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Abstract - In this paper, a trajectory tracking control for a nonholonomic mobile robot subjected to kinematic 

disturbances is proposed. A variable structure controller based on the sliding mode theory is used, and applied to 

compensate these disturbances. To minimize the problems found in practical implementations of the classical variable 

structure controllers, and eliminate the chattering phenomenon a neural compensator is used, which is nonlinear and 

continuous, in lieu of the discontinuous portion of the control signals present in classical forms. The proposed neural 

compensator is designed by the Gaussian radial basis function neural networks modeling technique and does not require the 

time-consuming training process. Stability analysis is guaranteed based on the Lyapunov method. Simulation results are 

provided to show the effectiveness of the proposed approach. 

 

Keywords: Mobile robot, trajectory tracking, variable structure control, sliding mode theory, neural networks, 
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1 INTRODUCTION 

The wheeled mobile robot of the type (2,0) is plenty used in the literature as test platform, due to its mechanical simplicity, 

and for represent adequately the challenges of the control problem treated in this paper [Campion and Chung, 2008; Morin 

and Samson, 2008]. Thus, this paper describes the design of a kinematic controller, for this type of mobile robot, based on 

the sliding mode theory, considering the presence of kinematic disturbances. 

Variable structure control design utilizes a high speed switching control law to drive the nonlinear predefined states 

trajectories onto a specified surface (called the sliding or switching surface), to attain the conventional goals of control such 

as stabilization and tracking. 

Due to robustness properties against uncertainties, modeling imprecision and disturbances, the VSC has become very 

popular and used in many application areas [Utkin et al., 2009; Decarlo et al., 1996; Hung et al., 1993; Gao and Hung, 

1993]. However, this control scheme has important drawbacks that limit its practical applicability, such as high frequency 

switching (chattering) and large authority control, which deteriorate the system performance [Shuwen et al., 2000]. The 

first drawback mentioned is due to control actions that are discontinuous on the sliding surfaces, which causes the high 

frequency switching in a boundary of the sliding surfaces. This high frequency switching might excite unmodeled 

dynamics and impose undue wear on the actuators, so that the control law would not be considered acceptable. The second 

drawback mentioned, is based on the requirement of a priori knowledge of the boundary of uncertainty in compensators. If 

boundary is unknown, a large value has to be applied to the gain of discontinuous part of control signal and this large 

control gain may intensify the high frequency switching on the sliding surfaces. 

Researches have been developed using softcomputing methodologies, such as artificial neural networks, in order to 

improve the performance and reduce the problem found in practical implementations of variable structure controllers as 

mentioned in [Efe and Kaynak, 2001; Kaynak et al., 2001]. In this paper, the radial basis function neural networks 

(RBFNNs) are applied to avoid the chattering and compensate the kinematic disturbances, since the structure of an RFBNN 

is simpler than a multi-layer perceptron (MLP), the learning rate of a RBFNN is generally faster than a MLP, and a 

RBFNN is easily mathematically tractable [Seshagiri and Khalil, 2000].  

Unlike other works that use the sliding mode theory applied to mobile robots [Elyoussef et al., 2010; Li et al., 2009; Lee et 

al., 2009; Defoort et al., 2007; Chwa, 2004; Chwa, 2002; Yang and Kim, 1999; Yang and Kim, 1999a; Shim et al., 1995; 

Guldner and Utkin, 1994], the contributions of this paper are: 

 A variable structure controller (VSC) in Cartesian coordinates to compensate the kinematic disturbances, based on 

the sliding mode theory; 

 A neural compensator (NC) used to replace the discontinuous portion of the classical VSC, avoiding the chattering 

as well as suppressing the kinematic disturbances without having any prior knowledge of their boundary; 
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 The implementation of the NC is based on the partitioning of the RBFNNs into several smaller subnets in order to 

obtain a more efficient computation; 

 The weights of the hidden layer of RBFNNs are updated online to ensure the stability of the overall system;  

 The stability analysis of the mobile robot control system, and of the learning algorithm are proved using the 

Lyapunov theory. 

This paper is organized as follows. The section 2 presents the kinematic model for nonholonomic mobile robots with 

disturbances, and the corresponding error dynamics. The proposed VSC and a VSC with NC for a reference trajectory 

tracking is described in the section 3. The section 4 shows the simulation results, and the section 5 presents the conclusions. 

2 PROBLEM FORMULATION 

In this section the kinematic model, the trajectory tracking control problem, and the error dynamics for a nonholonomic 

mobile robot are described. 

