed as a generalization of the SISO Hammerstein
model. For further details about the PA models, see [70, 79] and references therein. In the sequel, two kinds of wireless
communication systems that can be modeled as MIMO Volterra models are presented.

5.1.1 OFDM systems

Orthogonal frequency division multiplexing (OFDM) signals are especially vulnerable to PA nonlinear distortions due to their
high peak-to-average power ratio (PAPR) [18–24], caused by the sum of several symbols with different phases and frequencies.
The PAPR of a signal is defined as the ratio of its maximum squared amplitude to the average power [80]. This means that, if
the PAPR of a signal is high, the maximal signal power is high compared to the average signal power, i.e. the signal has large
envelope fluctuations. As a consequence, the received signals in a OFDM system are particularly affected by the presence of
a nonlinear PA. In this case, a nonlinear PA results in the introduction of nonlinear ICI between the subcarriers. Theoretical
analysis and performance of OFDM signals in nonlinear channels have been widely studied in the literature [22–24, 81–83]. In
this case, a single-user channel can be modeled as a cascade of a nonlinear system, corresponding to the PA, followed by a linear
filter corresponding to the frequency selective fading wireless link. The global channel (PA + wireless link) can then be modeled
as a Volterra system [19].

MIMO transmission schemes can be used in OFDM systems to provide an efficient radio spectrum, allowing a good reuse of
the same frequency range to increase the data rate and the system capacity. In this case, the global channel between each source
(Tx antenna or user) and each receive antenna can be modeled as Volterra system and the global MIMO-OFDM channel can be
expressed as the MIMO Volterra model (49). Note that, due to the fact that the nonlinearity is at the transmitter, the nonlinear
MIMO-OFDM channel does not contain products of different sources. The signal of each source, corrupted by nonlinear ICI,
is linearly mixed with the signal of the other sources. In this case, the global MIMO-OFDM channel can also be modeled as a
MIMO Hammerstein system. Using the notation introduced in Section 4.1, we have:

• f
(t)
2k+1 denotes coefficients of the polynomial function representing the PA of the t th antenna element.

• w
(r)
t (m), m = 0, 1, ...M, denotes the channel impulse response of the wireless channel between the t th user and the rth

receive antenna.

However, it should be highlighted that the OFDM technology allows a great simplification in the modeling of MIMO Volterra
channels [84].

5.1.2 Satellite systems

In satellite communication systems, the signals are transmitted from a ground (earth) station towards a satellite station (uplink)
and then retransmitted to a receive ground station (downlink). Due to power limitation, the satellite station usually employs a
PA [15], often in the form of a TWT or a solid-state power amplifier (SSPA), that is driven at or near saturation in order to obtain
a power efficient transmission [10, 13, 14, 16], resulting in the introduction of nonlinear distortions.

The overall satellite channel, i.e. the cascade of the uplink, PA and downlink, was first modeled as an equivalent baseband
SISO Volterra system by Benedetto et al. [9], its effectiveness for modeling this kind of channels being verified in [10]. In some
cases, the Volterra model for the satellite channel incorporates the satellite pre- and post-filters [10, 50–52]. Satellite channels
can also be modeled as a SISO Wiener-Hammerstein system, the wireless uplink and downlink being represented by linear filters
and the PA by a memoryless polynomial model [10, 79].

In order to improve the transmission spectral efficiency, the use of MIMO satellite systems has been considered in several
works [85–89]. Concerning the structure of the MIMO satellite link, the following configuration is usually considered: the ground
station with multiple transmit antennas transmits towards multiple satellites with a single antenna each one, that retransmits
towards another ground station with multiple receive antennas. We can also consider the case where the T sources correspond to
various ground stations with a single transmit antenna, i.e. mobile unites transmitting towards a single receive station. In these
cases, the channel can be represented by a MIMO Wiener-Hammerstein model, with:

• the wireless uplink being modeled as a linear T × R
′

mixer with channel impulse responses denoted by w
(r

′
)

t (m), m =
0, 1, ...Mw, t = 1, ..., T, r

′
= 1, ..., R

′
;

• f
(r

′
)

2k+1 denoting coefficients of the polynomial function representing the PA, r
′
= 1, ..., R

′
.

