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Abstract – This paper presents a heuristic technique that uses the Wang Recurrent Neural Network with the 

"Winner Takes All" principle to solve the Traveling Salesman Problem. When the Wang Neural Network presents 

solutions for the Assignment Problem with all constraints satisfied, the "Winner Takes All" principle is applied to the 

values in the Neural Network’s decision variables, with the additional constraint that the new solution must form a 

feasible route for the Traveling Salesman Problem. The results from this new technique are compared to other 

heuristics, with data from the TSPLIB (Traveling Salesman Problem Library). The 2-opt local search technique is 

applied to the final solutions of the proposed technique and shows a considerable improvement of the results. 

 Keywords – Recurrent Neural Network, Assignment problem, Traveling Salesman Problem 

 

 
I. INTRODUCTION 

The Traveling Salesman Problem (TSP) is a classical problem of combinatorial optimization in the area of Operations 

Research. The purpose is to find a minimum total cost Hamiltonian cycle [2]. There are several practical uses for this 

problem, such as Vehicle Routing [12] and Drilling Problems [15].  

 This problem has been extensively used as a basis for comparison in order to improve several optimization 

techniques, such as Genetic Algorithms [1], Simulated Annealing [6], Tabu Search [14], Local Search [5], Ant Colony 

[7] and Neural Networks [13], the latter used in this work.  

 The main types of Neural Network used to solve the TSP are: Hopfield’s Recurrent Networks [21] and Kohonen’s 

Self-Organizing Maps [13]. In a Hopfield Network, the main idea is to automatically find a solution for the TSP by 

means of a equilibrium state of the equation system defined for the TSP. By using Kohonen’s Maps for the TSP, the 

final route is determined through the cities corresponding to those neurons that have weights that are closest to the pair 

of coordinates ascribed to each city in the problem.  

 The Wang Recurrent Neural Network (WRNN) with the "Winner Takes All" (WTA) principle [17] can be applied 

to solve the TSP, solving this problem as if it were an Assignment Problem (AP) by means of the WRNN, and, 

furthermore, using the WTA principle on the solutions found with the WRNN, with the constraint that the solutions 

found must form a feasible route for the TSP. The parameters used for the WRNN are those that show the best solutions 

for the AP. 

 The solutions found with the heuristic technique proposed in this work (WRNN+WTA) are compared with the 

solutions from the Self-Organizing Maps (SOM) and the Simulated Annealing (SA) for the symmetrical TSP, as well as 

with other heuristics for the asymmetrical TSP. The 2-opt Local Search technique [5] is used to improve the solutions 

found with the technique proposed in this work. The data used for the comparisons are from the TSPLIB database [16]. 

 This paper is divided into 6 sections, including this introduction. In Section 2, the TSP is defined. In Section 3, the 

WRNN and the WTA principle are presented. In Section 4, the use of the technique proposed in this work is 

demonstrated through the TSPLIB example of 42-city instance by Dantzig. In Section 5, the results of the proposed 

technique are presented and comparisons between this technique and other heuristics in the literature are made. In 

Section 6, conclusions are presented. 

 

II. FORMULATION OF THE PROBLEM 

The TSP can be mathematically formulated as follows [2, 4]: 
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where cij and xij are, respectively, the costs and the decision variables associated to the assignment of element i to 

position j. When xij = 1, the element i is assigned to the position j and this means that the route has a stretch that is the 

sequence from city i to city j. Vector x~  has the whole sequence of the route that was found, i.e., the solution for the 

TSP. 

 The AP has the same formulation, with exception of (5). The objective function (1) represents the total cost to be 

minimized. The constraints sets (2) and (3) ensure that each city i will be assigned to exactly one city j. Set (4) 

represents the integrality constraints of zero-one variables xij, and can be replaced by constraints of the following type 

[2, 4]: 

0≥ijx ,  i, j = 1, 2, ..., n. (6) 

 Constraint (5) assures that in the final route each city will be visited once and that no sub-routes will be formed. The 

matrix form of the problem described in (1)-(5) is the following [10]: 

Minimize C = c
T
x (7) 

Subject to Ax = b (8) 

