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Abstract - In this paper, a trajectory tracking control for a nonholonomic mobile robot by the integration of a kinematic 
controller and torque controllers is investigated. The proposed neural torque controllers (PNTCs) are based on a Gaussian 
radial basis function neural network (RBFNN) modeling technique, which are used to compensate the mobile robot 
dynamics, and bounded unknown disturbances. Also, the PNTCs are not dependent of the robot dynamics neither requires 
the off-line training process. The stability analysis and the convergence of tracking errors, as well as the learning algorithm 
for weights are guaranteed with basis on Lyapunov theory. In addition, the simulations results shows the efficiency of the 
PNTCs. 
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1 INTRODUCTION 

Autonomous mobile robots, which can move with intelligence without any human intervention, have attracted the interest 
of many researchers due to their extensive field of applications. However, mobile robots have nonholonomic constraints, 
that is, they can move only in the direction normal to the axis of the driving wheels.    

Several control methods have been proposed for motion control of a mobile robot under nonholonomic constraints 
[Kanayama et al., 1990; Sarker et al., 1994; Fierro and Lewis, 1998; Yang and Kim, 1999; Fukao et al., 2000, Hu and 
Yang, 2001; Oh et al., 2003]. Some nonlinear feedback controllers have been suggested to solve such problems [Kanayama 
et al., 1990], which consider only the kinematic model of a mobile robot and suppose ‘perfect velocity tracking’. But it is 
not easy to design a dynamic controller for the accomplishment of ‘perfect velocity tracking’.   

Some researches consider the dynamics of mobile robot to achieve ‘perfect velocity tracking’ [Sarker et al., 1994; Yang 
and Kim, 1999]. However, in these methods the perfect knowledge about the parameter values of mobile robot is necessary. 
Usually, such requirement is unattainable. In practical situations, obtaining exact parameter values on a mobile robot is 
almost impossible. There are few results on the problems, regarding the integration of both, kinematic and neural dynamic 
controllers for a mobile robot.   

Controlling a mobile robot efficiently, with unknown dynamics, and subjected to the uncertainties and/or unmodeled 
significant disturbances is a field that has been attracting the attention of several researchers. The computed torque control 
approach is able to accomplish the control of mobile robot, but it demands the exact dynamics model that, in fact, is 
impossible in practice. Adaptive controllers [Fukao et al., 2000] can perform the control of mobile robots even with 
partially unknown dynamics, however, a complicated online estimation of such unknown dynamics is necessary.    

There are several controllers, based on neural networks, which have good results in areas where the model-based 
approaches have failed. Fierro and Lewis [1998] developed a neural network based model by combining the backstepping 
tracking technique with a torque controller, using a multi-layer feedforward neural network (known as MLP), that can learn 
the mobile robot's dynamics, the bounded unmodeled disturbances and the unstructured dynamics, through its online 
learning. However, both, the control and neural network learning algorithms are very complicated and it is computationally 
expensive.   

In this paper, the RBFNN is applied to control a dynamic system, since the structure of an RFBNN is simpler that a multi-
layer perceptron (MLP), the learning rate of RBFNN is generally faster that a MLP, and a RBFNN is mathematically 
tractable [Zhihong et al., 1998; Seshagiri and Khalil, 2000]. It is important emphasize that neural networks only have the 
static mapping capability [Rumelhart and McClelland, 1986], however, when they are used as controllers, they must be 
able to realize the dynamics. 

 Differently from other investigations with neural networks in mobile robots [Fierro and Lewis, 1998; Hu and Yang, 2001; 
Oh et al., 2003], the contributions are:  

 The implementation of the PNTCs based on the partitioning of the RBFNN into several smaller subnets in order to 
obtain more efficient computation; 



 The modelling by RFBNNs of the centripetal and Coriolis matrix ),( qqC   through of the inertia matrix )(qH  of the 

mobile robot dynamics. As result, the obtained PNTC is modeled with static RFBNNs only, what makes possible the 
reduction of the size of the RBFNNs, of the computational load and the implementation in real time; 

 The PNTCs neither requires the knowledge of the mobile robot dynamics nor the time-consuming training process; 

 The stability analysis and convergence of the mobile robot control system, and the learning algorithm for weights are 
proved by using Lyapunov theory, considering the presence of bounded unknown disturbances. 