• the wireless downlink being modeled as a linear R
′×R mixer with impulse responses denoted by l

(r)

r′ (m), m = 0, 1, ...Mw, r =
1, ..., R, r

′
= 1, ..., R

′
.

The wireless link of the satellite channel has often a line-of-sight propagation [90] and the satellite channel delay spread
is usually small [10]. In fact, some authors assume that the transmitted signals are narrowband with respect to the channel’s
coherence bandwidth [90, 91], i.e. the wireless channel has a flat fading.
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5.2 Radio Over Fiber (ROF) channels

ROF links have found a new important application with their introduction in micro- and pico-cellular wireless networks [25,
26, 40, 92, 93]. Micro- and pico-cellular architectures provide to the system a better capacity, coverage and power consumption,
especially in hot-spot areas. Thus, they can also improve the system reliability and Quality of Service. ROF links provide a
cost-effective solution for important problems like station complexity and bandwidth limitation [94]. In ROF systems, the uplink
transmission is done from a mobile station towards radio access points, which are merely low-cost remote antenna stations
consisting of an electro-optical converter and a transponder [95]. At the radio access points, the transmitted signals are converted
in optical frequencies by a laser diode and then retransmitted through optical fibers towards a central base station, as summarized
in Fig. 4. Most part of the signal processing, such as channel estimation, equalization, modulation and demodulation, is done at
the central base station [25, 26, 95].

Important nonlinear distortions are introduced by the laser diode at the electrical-optical (E/O) conversion device [25–27,
40, 92]. Gain compression characteristics combined with stimulated and spontaneous mechanisms of emission make the laser
inherently nonlinear [25]. Other phenomena, as leakage current and “axial hole burning” may also be sources of nonlinearities
[25]. The E/O nonlinearity in a ROF system is often modeled using a memoryless polynomial model [25–27, 40]. For more
details about the ROF nonlinearities, see [25] and references therein.

Concerning the optical link, chromatic dispersion is some of the main concerns with single-mode and multi-mode fibers. The
transfer function of a fiber reflecting the chromatic dispersion, is given by [25]:

H(f) = e−jαl(f−fo)2 (82)

where α is a dispersion coefficient, l is the fiber length and fo is the optical carrier frequency. For a wavelength of 1310
nm, the chromatic dispersion of the fiber is not significant up to several hundreds of kilometers of fiber length and up to few
GHz [25, 92, 96]. This means that the chromatic dispersion of the fiber is negligible and the nonlinear distortion arising from the
E/O conversion process becomes then preponderant. Thus, the overall uplink channel can be viewed as a wireless link followed
by an E/O conversion. In a single-user and a single receive antenna case, the wireless link can be modeled as a linear filter and
the overall ROF uplink channel as a SISO Wiener model [25, 27, 92] .

Figure 4: Radio-over-fiber uplink diagram.

Aiming to supply the growing demand for system capacity, technologies such as smart antennas (or MIMO) and ROF trans-
mission can be used together [94, 97]. In a ROF system with an antenna array at the radio access point, the optical link between
the antenna array and the central base station can be implemented using either multiple fibers or a single fiber with wavelength
division multiplexing (WDM) [94,95,97]. The second case is particularly interesting, as the use of an antenna array can be done
using the same optical components already installed for the ROF system [97]. In this case, the signal received at the radio access
point is multiplexed, a single optical carrier being assigned to each antenna element, and then transmitted over the optical fiber,
followed by an optical carrier demultiplexing.

