
Learning and Nonlinear Models - Revista da Sociedade Brasileira de Redes Neurais (SBRN), Vol. 6, No. 
2, pp. 111-120, 2008   ©Sociedade Brasileira de Redes Neurais 
 

 
 

The self-organized chaos game representation for genomic signatures 
analysis 

 
 
 

Antonio Neme, Antonio Nido 
Non-linear Dynamics and Complex Systems Group, Universidad Autónoma de la Ciudad de México 

{neme,nido}@nolineal.org.mx 

 
Víctor Mireles, Pedro Miramontes 

Faculty of Sciences, Universidad Nacional Autónoma de México 
syats.vm@gmail.com,pmv@fciencias.unam.mx 

 
 

Abstract 

Genomic signatures are important as a source of comparison and classification of genomes. In particular, the Chaos Game 
Representation, an iterative mapping method, generates a frequency distribution of nucleotides of length k and represents it on 
a lattice of size 2kx2k. However, it lacks continuity in the sense that very different sequences are represented on contiguous 
cells of the lattice. Here, we propose an alternative method that organizes cells in such a way that continuity is higher than in 
the Chaos Game Rrepresentations. The cell organization is the outcome of a Self-Organizing Map and the obtained frequency 
distribution is named Self-Organized Chaos Game Representation. Experiments show that this visualization method is, at least, 
as good as the Chaos Game Representation, but it gives it a more intuitive sense when interpreting the images. 
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1. Introduction 

Genomes are too long and too intricate to show its main features based solely in a detailed inspection of all of its 
components. Nucleotides are the structural molecules that constitute nucleic acids, such as DNA. The genome of an organism 
is the complete sequence of nucleotides, that is, the complete DNA sequence (or RNA, as in some viruses). Genomes vary in 
sizes from as short as a few thousands of nucleotides (or bases) as in the case of some viruses to up to several billions as in the 
case of some fishes [1]. There are four nucleotides in DNA: adenine (A), guanine (G), cytosine (C) and thymine (T). From an 
informational point of view, genomes can be considered as a sequence of these four symbols. 

Because of the size of genomes, it is necessary to apply different tools to enhace some hidden features. One 
alternative to do so is through Genome Signatures (GS), whose goal is to become a unique and reduced (and thus, manegeable) 
form of the original genome [10]. The Genomic Signature is set of variables measurable over the DNA sequence that 
putatively tell appart different species. 

Several GS have been proposed since Karlin and Burge introduced the concept [6] based on dinucleotide relative 
abundance. Some of the GS are based on information theory concepts [7], others rely on statistical properties [9, 8, 11, 12], and 
some others state that what is important is the spatial information between sequences [4, 13]. All GS proposals depend on the 
idea that phylogenetically close genomes have similar GS, while phylogenetically distant organisms present different GS. 
Also, subsequences of each genome are represented by similar GS, whereas subsequences of different genomes are different. 
Thus, the GS may be seen as a tool to differentiate a wide variety of organisms. A GS is an abstraction of the genome in which 
the important features (mainly unknown) are present. 

Each genome may be seen as a sequence S of four letters: A, C, G, T. So, the idea of a GS is to obtain a compressed 
version of S that could be compared with other GS from different genomes. In mathematical terms, the idea is to obtain a map 
from a multidimensional representation to a low-dimensional representation that is more manageable [5]. A genome S may be 
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described as a single point in a multidimensional space, and its GS is achieved through a bijective function whose domain is 
the genome and the codomain is represented by the GS. 

The Chaos Game Representation (CGR) has been identified as a GS. CGR has been proposed to visualize DNA 
primary  structure and the resulting image to be a GS [2]. A CGR is plotted in a square with vertices labelled by the nucleotides 
A, C, G and T. The visualizing procedure is: Each nucleotide is plotted in the middle point from the current position (x, y) to 
the vertex representing the nucleotide (xi, yi) (I  A,C,G,T). The middle point is now the current position and the next 
nucleotide dictates the next vertex (see fig 1). 

 

 

 

 

Figure 1. The Chaos Game Representation (CGR) scheme. The next nucleotide determines the vertex to whom the actual 
position will approach. 