The paper is organized as follows: In Section 2 the nonholonomic mobile robot kinematics and dynamics are presented. 
The Ge-Lee (GL) matrix and its product operator are introduced for the stability analysis of neural networks. The problem 
of neural network approximation is briefly described. The neural networks modeling for mobile robots are shown. In 
Section 3 the kinematic controller (KC) for a reference trajectory tracking, and the PNTCs are described. In Section 4 the 
results of numerical simulations are shown and, finally, in Section 5 the conclusions are presented. 

2 PRELIMINARIES 

In this section  the nonholonomic mobile robot kinematics and dynamics, the GL matrix and its product operator, the 
problem of neural network approximation and the neural networks modeling for mobile robots are described.  

2.1 Kinematics and Dynamics of a Mobile Robot 

A nonholonomic mobile robot is shown in Figure 1, and its local frame  cc YXC ,,  and the inertial frame  oo YXO ,, . 

The robot has two driving wheels mounted on the same axis and a passive front wheel. The both driving wheels are 
independently driven by two actuators and they are responsible to the motion and orientation. The mobile robot’s position 

is given by the posture vector  Tcc yxq  , containing the center of mass (guidance point) C  coordinates and the 

heading angle  , with D, d , r , and R2  being intersection of the axis of symmetry with the driving wheel axis, distance 
from the point C  to the point D, radius of wheels, and distance between wheels, respectively.  

 
Figure 1: Model of a Nonholonomic Mobile Robot. 

This mobile robot system has an n -dimensional configuration space nC  with generalized coordinates ( nqq ,...,1 ) and 

subject to p  restrictions can be described by [Fierro and Lewis, 1998]:  

 )()()()(),()( qAqBqGqFqqqCqqH T
d      (1) 

where nnqH )(   is a symmetric, positive definite inertia matrix; nnqqC ),(   is the centripetal and Coriolis 

matrix; 1)(  nqF    denotes the surface friction vector; 1)(  nqG  is the gravitational vector; d  denotes the 

bounded unknown disturbances including unstructured and unmodeled dynamics; )()( pnnqB   is the input 

transformation matrix; 1)(  pn  is the input vector; npqA )(  is the matrix associated with the constraints; and 

1 p  is the vector of constraint forces. 

The right side of equation (1) can be rewritten in the Lagrange-Euler formulation as: 
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with the coefficient ijkc is known as Christoffel symbols. 

Considering the time-independence of all kinematic equality constraints one can write: 

0)( qqA         (4) 

Let )(qS  be a full rank matrix ( pn  ) belonging to the null space of )(qA , that is:  

0)()( qSqA        (5) 

Based on equations (4)-(5), it is possible to find out pntv )( such that, for all t :   

)()( tvqSq         (6) 

The system, equation (1), is now transformed into a more appropriate representation for control purposes. By 

differentiating equation (6) and replacing the result in equation (1), then pre-multiplying by )(qST  and using equations 

(4)-(5), it is possible to eliminate the constraint matrix )(qAT , resulting in: 

   )()()()()()()()(),()()()()()()( qBqSqSqGqSqFqSvqSqqCqSqHqSvqSqHqS T
d

TTTTT     (7) 

Disregarding surface friction )(qF   and gravitational torques )(qG , one can rewritten equation (7) as follows: 

Dynamics 1   d
TT vqSqqCqSqHqSvqSqHqS   )(),()()()()()()(        (8) 

or 

  Dynamics 2   )(),()( qBvqqCvqH d                             (9) 

 
where  )()()()( qSqHqSqH T ,  )(),()()()(),( qSqqCqSqHqSqqC T   ,  )()()( qBqBqS T  , and d

T
d qS  )( . 

Equations (6), (8)-(9) represent the nonholonomic mobile robot system in a local coordination system of the mobile robot. 
In fact )(qS is a Jacobian matrix that transforms the independent velocities v  in coordinates attached to the mobile base 

into constrained velocities q  in cartesian coordinates. Therefore, the properties of the original dynamics are maintained for 

the new set of coordinates [Fierro and Lewis, 1998]. Thus, the following pattern properties must be emphasized:   

Property 1: Boundedness → )(qH , the norm of the  ),( qqC  and d are bounded.   