2.1 Kinematics of a Mobile Robot 

A typical example of a nonholonomic mobile robot is shown in Figure 1. The mobile robot has two driving wheels 

mounted on the same axis and a free front wheel. The two driving wheels are independently driven by two actuators to 

achieve the motion and orientation. The position of the mobile robot in the Cartesian inertial frame {Xo, O, Yo} can be 

described by a vector OC , and the orientation   between the mobile robot base frame {Xc, C, Yc} and the Cartesian 

inertial frame, where C is the center of mass coordinates (guidance point), with P, d, r, and 2R being the intersection of the 

axis of symmetry with the driven wheel axis, the distance from the point C  to the point , the radius of the wheels, and the 

distance between the driven wheels, respectively. 

 

 
Figure 1: Nonholonomic mobile robot and coordinate systems. 

The posture vector 3q  of the mobile robot is described by three generalized coordinates as: 

[ , , ]c cq x y        (1) 

where (xc, yc) are the coordinates of C. 

Under the condition of pure rolling and non-slipping, and considering d = 0, the kinematic model of the mobile robot can 

be expressed as: 

( ) ( )q S q v t        (2) 

 with: 

cos( ) 0

( ) sin( ) 0

0 1

S q                (3) 
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and ( ) [ ]T

l av t v  representing the linear and angular velocities of the mobile robot in point C, respectively. However 

such kinematic model, equation (3), does not take into account the measurement noise, modeling uncertainties and 

disturbances. As there are input disturbances, a more realistic kinematic model of the mobile robot can addressed by: 

( ) ( ) ( )vq S q v t d t           (4) 

where (t)dv  represents the unknown disturbances only, which are assumed to be upper bounded by: 

vv ε<d ||                     (5) 

with vε  being positive bounded constant. Thus, the kinematic model of a mobile robot, equation  (4), may be subject to the 

so-called matched disturbance, which is given as follows [Canudas de Wit and Khennouf, 1995]: 

( ) [ ( ) 0]Tv Md t t       (6) 

where (t)ρM  denotes a bounded disturbance. From a control point of view, it is easy to see from equations (4) and (6) that 

the matched disturbance problem is a special case of the kinematic model used in equation (4). It is important to emphasize 

that also there are input disturbances in lv  and aω simultaneously, which represents a more realistic kinematic model of 

the mobile robot, as can be found in [Martins and De Pieri, 2010]. 

2.2 Error Dynamics of a Mobile Robot    

In order to formulate the trajectory tracking problem, a reference trajectory is generated by the following reference 

kinematic model: 

( )r r rq S q v ,  cos( )
rr l rx v ,  sin( )

rr l ry v ,  
rr a   (7) 

  

where 
3[ ]T

r r r rq x y  denotes the reference posture of the mobile robot, the structure of ( )rS q  is defined as 

in equation (3), and [ ]
r r

T

r l av v  denotes the reference linear and angular velocities of the mobile robot, respectively. 

With regard to equation (7), is assumed that the signal ( )rv t  is chosen to produce the desired motion and that ( )rv t , 

( )rv t , ( )rq t , and ( )rq t  are bounded for all time. 

The trajectory tracking control problem of a mobile robot is solved designing a control input ( ) [ ]T

l av t v  such that 

the system, equation (4), follows the reference, equation (7), despite of disturbances. In fact, the aim is to converge the 

tracking errors ( x r ce x x , 
y r ce y y , re ) to zero, respecting the following constraints: 

maxl lv v ,  
maxa a       (8) 

Converting the tracking errors in the inertial frame to the mobile robot frame, the posture error equation of the mobile robot 

can be denoted as: 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

x

y

x e

z y e

e

    (9) 

The error dynamics can be obtained from the time derivative of equation (9) as: 
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cos( ) 1

sin( ) 0

0 1

lr l M

lr

aar

vx y v

z y v x           (10) 

 

by using equation (6). 

3 CONTROL DESIGN FOR THE TRAJECTORY TRACKING 

In this section, a VSC is designed for the kinematic model with disturbances only, equation (4). The RBFNNs are used as 

replacement for the discontinuous portion of the classical VSC to avoid the chattering as well as to suppress the kinematics 

disturbances. For such development is required the selection of the sliding surfaces and a brief description of the generic 

modeling of nonlinear systems to the VSC design [Utkin et al., 2009; Hung et al., 1993; Gao and Hung, 1993]. 