                
0≥ijx ,    i, j  = 1, 2, ..., n  

           x~  forms a Hamiltonian cycle  

where vectors c
T
 and x contain all the rows from the cost matrix and from the matrix with decision elements xij, this is, 

c
T
 = (c11, c12, ..., c1n, c21, c22, ..., c2n, ..., cn1, cn2, ..., cnn) and x = (x11, x12, ..., x1n, x21, x22, ..., x2n, ..., xn1, xn2, ..., xnn). Vector 

b has the number 1 in all of its positions and matrix A has the following form: 
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where I is the identity matrix, of order n × n, and each matrix Bi, for i = 1, 2, ..., n, has zeros, with the exception of the i
th

 

row, which has the number 1 in all of its positions. 

 

III. WRNN AND WTA TO SOLVE THE TSP 

The Recurrent Neural Network proposed by Wang, published in [10], [19] and [20], is characterized by the following 

differential equation: 
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where xij = g(uij(t)) and this Neural Network’s equilibrium state is a solution for the AP. Function g is the sigmoid 

function, with a β parameter, i.e., 

g(u) = 
u

e
β−+1

1
. (10) 

 The boundary vector is defined as θ = A
T
b = (2, 2, ..., 2) ∈ 12×ℜn . Parameters η, λ and τ are constant and empirically 

chosen [10], thus affecting the Neural Network’s convergence. Parameter η penalizes violations of the constraint set of 
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the problem defined by (1)-(4). Parameters λ and τ control the AP’s objective function minimization (1). The matrix 

form for this Neural Network can be written as follows: 
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where x = g(u(t)) and W = A
T
A.  

 The heuristic technique proposed in this work uses the WTA principle, accelerating the WRNN’s convergence and 

correcting eventual problems that may appear due to multiple optimal solutions or optimal solutions that are very close 

to each other [17].  

 The parameters chosen for the WRNN are those that determine the best results for the AP [17]. Parameter η is 

considered equal to 1 in all cases tested within this work. Parameter λ is taken as a vector defined by: 
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where δi, for i = 1, 2, …, n, represents the standard deviation for each row in the cost matrix c. Each element of vector 

λ  is used to update the corresponding row in decision matrix x.  

 The best choice for parameter τ uses the WRNN’s definition’s fourth term (9). When cij = cmax, the term 

)/exp( τλ tc − = α must be such that g(α)  = φ ≅ 0.  

β

φ
α









−−

=

1
1

ln

, 
(13) 

Using the value of α = )/exp( τλ tc −  and expression (13), the value of parameter τ is obtained. 
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 In equation (11), Wx(t) − θ measures the AP’s constraints violation. After a certain number of iterations this term 

suffers no substantial changes of its value. This evidences the fact that the problem’s constraints are almost satisfied. At 

this moment, the WTA principle can be applied.   

 When all the elements of x satisfy the condition Wx(t) − θ φ≤ , where φ ∈ [0, 2], the proposed technique can be 

used and its algorithm is presented below: 

 

Step 1: Determine a maximum number of routes rmax. Find an AP’s x solution using the WRNN. If Wx(t) − θ φ≤ , then 

go to Step 2. Otherwise, find another solution x.  

Step 2: Given the decision matrix, consider matrix x , where x  = x, m = 1 and go to Step 3. 

Step 3: Choose a row k in decision matrix x . Do p = k, x~ (m) = k and go to Step 4. 

Step 4: Find the biggest element of row k, x kl. This element’s value is given by the half of the sum of all elements of 

row k and of column l of matrix x, this is,  
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The other elements of row k and column l become null. So that sub-routes are not formed, the other elements 

of column k must also be null. Do x~ (m + 1) = l; to continue the TSP’s route, make k = l and go to Step 5.  

Step 5: If m < n, then make m = m + 1 and go to Step 4. Otherwise, do  
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x~ (n + 1) = p, determine the route’s cost, C, and go to Step 6. 

Step 6: If C < Cmin, then do Cmin = C and x = x . Make r = r + 1. If r < rmax, then run the WRNN again and go to Step 2, 

otherwise Stop.  