Property 2: Skew-symmetry → The matrix ),(2)( qqCqH    is skew symmetric.  This property is particularly important in 

the stability analysis of the control system.   

To avoid the estimation of positions and orientation (posture vector q ) as well as the use of velocities q , due to the 

nonholonomic constraints pertinent of mobile robots, the equation (9) can be rewritten as: 

Dynamics 3 dd vCvHvqqCvqHqB   )()(),,(),()(





     (10) 

In this case, the dynamics of the equation (10) is described in a vectorial form, where the variables q  and q  are implicitly 

in the formulation of this dynamics, but these variables are not used in the control design and stability proof. 

Mobile robot’s dynamics, equation (10), also it can be rewritten in a linear form, 

Dynamics 4 dd vvvCvH   ),()()( 





                   (11) 



where ),( vv   is a coefficient matrix consisting of the known functions of robot velocity v  and acceleration v , which is 

referred as the robot regressor; and   is a vector consisting of the known and unknown robot dynamic parameters, such as 

geometric size, mass, moments of inertias, etc. 

2.2 GL Matrix and Operator 

In this section, the definition of GL matrix, denoted by   .  , and its product operator  “ ” are briefly discussed. Readers 

are referred to Ge [1996] for a detailed discussion on the motivation of using GL matrix. To avoid any possible confusion, 
  .  is used to denote the ordinary vector and matrix. 

Assuming that 0I  be the set of integers and kjn
kjkj R   ,   , where 0  Inkj  , nk  ..., ,2 ,1 , nj  ..., ,2 ,1 . The GL row 

vector  k  and its transpose  Tk  are defined in the following way: 

    knkkk  ...21  ,    T
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T
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T
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The GL matrix    and its transpose  T  are defined accordingly as: 
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For a given GL matrix  , 
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the GL product of  T , and   is an nn x  matrix defined as: 
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The GL product of a square matrix and a GL row vector is defined as follows. Let  knkk
T

kk  .21 , 

kjnm
kj R

 x 
   ,   n

j kjnm 1 , then one obtains: 

        nm
knknkkkkkkkk R  x 

2211   .      (17) 

Note that the GL product should be computed first in a mixed matrix product. For instance, in    CBA  , the matrix 

    BA   should be computed first, and then followed by the multiplication of     BA   with matrix C . 

2.3 Radial Basis Functions Neural Networks (RBFNNs) 

In the field of control engineering, neural network is often used to approximate a given nonlinear function  )(yf  up to a 

small error tolerance. The function approximation problem can be stated formally as follows. 
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Definition 1: Given that mnyf :)(  is a continuous function defined on the set ny  , and 

mnmlyWf  :),(ˆ  is an approximating function that depends continuously on the parameter matrix W  and 

y , the approximation problem is to determine the optimal parameter *W  such that for some metric (or distance function) 

fd , 

))(),,(ˆ( * yfyWfd f       (18) 

for an acceptable small   [Rice, 1964]. 

In this paper, Gaussian radial basis function (RBF) neural network is considered. It is a particular network architecture 
which uses l  numbers of Gaussian function of the form: 

li
mymy
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i ,,2,1,
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exp)(
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
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
     (19) 

where n
im   is the center vector and 2  is the width. As shown in figure 2, each Gaussian RBF network consists 

of three layers: the input layer, the hidden layer that contains the Gaussian function, and the output layer. At the input layer, 

the input space is divided into grids with a basis function at each node defining a receptive field in n . The output of the 

network ),(ˆ yWf  is given by: 

)(),(ˆ yaWyWf T      (20) 

where  Tl yayayaya )(.)()()( 21  is the vector of basis function. Note that only the connections from the hidden 

layer to the output are weighted. 

 
Figure 2: Schematic Diagram of RBF Neural Network. 

Gaussian RBF network has been quite successful in representing the complex nonlinear function. It has been shown that a 
linear superposition of Gaussian radial basis function gives an optimal mean square approximation to an unknown function 

which is infinitely differentiable and the values of which are specified by a finite set of points in n . Furthermore, it has 
been proven that any continuous functions, not necessary infinitely smooth, can be uniformly approximated by a linear 
combination of Gaussians [Poggio and Girosi, 1990]. 