 
 

 

Figure 2. The Chaos Game Representation (CGR) space for length sequences of k = 1, k = 2 and k = 3. The structure of the 
space is self-referenced as each new square is constructed with the original pattern. Each cell represents the relative frequency 

of a unique k-sequence of the genome. For k = 2 note that there are eight pairs of adjacent cells that differ in two symbols: 
(TA,AT), (GA,CT),(TC,AG), (GC,CG), (CA,AC), (GA,TC), (CT,AG) and (TG,GG) 
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Figure 1. The Chaos Game Representation (CGR) scheme. The next nucleotide determines the vertex to whom the actual 
position will approach 

 

 The CGR space is recursive, as each division of the square is constructed in the same way as the original (see fig 2). 
This recursive process may lead to a fractal structure. The cell distribution is quite intuitive, once the recursive rule of cell 
distribution is understood. It is a very appropriate distribution because of the recursive structure. In this space, it is 
straightforward to locate the cell in which a given sequence is located [2, 5]. 

The lattice in which the genome is to be represented depends on the resolution k, that is, the length of the sequences 
from the genome that is being analyzed. The lattice is the CGR space and is defined over a 2k

 X 2k cells, and each cell 
represents a unique k-length subsequence and all possible subsequences are represented by a single cell (fig. 2). The CGR 
represents the relative frequency of each possible subsequence and in general, a gray scale is applied to show this relative 
frequency. Highly frequent k-length sequences are represented by light gray on the corresponding cell while very infrequent 
subsequences are represented by dark tones. The resolution of the space is determined by k. An analysis with k = 7 leads to a 
CGR space with more resolution than that reached with, say, k = 3. 

Although several criticisms have been directed to the CGR as a GS [3], it has proved that its features are good enough 
as to be a valid GS, as: 1. the distribution of positions in the CGR space has been shown to be a generalization of Markov chain 
probabilities [4]; and 2. the CGR is completely determined by all frequencies of length k sequences [14].  

However, the CGR space is not necessarily the best space if a good map from the sequence space is to be considered. 
The reason is that the cell distribution over the grid is not ordered in the sense that the difference in contiguous cells should be 
minimum. That is, very different sequences may be represented in contiguous cells, as, for example, sequences GA and CT in 
fig 2. Also, sequences similar to each other may be represented by distant cells, as it is shown in fif. 2 with sequences AC and 
AG. 

A map in which the relative frequencies are to be shown should have the topographic preservation property. In the 
sequences space, each possible sequence of length k is represented by a single point. Similar sequences are represented by 
close points while very different sequences are represented by distant points. Take, for example, the sequences S1 = ATTC, S2 
= TAAG and S3 = ATTG. It is necessary to define a similarity measure over the four possible simbols. There are 24 possible 
relations, from which A  C  G  T is one of them. What this means is that C is more similar to A than it is to T, but it is 
equally similar to G and A. 

The idea is to obtain a lattice in which cells that represent similar subsequences of length k in the subsequence space 
are close to each other. The best cell distribution is that in which each cell’s contiguous cells represents sequences with only 
one difference. Of course, when k > 2 this is not possible, as, if von Neumann or Moore neighborhoods are defined, the 
maximum number of neighbor cells is four and eight in each case while the number of sequences differing in just one 
nucleotide from a given k-length sequence is k X 3. 

We propose to use SOM to achieve a lattice with an average discontinuity between adjacent cells lower than the one 
in the CGR lattice. In section 1, we describe the main features of the so called Self-Organizing Map. In section 2, the Self- 
Organized Chaos Game Representation is introduced while in section 3 several results are presented. Finally, in section 4, 
conclusions as well as discussions are stated. 

2. The Self-Organizing Map 

The self-organizing map (SOM) is presented as a model of self-organization of neural connections, which is translated 
in the ability of the algorithm to produce organization from disorder [16]. One of the main properties of the SOM is the ability 
to preserve in the output map those topographical relations present in the input data [15],a very desirable property for data 
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visualization and clustering. This property is achieved through a transformation of an incoming signal pattern of arbitrary 
dimension into a low-dimensional discrete map (usually one or two-dimensional) and by adaptively transform data in a 
topologically ordered fashion [15, 17]. Each input data is mapped to a single neuron in the lattice to the one with the closest 
weight vector to the input vector, or best matching unit (BMU). 

The SOM preserves relationships during training through the learning equation, which establishes the effect each 
BMU has in any other neuron. Weight neurons are updated accordingly to: 

wn�t+1�=wn�t�+αn�t�hn�g,t��xi− wn�t��   (1) 

where (t) is the learning rate at time t and hn(g, t) is the neighborhood function from BMU neuron g to neuron n at time t. In 
general, the neighborhood function decreases monotonically as a function of distance from neuron g to neuron n.  