 

 The technique proposed in this work can be applied to symmetrical or asymmetrical TSPs. The following Section 

shows an example of application of this heuristic to symmetrical TSP dantzig42 [16]. 

IV.  PROPOSED HEURISTIC TECHNIQUE APPLIED TO A TSPLIB PROBLEM 

Consider the symmetrical TSP with 42-city instance by Dantzig [16], as shown in Fig. 1 and 2.  

This problem contains coordinates of cities in The United States, and after 25 epochs the condition Wx(t) − θ φ≤ is 

satisfied with 01.0=φ and the WRNN presents the first solution 1
~x  for the TSP, as shown in Fig. 1 (a). 

The solution 1
~x  is presented to WRNN, and after 20 iterations an improved solution is reached, with the average 

error decreasing from 6.29% to 5.58% as shown in Fig. 1 (a) and (b).  

 

  

(a)                                                                                        (b) 

Fig. 1 – (a) First feasible tour found through the proposed heuristic, with an average error of 6.29%.  

(b) Tour with 5.58% of average error. 

 

An improvement to heuristic WRNN is the application of local search 2-opt heuristic on Step 5 of the algorithm 

shown on previous section. This application is made after the expression (16), to the WRNN solution, just as an 

improvement. The results of WRNN with 2-opt on problem dantzig42 is shown in Fig. 2, where after 76 epochs a 

optimal solution is found. 

 



Learning and Nonlinear Models - Revista da Sociedade Brasileira de Redes Neurais (SBRN), Vol. 5, No. 1  
pp. 1-9, 2007 ©Sociedade Brasileira de Redes Neurais 

 

  
(a)                                                                                        (b) 

  
(c)                                                                                        (d) 

  
(e)                                                                                        (f) 

Fig. 2 – (a) First feasible solution found, in 26 epochs and average error of 6.44%. (b) 34 epochs and error 4.01%.  

(c) 35 epochs and error 3.29%. (d) 37 epochs and error 2.15%. (e) 53 epochs and error 0.29%.  

(f) 76 epochs and optimal solution found. 

 

The next Section shows the results of applying this technique to some of the TSPLIB’s problems for symmetrical and 

asymmetrical TSPs. 
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V. RESULTS OF APPLYING THE PROPOSED HEURISTIC TO SOME OF THE TSPLIB’S PROBLEMS 

The results found with the technique proposed in this work for the TSPLIB’s TSP’s symmetrical cases are compared 

with SOM and SA results, and the asymmetrical cases are compared to removal and insertion arc heuristic.  

 For symmetrical TSPs, the following methods were used to compare with the technique presented in this work: the 

method that involves statistical methods between a SOM’s neurons’ weights [3] and has a global version (KniesG: 

Kohonen Network Incorporating Explicit Statistics Global), where all cities are used in the neuron dispersion process, 

and a local version (KniesL), where only some represented cities are used in the neuron dispersion step; the SA 

technique [6], using the 2-opt improvement technique; Budinich’s SOM, which consists of a traditional SOM applied to 

the TSP, presented in [6]; the expanded SOM (ESOM) [13], which, in each iteration, places the neurons close to their 

corresponding input data (cities) and, at the same time, places them at the convex contour determined by the cities; the 

efficient and integrated SOM (eISOM) [11], where the ESOM procedures are used and the winning neuron is placed at 

the mean point among its closest neighboring neurons; the efficient SOM technique (SETSP) [18], which defines the 

updating forms for parameters that use the TSP’s number of cities; and Kohonen’s cooperative adaptive network (CAN) 

[8] uses the idea of cooperation between the neurons’ close neighbors and uses a number of neurons that is larger than 

the number of cities in the problem.  

 The computational complexity of the proposed heuristic is O(n
2
 + n) [20], considered competitive when compared 

to the complexity of mentioned SOM neural network, which have complexity O(n
2
) [13]. The CAN technique has a 

computational complexity of O(n
2
log(n)) [8], while the SA technique has a complexity of O(n

4
log(n)) [14]. 

 In Table 1 are shown the average errors of the techniques mentioned above. The "pure" technique proposed in this 

work, the proposed technique with the 2-opt improvement algorithm, as well as the best (max) and worst (min) results 

of each problem considered are also shown. 