2.4 Modeling by RBFNNs 

A (.)P  vector or matrix can be modeled with static neural networks, since it is a function of a variable only.  Thus, (.)P  

results in: 



     (.)(.)(.) PP
T

P EWP                  (21) 

where  PW  and  (.)P  are GL vectors or matrices, and their respective elements are 
kpW  and (.)

kp .  (.)PE  is a 

vector or matrix, and their modeling error elements (.)
kp . 

Based on equation (8), it can be verified that )(qH  is function of q  only, thus, static neural networks are enough to model 

them. As a consequence, the size of the network can be much smaller compared with its dynamic counterparts. 

It is well known that )(qhkj  of equation (8) is infinite differentiable. Considering that the exact expression for )(qhkj  is: 

)()()( qWqWqh
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where l  denotes the number of hidden neurons, 
kjlhW  is the weight, and: 
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one has: 
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where h = 
ih = 

jh = 
kh . 

It can  be seen that the dynamics of mobile robots, equation (8), can be constructed by using the subnets for )(qH , 

because ),( qqC   can be constructed based on the parameters of )(qH . Note that since the )(qH  is function of q  only, 

the subnets are static instead of dynamic, the size of the network is much smaller by introducing deterministic factors into 
the NN model. Thus, the matrix ),( qqC   is a function of )(qH , i. e., 
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In summary, the dynamics (Dynamics 1), equation (8), results in: 
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In the dynamics, equations (9)-(10), it can be verified that )(qH , )(vH 


, and )(vC


 are functions of q , v , and v  only, 

respectively, thus, static neural networks are enough to model them. Assuming that )(qhkj , )(vhk 


, and )(vck


 can be 

modeled as:  
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where 
kjlhX , 

klhW  , 
klcW  are weights of the neural networks; )(q

kjlh , )(v
klh

 , )(v
klc
  are Gaussian 

radial basis functions with their respective input vectors q , v , and v  only, as well as )(q
kjh , )(v

kh
 , )(vkc

  

are modeling errors of )(qhkj , )(vhk 


 and )(vck


, respectively, and are assumed to be bounded. Bearing in mind that 

),( qqC  , equation (9), and ),(),( vvvvN   , equation (11), are dynamic neural networks, since they are functions of 

q  and q , v  and v , respectively, its modeling are required. Assuming that ),( qqckj   and  vvnk ,  can be modeled as:  

)()()()(),( zzXzzXqqc
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T
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T
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),(),(),(),(),( vvvvWvvvvWvvn
kkkkklkl nn

T
nnn

l

T
nk       (35) 

where   nTTT Rqqz 2    , 
kjlcX , 

klnW  are weights vectors; )(z
kjlc , ),( vv

kln   are Gaussian radial basis 

functions with their respective input vectors z , v , and v ; )(z
kjc , ),( vv

kn   are modeling errors of ),( qqckj   and 

),( vvnk  , which are also assumed to be bounded.   

Foregrounded in equations (9)-(11), the mobile robot’s dynamics can be expressed by equations (31) and (34) for the 

Dynamics 2; equations (32) and (33) for the Dynamics 3; equation (35) for the Dynamics 4, respectively. Thus, )(qH , 

),( qqC  , )(vH 


, )(vC


 and ),( vvN   can be expressed as:  
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T
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Dynamics 3      )()()( vEvWvH HH
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H
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
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T
C
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Dynamics 4      ),(),(),( vvEvvWvvN NN
T

N           (38) 

where  HX ,  )(qH ,  CX , and  )(zC  are GL matrices, whereas   HW  ,  )(vH
 ,  CW  ,  )(vC

 ,  NW , and 

 ),( vvN   are GL vectors; and their respective elements are 
kjhX , )(q

kjh ,
kjcX , )(z

kjc ,  
khW  , )(v

kh
 , 

kcW , 

)(v
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 , 
knW , and ),( vv

kn  .   nn
H RqE  x   )(  , and nn

C RzE  x   )(   are matrices; n
H RvE   )(  ,    )( n

C RvE  , and 

n
N RvvE   ),(   are vectors, and their modeling error elements )(q

kjh , )(z
kjc , )(v

kh
 , )(vkc

 , and ),( vv
kn  , 

respectively. 