 The SOM structure consists, generally, of a two-dimensional lattice of homogeneous units. Each unit maintains a 
dynamic weight vector which is the basic structure for the algorithm to lead to map formation. The input space dimension is 
considered in the SOM by allowing each weight vector to have as many components as dimensions in the input space. Each 
input vector x is mapped to the unit i whose weight vector is closest to it. 

Since the SOM lacks resolution, that is, several input vectors tend to be mapped to the same BMU [15], a variant of 
the SOM was applied. In this variant, each BMU enters a refractory period in which it can not be the BMU for any input vector 
until the refractory state is over [18, 20]. With this scheme, the number of unoccupied cells is zero, as is in the case of CGR 
space. The idea behind refractory period for BMUs is that no unit maps for several input vectors so resolution may be 
improved. 

 

3. The Self-Organizing Chaos Game Representation 

Although SOM has been widely applied in the GS context [11, 10], it mainly has been seen as a tool for visualization 
of multidimensional GS. Here, we have applied SOM not only as a tool to analyze multidimensional GS, but also to construct 
the CGR space. As SOM is a tool that allows clustering and visualization of multidimensional data on a low-dimensional map, 
we applied it to construct a CGR space in which cells are ordered and thus the image representing the GS is more descriptive. 
Here, data is k-dimensional and there are 4k input vectors, each corresponding to one possible sequence of length k. 

The main idea is that each possible sequence of length k is represented as a vector in a k-dimensional space and a low 
dimensional map (two-dimensional) that represents the distribution in k-dimensional space is needed for a good visualization. 
Fig 3 shows a different ordering of cells for k =2 obtained by SOM. The number of pair cells that differ in two symbols in this 
new arrangement is three, while in the CGR case (see fig 2) is eight.  

 

 

Figure 3. Lattice of 2k X 2k (k = 2) cells obtained by the SOM in which the average number of discontinuities between adjacent 
cells is lower than in the CGR space. Only three adjacent cell pairs show two different symbols (GA,CT), (GC,CG) and 

(TC,AG). 
 

As there are four nucleotides, there are 4k possible sequences and each sequence should be represented by a vector. As 
stated in the introduction, it is necessary to establish the similitude between each pair of symbols to define the sequence space. 
The sequence space is an abstraction of the chemical differences and similitudes between nucleotides. Nucleotides adenine and 
guanine are big molecules and correspond to the purines (P), whereas cytosine and thymine are part of the pyrimidine class (R) 
and are small molecules [1]. 
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From these chemical properties, A and G are more similar between them that between them and C and T. In other 
words, d(P,P) < d(P,R), where d(a,b) is the distance between symbols a and b. Also, d(R,R) < d(P,R). 

In this work, and following from the previous discussion, we have adopted the convention that A < G < C < T, and 
coded as 0.0, 0.25, 0.5 and 1.0, respectively. For example, the sequence of length k=5 ATTGA will be coded as 
[0.0,1.0,1.0,0.25,0]. These coding scheme was chosen as guanine and adenine are purines and thus are similar, whereas 
cytosine and thymine belong  to the family of pyrimidines. By these ordering, it is explicit the fact purines are different from 
pyrimidines, but because of chemical properties, guanine and cytosine are less different that adenine and thymine [1]. Other 
ordering schemes have been proposed, as, for example, those in [2, 4, 5], in which different values are assigned to each 
nucleotide. 

The SOM algorithm was applied to the sequence space in order to obtain a topographic map in which each unit of the 
two-dimensional lattice becomes active (maps) for a single sequence. The size of the lattice is 2k X 2k units, where k is the 
sequence length. The number of epochs for training was 1000 and the initial learning factor was settled to 0.1 and reduced 
exponentially to 0.0001, whereas the initial neighborhood span was 2k and exponentially reduced to 1. The sequence space, 
defined by all possible sequence of length k over these four symbols, does not impacts the overall map. 

Once a SOCGR space is obtained through the SOM algorithm, each genome is analyzed. For each sequence of k 
nucleotides of the genome, its corresponding cell is identified and the relative frequency of that cell is increased, as in the CGR 
model (see section 1). The SOCGR space is mathematically equivalent to the CGR space, but the cell arrangement is a better 
approximation of the sequence distribution of the sequence space in the sense that adjacent cells tend to map similar sequences. 
That is, the GS is constructed over a topographic map, while the CGR space lacks of this property. 

There are many tools that may be applied to find a lattice with the minimal discontinuity between adjacent cells, as, 
for example, genetic algorithms. However, we used the SOM algorithm since it is not clear that an optimal algorithm may 
exist. The input space of all possible sequences of length k is mapped to a two-dimensional lattice in such a way that similar 
sequences are mapped to nearby units. At the end, SOM leads to a permutation of units in which differences among neighbors 
are minimized. 