 
Table 1 – Results of the experiments for the symmetrical TSP, with techniques presented on TSPLIB: KniesG, KniesL, 

SA, Budinich’s SOM, ESOM, EISOM, SETSP, CAN and a technique presented on this paper: WRNN with WTA. The 

solutions presented in bold characters show the best results for each problem, disregarding the results with the 2-opt 

technique. (NC = not compared) 
average error (%) 

for 8 algorithms presented on TSPLIB WRNN with WTA 
TSP’s 

name 

number 

of cities 

optimal 

solution 
KniesG KniesL SA Budinich ESom EiSom Setsp CAN Max Min 2-opt 

eil51 51 430 2.86 2.86 2.33 3.10 2.10 2.56 2.22 0.94 1.16 1.16 0 

st70 70 678.6 2.33 1.51 2.14 1.70 2.09  NC 1.60 1.33 4.04 2.71 0 

eil76 76 545.4 5.48 4.98 5.54 5.32 3.89 NC 4.23 2.04 2.49 1.03 0 

gr96 96 514  NC NC 4.12 2.09 1.03  NC NC NC 6.61 4.28 0 

rd100 100 7,910 2.62 2.09 3.26 3.16 1.96  NC 2.60 1.23 7.17 6.83 0.08 

eil101 101 629 5.63 4.66 5.74 5.24 3.43 3.59 NC 1.11 7.95 3.02 0.48 

lin105 105 14,383 1.29 1.98 1.87 1.71 0.25 NC 1.30 0 5.94 4.33 0.20 

pr107 107 44,303 0.42 0.73 1.54 1.32 1.48 NC 0.41 0.17 3.14 3.14 0 

pr124 124 59,030 0.49 0.08 1.26 1.62 0.67 NC NC 2.36 2.63 0.33 0 

bier127 127 118,282 3.08 2.76 3.52 3.61 1.70 NC 1.85 0.69 5.08 4.22 0.37 

pr136 136 96,772 5.15 4.53 4.90 5.20 4.31 NC 4.40 3.94 6.86 5.99 1.21 

pr152 152 73,682 1.29 0.97 2.64 2.04 0.89 NC 1.17 0.74 3.27 3.23 0 

rat195 195 2,323 11.92 12.24 13.29 11.48 7.13 NC 11.19 5.27 8.82 5.55 3.31 

kroa200 200 29,368 6.57 5.72 5.61 6.13 2.91 1.64 3.12 0.92 12.25 8.95 0.62 

lin318 318 42,029  NC NC 7.56 8.19 4.11 2.05 NC 2.65 8.65 8.35 1.90 

pcb442 442 50,784 10.45 11.07 9.15 8.43 7.43 6.11 10.16 5.89 13.18 9.16 2.87 

att532 532 27,686 6.8 6.74 5.38 5.67 4.95 3.35 NC 3.32 15.43 14.58 1.28 

 

 The results of the heuristic proposed in this paper, together with the 2-opt improvement, presented an average error 

range from 0 to 3.31%, as shown in the 2-opt column of Table 1. The methods that use improvement techniques to their 

solutions are SA, CAN and WRNN with WTA. The techniques proposed in this paper, with 2-opt, present better results 

that SA and CAN methods in almost every problem, with the only exception being the lin105 problem. Without the 

improvement 2-opt, the results of problems eil76, eil51, eil101 and rat195 are better than the results of the other neural 

networks that do not use improvement techniques.  

 For the asymmetrical TSP, the techniques used to compare with the technique proposed in this work were [9]: the 

Karp-Steele path methods (KSP) and general Karp-Steele (GKS), which begin with one cycle and by removing arcs and 

placing new arcs, transforming the initial cycle into a Hamiltonian one. The difference between these two techniques is 
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that the GKS uses all of the cycle’s vertices for the changes in the cycle’s arcs. The following techniques were also 

used: the path recursive contraction (PRC) that consists in forming an initial cycle and transforming it into a 

Hamiltonian cycle by removing arcs from every sub-cycle; the contraction or path heuristic (COP), which is a 

combination of the GKS and RPC techniques; the “greedy” heuristic (GR) that chooses the smallest arc in the graph, 

contracts this arc creating a new graph, and keeps this procedure up to the last arc, thus creating a route; and the random 

insertion heuristic (RI) that initially chooses 2 vertices, inserts one vertex that had not been chosen, thus creating a 

cycle, and repeats this procedure until it creates a route including all vertices.  