3.1 Choice of Sliding Surfaces  

The VSC is a feedback control with high-speed switching, whose action takes place in two phases: the reaching phase and 

the sliding phase. In the reaching phase, the states trajectories of the system (linear or nonlinear) are lead to a place in the 

states space chosen by the designer. In general, this place is defined by linear surfaces of the control errors 

( [ ]Tz x y ), known as switching or sliding surfaces ( ), each one of them described by: 

( , ) 0T

i i iz t c z ,   1,2=i      (11) 

In the sliding phase, the states trajectories are forced to remain on the sliding surfaces. By choosing appropriately the 

constants 
T

ic
 
of equation (11), the errors will tend exponentially to zero according to the standard determined by these 

constants, during the sliding phase. 

Thus, to control the kinematic model, equation (4), are selected the following sliding surfaces: 

11

2 32

( , )
k x

z t
k y k          (12) 

where 1k , 2k , 3k  are positive constants. To each control input is associated one sliding surface iσ , 1,2=i . 

3.2 Generic Model for Nonlinear Systems 

The derivation of the VSC and their properties are made directly for an important class of nonlinear systems, whose model, 

in the form of state equations, is given by: 

( ) ( , , ) ( , , ) ( , ) ( )bz t A z t B z t v z t d t     (13) 

with 
0( , , ) ( , ) ( , , )A z t A z t A z t  and 

0( , , ) ( , ) ( , , )B z t B z t B z t , where ( )z t  is the vector of states; 

( , , )A z t  is the vector of nonlinear functions; ( , )v z t  is the vector of control inputs; ( , )z t  is the vector of parametric 

uncertainties; ( , , )B z t  is the matrix of nonlinear functions; ( , , )A z t  and ( , , )B z t  are the vector and the matrix 

representing the disturbances in the system arising from the parametric uncertainties, respectively; ( )bd t  is the vector of 

external disturbances;  and 
0 ( , )A z t , 

0 ( , )B z t  refers to the vector and the matrix of nominal parameters, respectively. 

The aim of this study is the derivation of a VSC robust to the present disturbances in the kinematic model, equation (4). To 

ensure the robustness of the controller, the disturbances should be bounded, the matrix ( , , )B z t  should be nonsingular 

and the following matching conditions must be satisfied: 

0( , , ) ( , )A z t B z t a  
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0( , , ) ( , )B z t B z t b                        (14) 

0 0( ) ( , )bd t B z t d   

which means that ( , , )A z t , ( , , )B z t , and ( )bd t  must belong to the image of 0 ( , )B z t ; a  and b  are the vector 

and the matrix that incorporate the parametric uncertainties, respectively; and 0d  represents the external disturbances. 

So, the error dynamics, equation  (10), can be rewritten based in equations (13) and (14) as: 

0 0( , ) ( , ) ( , ) ( )bz A z t B z t v z t d t                    (15) 

 

since there are not parametric uncertainties ( 0A , 0B ),  and (t)db  is defined as: 

0( ) ( , ) ( )b vd t B z t d t            (16) 

 

for the case of matched disturbance, equation (10). 

3.3 Variable Structure Control Design  

In order to have influences also on the process of reaching of the sliding surfaces, the control ( , )v z t  will be chosen in 

such a way to impose ( , )z t  to have the dynamics given by the following first order differential equation: 

( , ) ( ) ( )pz t Gsign K h         (17) 

where G = diag{G11, G22} and Kp = diag{Kp11, Kp22}, ( )h   (could be another function, since that ( ) 0T h ), and 

( )sign
 
is a discontinuous function. 

Rewriting the equation (17) for the i-th sliding surface, one obtains: 

  

( , ) ( )i pi i i iz t k g sign      (18) 

Returning to equation (17) and taking into account the equation (15), results in: 

t
d

z
vBA

zt
dvBA

zt

tz
z

z

tz
tz bb ~)(~)(~

),~(~
~

),~(
),~( 0000


         

(19) 

with 

1

2 3

0 0( , )

0

kz t

k kz
              (20) 

whence is derived the following control law: 

1
00

( ) pv B A Gsign K
t

          (21) 

in which 
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r
a3

r
l

r
l

σ

ωk+)θ(vk

)θ(vk=A
z

σ
=A

~
sin

~
cos~

2

100                       (22) 

 

1 1

0 0

2 30

k k y
B B

k x kz
             (23) 

 

3

3
σ

k+xk

k+xk

y

k
=B

~
10

~

~11

2

21
0      (24) 

and 2 3k k , 
1

0
1x

. 