In a multiuser channel employing an antenna array at the radio access point, the wireless link can be modeled as a linear
mixture and the overall ROF uplink as a MIMO Wiener model. In this case, using the notation introduced in Section 4.1, we
have:

• w
(r)
t (m), m = 0, 1, ...M, denotes the channel impulse response of the wireless channel between the t th user and the rth

receive antenna;

• f
(r)
2k+1 denotes coefficients of the polynomial function representing the nonlinear E/O conversion device associated with

the rth antenna element.

Thus, using the developments of Section 4.1, the ROF uplink channel can be modeled as a MIMO Volterra filter like (68).
Besides, ROF links have been considered in the context of CDMA systems [27, 40, 93, 98], as well as for OFDM 802.11a
systems [93–95, 99].

The downlink channel of a ROF can be modeled similarly as the uplink. However, in this case, the wireless channel is placed
after the E/O conversion [25]. The overall channel can then be viewed as a Hammerstein system. Besides, at the downlink, the
received signals are more subject to nonlinear distortions due to PA saturation than at the uplink.
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6. Conclusion

An overview of nonlinear communication channels using MIMO Volterra models has been presented in this paper. These
models are very useful for modelling a large class of nonlinear systems. Starting from the standard continuous-time SISO
Volterra channel, the equivalent baseband discrete-time SISO Volterra channel has been established, with its triangular and
vectorial forms. Besides, the Fourier transform of the equivalent baseband discrete-time SISO Volterra channel output has been
derived, which allowed us to explain the spectral broadening produced by a Volterra system. Based on the SISO Volterra channel
representation, we developed the expression of an equivalent baseband discrete-time MIMO Volterra model that does not contain
products of different sources. Then, we developed the MIMO Volterra model that allows to represent a nonlinear mixture of
sources, and finally, we presented the MIMO Volterra model characterized by different memories with respect to the inputs, as
well as its triangular and vector forms.

The developments carried out in this paper are of great importance due to the lack of works dealing with nonlinear MIMO
communication channels. Moreover, it contains two original contributions. The first one is the development of the general expres-
sions for equivalent baseband discrete-time MIMO Volterra channels and the second one is the development of the relationships
between MIMO Volterra and MIMO Wiener, Hammerstein and Wiener-Hammerstein models. It was demonstrated that MIMO
Wiener, Hammerstein and Wiener-Hammerstein models can be viewed as special cases of MIMO Volterra models. Moreover,
three applications of MIMO Volterra models for OFDM, satellite and ROF communication systems have been briefly described.

Appendix: The truncated Kronecker product

The truncated Kronecker product of the vector a ∈ CL×1 by itself is defined in the following way:

	2a = a 	 a =

⎛
⎜⎜⎜⎜⎜⎝

a1ā1

a2ā2

...
aL−1āL−1

a2
L

⎞
⎟⎟⎟⎟⎟⎠ ∈ C

L(L+1)
2 ×1, (83)

where āi = [ai ai+1 . . . aL]T ∈ C(L−i+1)×1. The truncated Kronecker product does not include the redundant terms that are
present in the Kronecker product of a vector by itself, which means that the vector 	 2a does not contain repeated components.
It is also possible to define the N th-order power of the truncated Kronecker product of a vector a, denoted 	 N a = a 	 · · · 	 a
(N − 1 times the operator 	), by means of the following recursion:

	Na =

⎛
⎜⎜⎜⎜⎜⎝

a1 	N−1 ā1

a2 	N−1 ā2

...
aL−1 	N−1 āL−1

aN
L

⎞
⎟⎟⎟⎟⎟⎠ , (84)

with 	1a = a. The vector 	N a contains all the N th-order products of the elements of a, with no repeated terms. The dimension
of the vector 	N a is given by the number of subsets of cardinality N with elements taken from a set of cardinality L, i.e. the
number of combinations with repetition of N elements drawn from a set of cardinality L:

CL,N =
(L + N − 1)!
(L − 1)!N !

. (85)
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