3 CONTROL DESIGN 

The function of a controller is to implement a mapping between the known information (e. g., reference position, velocity 
and sensor informations) and the actuator commands designed to achieve the robot’s task. Thus, the controller design 
problem for the mobile robot can be described as: given the reference position )(tqr  and the velocity )(tqr , design a 

control laws (PNTCs  C1, C2, C3,  and C4)  for the actuator torques, which drives the mobile robot to move, so the 
mobile robot velocity carries out the tracking a smooth velocity control input and the reference position. 



The following mild bounding assumptions always hold in practical applications and the development of the control design, 
and are required in order to proceed. 

Assumption 2: On any compact subset of n , the ideal NN weights, centers, and widths are bounded by: 

max.. wW  , max.. xX       (39) 

with max.w , and max.x  being positive constants. 

Assumption 3: On any compact subset of n , the NN approximation error is bounded by: 

NNNN eE         (40) 

with NNe  being a positive constant. 

Assumption 4: The desired reference trajectory is bounded so that dr qq   with  dq  a known scalar bound, and the 

disturbances are bounded so that dd b  with db  a known scalar bound. 

Assumption 5: The reference linear velocity is nonzero, bounded, and 0rv  for all t . The angular velocity r  is 

bounded. 

3.1 Kinematic Control (KC) 

Let velocity and position of a reference robot be given as: 

 Trrrr yxq  ,  Trrref vv  , )cos( rrr vx  , )sin( rrr vy  , rr     (41)  

where 0rv  for all t  is the reference linear velocity, and r  is the reference angular velocity. Thus, the position 

tracking error vector is expressed in the basis of a frame linked to the mobile robot platform as:  
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The position error dynamics can be obtained from the time derivative of equation (42) as: 
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An auxiliary velocity control input cv  that achieves tracking for equation (6) that is given by [Kanayama et al., 1990]: 
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      (44) 

where 1k , 2k  and 3k  are positive parameters. 

Given the desired velocity cv , one defines now the auxiliary velocity  tracking error as:  
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where v  is the actual velocity of the mobile robot. 

Stability and convergence analysis of this controller will be described later, through of the choice of a Lyapunov function 
candidate 1V , but further details in Kanayama et al. [1990]. 
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3.2 Dynamic Control (PNTCs) 

Differentiating equation (45) and substituting the result in equations (8)-(11), respectively, the mobile robot dynamics using 
the velocity tracking error can be rewritten as: 

dcc ezCeqH   )()(       (46)    

where the important nonlinear mobile robot function is:  

C1 c
T

c
T vCSSHSvSqHS )()(       (47) 

C2 cc vzCvqH )()(         (48) 

C3 )()( cc vCvH





       (49) 

C4 ),( cc vv        (50) 

Function   contains all the mobile robot parameters, such as masses, moments of inertias, etc, which are quantities often 
imperfectly known and difficult to determine.   

Thus, the suitable control input for equations (8)-(11) respectively is given as:  

  cNN ek4ˆ       (51) 

where 4k  is a diagonal positive definite design matrix, and   a robustifying term to compensate the unmodeled and 

unstructured disturbances, NN̂  is the generated torque from the sum of output torque of the neural networks, that is given 

by:  
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H
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where  HŴ ,  HX̂ ,  CX̂ ,  HW ˆ ,  CW ˆ , and  NŴ  represent  estimates of true parameters of  HW ,  HX ,  CX , 

 HW  ,  CW  , and  NW  of equations (29), (36)-(38), respectively. Four controllers, in terms of input vectors of the 

RBFNN, are formed by: static neural networks (C1 and C3), static and dynamic neural networks (C2), and dynamic neural 
networks (C4). 

Substituting equation (51) into equation (46), the closed-loop system error dynamics can be expressed as:  

  NNdcc EeCkeqH )()( 4      (56) 

where: 
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being that      .̂..~   define the error vector in the parameters, and NNE  define the neural network modeling error.  



By using the control input, equation (51), there is no guarantee that the torque   will make the velocity tracking error 

small. Thus, the control design problem is to specify a method of selecting the matrix gain 4k , and the estimate NN̂  so 

that the velocity error vector ce  is bounded. In addition, the estimate of NN̂  should be bounded so that the control signals 

are also bounded.   

Assuming that the unmodeled and unstructured disturbances are bounded, as well as the neural networks modeling errors, 

such that dd b  and NNNN eE  , the robustifying term is defined as:  

cnd eIk )(        (61) 

where dk  is a diagonal positive definite matrix, and nI  is the identity matrix.   