Defining 

* ( ) pv Gsign K        (25) 

and replacing the equation (21) in  equation (19), results in: 

1 *
0 0 00

( ) pA B B A v d Gsign K
t t

  (26) 

where of equation (16) one obtains: 

bd d
z

      (27) 

n
σσ

I=BB 1
00 , and d  are the disturbances in the system.  

3.4 Stability Analysis    

Choosing 
1

2

TV
 
as a Lyapunov function candidate, which is positive definite, the sliding surface will be attractive 

since the control law, equation (21), ensures that 
TV  is negative definite. Using the result described by equation 

(26), an expression for V  is immediately obtained, that is, 

( )T T T T

pV Gsign K     (28) 

As 0T

pK , the condition 0V  can be expressed by: 

( )T TGsign              (29) 

which is satisfied if the diagonal elements of G meet the following restriction: 

i ig , i       (30) 
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If i ig , then 0V  ( 0V  only when 0V ), which implies that V may decrease to V = 0 exponentially;  however, 

if i ig , there is a value of 0ssV V  for which 0V  can leading to nonzero errors. Therefore, it is possible to 

affirm that if the disturbances are better estimated, the results will be better. 

However, for the existence and reachability of a sliding mode it is enough to select a V > 0, so that the sliding surface will 

be attractive since the control law, equation (21), ensures that 0V . For this, in the derivation of equation (21), it is 

necessary that matrix 0B  is non-singular. As G is positive definite diagonal matrix in equation (21), then the sliding 

mode can be enforced under the condition that the matrix 0B is positive definite and elements of the matrix G are large 

enough.  But, in this control law, equation (21), the matrix 0B
 

is non-singular only. To solve this problem, a 

diagonalization method  is used, which is based on the fact that the equivalent system is invariant to a non-singular sliding 

surface transformation, as verified in the Theorem 2 and their proof described in [DeCarlo, Zak and Matthews, 1988]. 

Loosely stated, Theorem 2 says that the motion in the sliding mode is independent of a non-singular possibly time varying 

transformation of the sliding surfaces, and that any non-singular transformation with bounded derivatives will produce the 

same equivalent system. 

 

In particular, consider the new sliding surfaces as: 

 

( , ) ( , ) ( , )z t z t z t             (31) 

for an adequate non-singular transformation ( , ) m mz t , which is defined as: 

 

0 0( , )

T
T

z t B B
z      (32) 

Differentiating V , and replacing the equations (19) and (27), results in: 

 

0 0 0
T T T T T

vV A B v B d
z z t z

   (33) 

 and in the sequence, doing necessary algebraic manipulations and  using equations (31) and (32), one obtains: 

 

1 1
0 0 0 0 00 0

1
0 0 00

1
00

   ( ) ( )

   

T T T T
v

T T
T T

v

T T
v

V B B A B B B v B d
t

B B A B v d
t

B A v d
t

               (34) 

 

Selecting control law v  as: 

 

1

0 0 ( ) pv B A Gsign K
t

          (35) 

 

Replacing equation (35)  into equation (34), the V  stays: 

( )T T
p vV Gsign K d                 (36) 

with 
2

1 1 1 2 3 2 3

T
k x k yk x k x k k y k . The equation (36) is similar the equation (28), therefore, the 

same conclusions about the stability analysis, considering the equations (29) and (30), are valid. Moreover, sliding mode 

occurs in the manifold  ( , ) 0z t . The transformation, equations (31) and (32), is non-singular, therefore, the manifolds 
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( , ) 0z t  and ( , ) 0z t  coincide and sliding mode takes place in the manifold ( , ) 0z t , which was selected to 

design sliding motion with the desired properties. 

3.5 Neural Compensator Design 

Due to delays, physical limitations of actuators and imperfections of switching, it is not possible to switch the control from 

a value to another instantaneously. Because of this, the states trajectory varies in a vicinity around the sliding surface, 

instead of sliding over it. This phenomenon, known as chattering, can be avoided or at least reduced using RBFNNs, which 

are nonlinear and continuous functions, to approximate sgn( )G  in equation (35) [Martins et al., 2008]. Then v  stays, 

1
00

1
00

ˆ( )

ˆ  ( )

p

T

p

v B A P K
t

B A W K
t

    (37) 

 

where Ŵ , ( )  are Ge-Lee (GL) vectors  [Ge, 1996], and their respective elements are ˆ
k

W , and ( )
k

; with 

ˆ ( )P  being an 1n  output vector of the RBFNNs. The stability of the RBFNNs can be analyzed, using GL matrix and 

vector [Ge, 1996], which are defined by {.}, and by its product operator ’•’. The ordinary matrix and vector are denoted by 

[.]. 