 

4. Results 

In order to show that SOCGR is an efficient GS, 34 organisms were studied for subsequences of length 5, 6 and 7 (see 
table 1). The data was obtained from the GenBank database release 171 [19] For the human and the arabidposis thaliana 
genomes, two and three chromosomes were studied. Figs 4-5 show some of the SOCGRS obtained. It is also shown the CGR 
for the studied organism. It is important to note that the fractal structure of CGR is achieved mainly by the fact the lattice is 
self-similar (see sec. 1). Even though it is a highly attractive image, it is not the most continuous one. It is equivalent to seeing 
a set of functions in the plane whose domain has been split. The idea of SOCGR is that of a better visualization of frequencies 
based on an ordered CGR space. Both cell distributions, CGR and SOCGR are permutations of the same set of 4k cells, but the 
later is a space with less discontinuities than the former. 

 

Table 1. Analyzed organisms. There are bacteria, archaea and eukaryotic chromosomes. 

No 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

 
 
A. aeolicus 
A salmonicida 
A fulgidus 
A tumefaciens 
A thaliana chr 2 
A thaliana chr 3 
A thaliana chr 4 
B subtilis 
C elegans 
C trachomatis 
D rerio chr 17 
D radiodurans 
D melanogaster chr 2 
E coli 32 
G gallus chr 12 
H salinaris 
H pylori 
H sapiens chr 3 

No. 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

 
H sapiens chr 21 
L lactis 
M thermophila 
M jannaschii 
M pulmonis 
M tuberculosis 
M genitalum 
O sativa chr 1 
P profundum 
P aeruginosa 
P troglodytes 
P aerophilum 
S enterica 
S solfataricus 
S aureus 
S tokodaii 
T maritima 
T volcanium 
V cholerae 
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To obtain the number of discontinuities, D, between a cell i and its neighbors cells hi, it is necessary to identify the 
sequence mapped into i and the sequences mapped to hi, named si and sh, respectively. The sequences are of length k and the 
mismatches between each position in si and sh are taken into account: 





k

j
hii jsjsmhiD

1

))(),((),(   (2) 

where m(a,b) = 0 if a = b and 1 otherwise. 

The average number of discontinuities in both, the CGR space and the SOCGR space are shown in table 2 for k = 5, k 
= 6 and k = 7. It is observed that the number of discontinuities, defined as the average number of different symbols between 
sequences mapped to neighbor cells (in the sense on von Neumann), is lower in the SOCGR. 

Discontinuities are not the only error measure for the sequence maps. Distances between mapped sequences are also 
important. As in the case of discontinuities, sequences mapped to each cell have to be identified but now what is considered is 
not if a mismatch is present, but the distance S between the corresponding vectors: 

S�i,hi�= ∑
j�sh

d�si− sh�j��
 (3) 

where d(a,b) is the distance between vectors a and b. In table 2, it is shown that the distance between sequence in 
adjacent cells is lower in the map obtained by the SOM than the distances for the case of the CGR space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SOCGR (first column) and CGR (second column) for A. aeolicus, H. sapiens (chromosome 21), H. Sapiens 
(chromosome 3) and T. volcanium for sequences of length 6. 
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Figure 5. SOCGR (first column) and CGR (second column) for A. aeolicus, H. sapiens (chromosome 21), H. Sapiens 
(chromosome 3) and T. volcanium for sequences of length 7. 

 

Figs. 4 and 5 show SOCGR and CGR for three organisms for the cases of sequence length k = 6 and 7. It is observed 
that the general structure is maintained in for both levels of detail. Both GS, CGR and SOCGR, are equivalent in the sense that 
both are permutations of the same space, but the later map presents lower discontinuities and distance between contiguous cells 
than the former, which represents a better visual GS. Visual inspection is improved if the map presents a lower distance and 
fewer discontinuities. 

One feature of the CGR as a robust genetic signature is that it maintains the overall structure even for low resolution 
(small values of k).  This is observed in figs. 4 and 5, in which the general pattern is conserved regardless the length of 
sequences. However, the resolution of the pattern is improved as sequence length is increased. These conservation is 
maintained. These valuable property  for GRS is also maintained in SOCGR (see figs. 4 and 5). 

As an example, in the SOCGR of A aeolicus and T maritima , it is observed a pattern in the relative frequencies that is 
not easy to identify in CGR space, shown in fig. 6. This pattern shows that relative frequency of a group of similar sequences is 
lower than the relative frequencies of another cluster of sequences. The cells in dark level (low frequency) map for similar 
sequences and are associated to the sequences TT****G. This pattern is not easy to detect in the CGR space, as it is a 
discontinuous permutation of cells. Other genomes present a similar pattern such as T. volcanium, fig 4, 5. 