For the controllers (PNTCs  C1, C2 C3, and C4), equations (51)-(55) and (61), learning algorithms for the neural 
networks should to be developed, so that the control system can be stable, and both the position and velocity tracking errors 
converge to zero.  

Let us consider Lyapunov’s candidate function: 
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where the choice of 2V  depends on the controller used: 
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being 
k.  are dimensional compatible symmetric positive definite matrices. Clearly, 0V , and 0V  if only if 0qe , 

0ce ,   0
~

HW ,   0
~

HX ,   0
~

CX ,   0
~ HW  ,   0

~ CW  , and   0
~

NW .  

In the sequel the stability analysis will be only performed to the controller C1. Similar results can be obtained to C2, C3 
and C4.  Differentiating V , equation (62), and substituting the error dynamics, equation (56), V is given as:  
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where, using the property 2, CH 2 , 2V  stays: 
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It can be seen that      
kkk HHH WWW ˆ~
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kk HH WW
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Recall that: 
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and the learning laws for the neural networks are obtained as:  
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where 0
kHK .  The term 

kkk HcHH WeK ˆ , equation (70), correspond to   modification [Narendra and Annaswamy, 

1987] from the adaptive control theory; they must be added to eliminate the condition of persistent excitation and to ensure 
bounded of neural networks weights estimates. 

Then 1V  of equation (67) can be simplified as: 
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with  .tr  being trace function, and replacing the robustifying term, equation (61), in 1V  of equation (71), one obtains: 
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the equation (74) becomes: 
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where 
min4k  and 

mindk  are the minimum singular values of 4k  and dk , respectively; and: 
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Substituting the position error dynamics, equation (43), the time derivative of V  results in:  

133132131211 )sin()(2])sin([2)]cos([2 VevkeevekevveekV rrrr
     (80) 

2
22

41 )(minmin VeebekekeeV cNNdcdcc
T

c
   

where 
2

1
3 k

k
vk r  . Substituting ce  and cc evv  , equation (45), V  becomes:  
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Since the first four terms in equation (81) are negative, there results: 
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Thus, V  is guaranteed negative as long as the term in parentheses in equation (82) is positive, either: 
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Therefore, V  is guaranteed  negative. According to a standard Lyapunov theory, all signals qe , ce , and 
FHW

~
 are 

bounded. 

4 SIMULATIONS RESULTS 

For accomplishing the simulations, the dynamic model described in Fierro and Lewis [1998] is used, where the parameters 

of the mobile robot are as follows: kgm 10 , 25kgmI  , mR 5.0 , mr 05.0 , md 2.0 , smvr /5.0 , and 

sradr /0.0 . 

To illustrate the performance of the four PNTCs (C1, C2, C3, and C4 or equations (51)-(55), and (61)), the robot should to 
track a straight line with the disturbances that subject to sudden changes, as well as payload influence. 

The reference trajectory is a straight line with initial coordinates ]56.25,2,1[)]0(),0(),0([ o
rrr yx  . The initial position 

of the robot is    10,1,2)0(),0(),0( cc yx . The design parameters of controllers are chosen as: KC  11 k , 

32 k , 23 k , and PNTCs: 

C1  ]7[4 diagk  , 10
kH , 92 H , 001.0HK , and ]17[diagkd  ; 

C2, C3, and C4  ]7[4 diagk  , 10. 
k

, 492
.  , 001.0. K , and ]7[diagkd  .  

In this case, the number of hidden neurons is: 4 for C1, 20 for C2, 8 for C3 and 16 for C4. The values of weights ( .W , and 

.X ) of the RBFNNs are adjusted on-line and all initialised to zero. The centers ( .m ) of the localised Gaussian RBFs are 

evenly distributed to span the input space. Different tracking performance can be achieved by adjusting parameters gains 
and others factors, such as the size of the RBFNNs, centers and widths of the Gaussian RBFs.  

A Coulomb friction term as unmodeled disturbance, as well as bounded periodic disturbance are added to the robot system 
as,  













)2cos(1.0)sgn())((

)2sin(1.0)sgn())((

22

111

ttff

tvtff
F


 

where 3.01 f , and 5.02 f . Function )(tf  is nonlinear, defined as:    Ttftf 0.00.0)()( 21   if 8t ; 

   Ttftf 2.02.0)()( 21   if 8t , respectively. Thus, disturbance is subject to a sudden change at time goes to 8 sec. 