 

Thus, one can choose the Lyapunov function candidate as follows: 

 

1

1

1

2

nT T
k k kk

V W W      (38) 

where 
k

 is a dimensional compatible symmetric positive definite matrix,  and ˆ
k k k

W W W . 

Differentiating equation (38), making the necessary mathematical manipulations, and replacing equation (37), V  is 

obtained as: 

1

1

ˆ ˆ( )
T nT T T T

p v k k kk
V W K d W W          (39) 

Recall that: 

1
( ) ( )

TnTT
kk kk

W W            (40) 

and choosing the learning law of RBFNNs as: 

ˆ ( ) kk k k
W      (41) 

and substituting equations (40) and (41) into equation (39), V  stays: 

2

min
( )

TT T
p vV K d W            (42) 

where minpK  is the minimum singular value of pK . 

The V can be rewritten as: 
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2

min
T T

pV K f P             (43) 

with ( )
T

P W  being the optimal compensation for vf d . According to the property of universal 

approximation of RBFNNs [Wang, 1996], there exists 0  satisfying T Tf P , where  is arbitrary and can be 

chosen as small as possible. Assuming that  with 0 1,  one obtains that 
2 2T Tf P ,  

therefore, V  results in: 

2
minpV K       (44) 

   Because of 
minpK , V  is guaranteed  negative definite. 

4      SIMULATION RESULTS 

In the simulations, the same kinematic model of the mobile robot described in [Sousa Jr. et al., 2002] is used. A reference 

trajectory was implemented and simulated using MATLAB/Simulink, which is a round rectangle trajectory generated by 

switching the reference linear and  angular velocities in time, 

0.785 m/s,      (0 10 ) s 10  s

1.0 m/s,                                10  s
lr

n t (π n)
v

t (π n)
 

 

0.5 rad/s,        (0 10 ) s 10  s

0.0 rad/s,                              10  s
ar

n t (π n)

t (π n)
 

where n , which changes from 0 to 3 step by step, is a positive constant. The initial posture of the reference trajectory is 

[ , , ] [0,1.6,3 / 2]T T

r r rx y . The initial posture of the mobile robot is [ , , ] [ 1,5,3 / 2]T T

c cx y .  

To avoid impracticable control effort in transient period, the kinematic control signals are bounded by 9.5|| lv  m/s and 

2/3π|| aω  rad/s, which represents the actuator saturation limits.  

For this case, three types of control strategies are considered: 

 Control 1: the proposed VSC without the discontinuous term, equation (35), that is, with 0G ; 

 Control 2: the proposed VSC with the discontinuous term, equation (35), that is, with 0G ; 

 Control 3: the VSC with NC, equations (37) and (41). 

The gains for each simulation are summarized in the Table 1.  

Table 1: Gains for the round rectangle trajectory.  
 

Gains Control 1 Control 2 Control 3 

1k  1.0 1.0 1.0 

2k  1.0 1.0 1.0 

3k  1.0 1.0 1.0 

11G  - 1.5 - 

22G  - 1.5 - 

11pK  1.5 1.5 1.5 

22pK  3.0 3.0 3.0 

k  
- - 0.5 
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Moreover, in the Control 3, the number of hidden neurons used are 25. For simplicity, the centres of the localized Gaussian 

radial basis functions are evenly distributed in order to span the input space of the neural network, and the variance value is 

fixed at 3. The weights of the RBFNNs were initialized to zero, without to have any prior knowledge of the system 

disturbances. It is important to emphasize that different tracking performance can be achieved by adjusting parameters 

gains, and others factors, such as the size of the RBFNNs, centres and variances of Gaussian radial basis functions. Also, in 

the simulations, a bounded disturbance, (t)ρM  of equation (6), (see Figure 2), is applied to the kinematic model of the 

mobile robot, equation (4), which is given by [Canudas de Wit and Khennouf, 1995]: 

( ) 1.45 9.0 1.45 40.0M t H t H t  

where )(H  denotes the standard Heaviside step function. 

 

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

2

Time (s) 

d
v

1
1
, 

d
v

2
1

Matched Disturbances Profile - d
v

d
v11

d
v21

 
Figure 2: Disturbances applied in the mobile robot.  