 

 

Figure 6. A pattern in the SOCGR of A aeolicus. Relative frequency of sequences TT****G is lower than relative frequency 
of sequences CT****C. In SOCGR contiguous cells tend to be associated to similar sequences, which contrasts with CGR (see 

figs. 2 and 3) 
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By analyzing a map in which similar cells or units tend to be associated to similar sequences, as in the case of 
SOCGR, the discover of relevant patterns in the frequencies of all possible sequences becomes easier. As contiguous cells tend 
to represent similar sequences, it is natural to seek a local (global) pattern over some sequences by considering the related cell 
and its neighboring cells. 

On the other hand, one of the purposes of the GS is to apply phylogenetic analysis over it, instead of doing it based on 
the whole genome. Several tools have been applied in order to obtain a phylogenetic structure based on GS, for example, 
principal component analysis has been used to CGR representations in [5]. SOM has been employed to study di, tri and tetra 
nucleotide frequencies distribution [10]. 

Here, we applied the SOM over the SOCGR space in order to seek for hidden features and relationships. It is 
important to remember that the GS obtained from CGR or SOCGR represents frequency distribution of k-lenght sequences. 
Both, CGR and SOCGR spaces are defined over a 2k 

X 2k lattice, in which each cell represents an unique sequence and all 
possible k-length sequences are represented by a single cell. So, for each cell, it is acquired the relative frequency and it is this 
value what determines the gray level from figures 4-5. Each genome is represented as a 4k vector, in which each component is 
the relative frequency of each sequence. Thus, each genome is represented as a point in the 4k-dimensional space. Genomes 
with similar GS are represented by close points in the multidimensional GS space, whereas different genomes are represented 
by spread apart points. 

Fig. 7 shows the map obtained for k = 7 for the organisms listed in table 1. It is observed that related GS from 
genomes or chromosomes from the same organism are mapped to neighbor neurons, such as organisms 18 and 19 (H. sapiens 
chromosome 3 and P. troglodytes). These two organisms are phylogenetically related, and the close relation has been obtained 
from the analysis of both, the whole genome, or from very conserved sequences such as ribosomal RNA[1]. At the other hand, 
GS from organisms not phylogenetically related are placed in distant units. The comparison of GS throws results similar to 
those achieved by comparing complete genomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SOCGR (first column) and CGR (second column) for A. aeolicus, H. sapiens (chromosome 21), H. Sapiens 
(chromosome 3) and T. volcanium for sequences of l 

 

 

Figure 7. SOM for the SOCGR with sequence k = 7. The numbers correspond to the organisms in table 1. 
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5. Discussion and Conclusions 

 

Visualization of multidimensional genomic signatures is an important tool to seek for hidden features. Genome 
analysis is relevant for molecular biologists, as they may infer evolution patterns, phylogenia and many other features. 
However, as the size of genomes restricts a detailed analysis, several tools have to be applied. Genomic signatures have been 
proposed as a shorter version of genomes. The Chaos Game Representation has been identified as a good genomic signature. 
Since it lacks continuity, we propose a variation of it, the Self-Organized Chaos Game Representation. This proposal is based 
on a a topographic map formed by a self-organizing map, in which similar sequences are mapped to close neurons (cells), 
which leads to lower discontinuities in the map, opposite to what is observed in the construction of CGR spaces. 

The main difference between the SOCGR and CGR is cell distribution. Each cell represents the relative frequency of a 
given sequence. In the CGR space, very different cells may be placed together, difficulting the exploration process. In the 
SOCGR space, in which cells that map similar sequences tend to be placed together, image exploration is more intuitive. 
Pattern discovery is easier when visual analysis is done on a lattice that resembles the distribution of the multidimensional 
data, as shown in fig. 6. The permutation of cells achieved by SOCGR allows a more intuitive visual exploration, which is a 
fundamental tool for data mining and pattern-discovering. 

As a genomic signature is an abstraction or a summary of a whole genome, it is easier and faster to compare them 
rather than doing so over the complete genomes. However, if the comparison includes visual inspection, it is a desirable feature 
that the space analysis preserves neighborhood relationships present in the sequence space. In other words, it is worth that the 
analysis space to be a topographic map. SOCGR constructs such a space, as similar sequences are mapped to close units 
whereas dissimilar sequences tend to be mapped to distant units. 
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