Moreover, in 8 sec, the mobile robot suddenly dropped of an object of kg5.2 , that is, a quarter of its original mass.      

The trajectory tracking obtained by the controllers (only cek4  of equation (51), and PNTCs  C1, C2, C3, C4) can be 

quantified (see Table 1) using the mean square quadratic error (MSE).  
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Table 1: Mean Square Quadratic Error – MSE. 

 MSE 

Controller X  Direction Y  Direction   Orientation 

cek4  0.0609 0.0930 0.1397 

C1 0.0486 0.0519 0.0886 

C2 0.0464 0.0437 0.0812 

C3 0.0512 0.0582 0.1166 

C4 0.0395 0.0564 0.0884 

 

 

In addition, the tracking performance of the PNTCs (C1, C2, C3, and C4) are verified in the tracking of the reference 
trajectory as shown in Figure 3. It can be noted that the both actual trajectories converge to the reference trajectory.  
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Figure 3: Tracking Trajectory – PNTCs. 

 
 

Similar conclusions can be obtained in Figure 4, the tracking errors in the X  and Y  directions, and in the orientation 
converge to zero.  

 
 



0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1
Position Tracking Error

X
 (

m
.)

Time (s.)

 

 

C1

C2
C3

C4

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5
Position Tracking Error

Y
 (

m
.)

Time (s.)

 

 

C1

C2
C3

C4

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1
Orientation Tracking Error

 
(r

ad
.)

Time (s.)

 

 

C1

C2
C3

C4

 
Figure 4: Tracking Errors – PNTCs. 

 

Figure 5 shows the total control torques and in Figure 6 the actual linear and angular velocities of the mobile robot are 
presented.  
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Figure 5: Control Torques – PNTCs. 
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Figure 6: Velocities of the Mobile Robot – PNTCs. 

 

It can be observed that the tracking errors tend to zero, as well as the robot velocities and the control torques converge to its 
steady state. Moreover, when the sudden change of friction and load variation occurs, is observed that the tracking errors 
tend to zero, because the PNTCs (C1, C2, C3, and C4) are able to compensate the sudden changes of the robot dynamics 
through learning mechanism of the RBFNN. 

5 CONCLUSIONS 

This paper suggests neural control algorithms (PNTCs) for a nonholonomic mobile robot, with a completely unknown 
robot dynamics, and subject to bounded unknown disturbance including unmodeled and unstructured dynamics.  

Since the PNTCs have different structures in terms of input vectors of the RBFNN, the implementation of these controllers 
is based on the partitioning of the RBFNNs into several smaller subnets in order to obtain more efficient computation, 
which simplifies the design, gives added controller structure, and also leads to contributes to faster weight tuning algo-
rithms (i. e., individual partitioned neural networks can be separately tuned). Another advantage of this partitioned neural 

networks is that if some terms in the mobile robots dynamics are well-known (e.g., inertia matrix )(qH ), then their neural 

networks can be replaced by deterministic equations. These neural networks can be used to reconstruct only the unknown 

terms or those too complicated to be computed, which will probably include the friction )(vF  and the Coriolis/centripetal 

terms ),( qqC  . 

In addition, the values of weights ( .W , and .X ) of the RBFNNs are adjusted on-line and all initialised to zero. Also, the C1 

is obtained of the modeling by RFBNNs of the centripetal and Coriolis matrix ),( qqC   through of the inertia matrix )(qH  

of the mobile robot dynamics. Thus, C1 is constituted of static RFBNNs only, what makes possible the reduction of the size 
of the RBFNNs, of the computational load and the implementation in real time. 

The RBFNNs used in the PNTCs neither require an off-line learning nor the priori information of the mobile robot 
dynamics. Stability and convergence of the robot control system, and the learning algorithm for weights are proved by 
using Lyapunov theory, considering the presence of bounded unstructured and unmodeled dynamics. The simulation results 
show the efficiency of the PNTCs, where it is possible to note different dynamic behaviours, since these controllers have 



different structures. 

As future works, it is validation of the PNTCs in real-time applications of a nonholonomic mobile robot, as well as to 
realize the integration of the PNTCs with others kinematic controllers of the literature. 
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