The results for Control 1 under the influence of disturbances are shown in Figures 3-10, where one can see that: the mobile 

robot can not track correctly the desired trajectory (Figures 3-6); there are nonzero tracking errors (Figure 7); the velocities 

tend to desired values (Figure 8), but they does not provide the control signals required to compensate the disturbances; the 

sliding surfaces does not converge to zero (Figure 9), although their derivatives converges (Figure 10).  

The simulation results of the Control 2 are shown in Figures 11-18. The Figures 11-14 demonstrates that the controller 

seems to be able to drive the mobile robot to its desired posture and orientation. Although the tracking errors in Figure 15 

tends to zero, it is achieved by performing vibrating control signals in the steady-state as shown in Figure 16, which is not 

realistic. Soon, in the Figure 17 the sliding surfaces converge to zero as well as their derivatives, but with chattering 

phenomenon as illustrated in Figure 18.  

The Figures 19-27 illustrate the results for the Control 3. It is seem in Figures 19-22 that the mobile robot naturally 

describes a smooth path tracking over the reference trajectory. The tracking errors tends to zero as shown in Figure 23. 

Observe that in Figure 24 is demonstrated that there is no chattering in the linear and angular velocities, which represents 

the control signals. Both sliding surfaces (Figure 25) and their derivatives (Figure 26) converge to zero as well as the 

chattering is eliminated. The values of RBFNNs outputs presents behaviors similar to the disturbances (magnitudes in 

absolute values, see Figure 2) in the steady-state as shown in Figure 27, thus demonstrating the efficiency of the NC, (37) 

and (41). 

5      CONCLUSIONS 

A VSC and a VSC with NC considering disturbances in the kinematic model were proposed in this work, and used as an 

alternative solution to the trajectory tracking problem applied to nonholonomic mobile robot. 

The VSC was considered because the invariance principle is applicable to it, but this technique exhibits the chattering 

phenomenon, that is highly undesirable. To avoid such a phenomenon, as well as to suppress the kinematic disturbances 

without having any prior knowledge of their boundary, RBFNNs were used in the replacement of the discontinuous portion 

of the classical VSC. Due to this replacement the invariance principle was no more verified, reducing the robustness, 

however the smooth control signal is achieved. The simulation results of the proposed approach were satisfactory.  

As future works, it is validation of the AVSC and of the AVSC with NC in real-time applications of a nonholonomic 

mobile robot, as well as to realize the integration of torque controllers of the literature with these kinematic controllers 

proposed here. 
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Figure 3: Reference trajectory and actual trajectory using Control 1. 
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Figure 4: Desired posture rx   and realized posture cx using Control 1. 
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Figure 5: Desired posture ry and realized posture cy  using Control 1. 
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Figure 6: Desired orientation rθ  and realized orientation θ   using Control 1. 
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Figure 7: Tracking errors using Control 1. 
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Figure 8: Linear and angular velocities of the mobile robot using Control 1. 

 

0 5 10 15 20 25 30 35 40
-2

-1

0

1

2

3

4

5

Time (s) 

1
, 

2
 

Sliding Surfaces - 

1

2

 
Figure 9: Sliding surfaces using Control 1. 
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Figure 10: Derivative of the sliding surfaces using Control 1. 
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Figure 11: Reference trajectory and actual trajectory using Control 2. 
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Figure 12: Desired posture rx   and realized posture cx  using Control 2. 
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Figure 13: Desired posture ry  and realized posture cy  using Control 2. 
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Figure 14: Desired orientation rθ  and realized orientation θ   using Control 2. 
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Figure 15: Tracking errors using Control 2. 
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Figure 16: Linear and angular velocities of the mobile robot using Control 2. 
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Figure 17: Sliding surfaces using Control 2. 
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Figure 18: Derivative of the sliding surfaces using Control 2. 
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Figure 19: Reference trajectory and actual trajectory using Control 3. 
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Figure 20: Desired posture rx   and realized posture cx  using Control 3. 
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Figure 21: Desired posture ry  and realized posture cy   using Control 3. 
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Figure 22: Desired orientation rθ  and realized orientation θ  using Control 3. 
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Figure 23: Tracking errors using Control 3. 
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Figure 24: Linear and angular velocities of the mobile robot using Control 3. 
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Figure 25: Sliding surfaces using Control 3. 
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Figure 26: Derivative of the sliding surfaces using Control 3. 
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Figure 27: RBFNNs Outputs of the Control 3. 
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