 Table 2 shows the average errors of the techniques described, as well as those of the "pure" technique presented in 

this work and of the proposed technique with the 2-opt technique. 
 The results of the "pure" technique proposed in this work are better or equivalent to those of the other heuristics 

mentioned above, for problems br17, ftv33, ftv44, ft53, ft70 and kro124p, as shown in Table 2. By using the 2-opt 

technique on the proposed technique, the best results were found for problems br17, ftv33, pr43, ry48p, ftv44, ft53, ft70 

and kro124p, with average errors ranging from 0 to 16.14%. 

 
Table 2 – Results of the experiments for the asymmetrical TSP with techniques presented on TSPLIB:  GR, RI, KSP, 

GKS, RPC, COP and a technique presented on this paper:  WRNN with WTA. The solutions presented in bold 

characters show the best results for each problem, disregarding the results with the 2-opt technique. 

average error (%) 

for 5 algorithms WRNN with WTA 
TSP’s 

name 

number 

of cities 

optimal 

solution 
GR RI KSP GKS PRC COP max Min 2-opt 

Br17 17 39 102.56 0 0 0 0 0 0 0 0 

Ftv33 33 1,286 31.34 11.82 13.14 8.09 21.62 9.49 7.00 0 0 

Ftv35 35 1,473 24.37 9.37 1.56 1.09 21.18 1.56 5.70 3.12 3.12 

Ftv38 38 1,530 14.84 10.20 1.50 1.05 25.69 3.59 3.79 3.73 3.01 

Pr43 43 5,620 3.59 0.30 0.11 0.32 0.66 0.68 0.46 0.29 0.05 

Ftv44 44 1,613 18.78 14.07 7.69 5.33 22.26 10.66 2.60 2.60 2.60 

Ftv47 47 1,776 11.88 12.16 3.04 1.69 28.72 8.73 8.05 3.83 3.83 

ry48p 48 14,422 32.55 11.66 7.23 4.52 29.50 7.97 6.39 5.59 1.24 

Ft53 53 6,905 80.84 24.82 12.99 12.31 18.64 15.68 3.23 2.65 2.65 

Ftv55 55 1,608 25.93 15.30 3.05 3.05 33.27 4.79 12.19 11.19 6.03 

Ftv64 64 1,839 25.77 18.49 3.81 2.61 29.09 1.96 2.50 2.50 2.50 

Ft70 70 38,673 14.84 9.32 1.88 2.84 5.89 1.90 2.43 1.74 1.74 

Ftv70 70 1,950 31.85 16.15 3.33 2.87 22.77 1.85 8.87 8.77 8.56 

kro124p 100 36,230 21.01 12.17 16.95 8.69 23.06 8.79 10.52 7.66 7.66 

ftv170 170 2,755 32.05 28.97 2.40 1.38 25.66 3.59 14.66 12.16 12.16 

rbg323 323 1,326 8.52 29.34 0 0 0.53 0 16.44 16.14 16.14 

rbg358 358 1,163 7.74 42.48 0 0 2.32 0.26 22.01 12.73 8.17 

rbg403 403 2,465 0.85 9.17 0 0 0.69 0.20 4.71 4.71 4.71 

rbg443 443 2,720 0.92 10.48 0 0 0 0 8.05 8.05 2.17 

 

VI. CONCLUSIONS 

This work presented the WRNN with the WTA principle to solve the TSP. By means of the WRNN, a solution for the 

AP is found and the WTA principle is applied to this solution, transforming it into a feasible route for the TSP. These 

technique’s solutions were considerably improved when the 2-opt technique was applied on the solutions presented by 

the technique proposed in this work. The data used for testing were obtained at the TSPLIB and the comparisons that 

were made with other heuristics show that the technique proposed in this work achieves better results in several of the 

problems tested, with average errors below 16.14%. A great advantage of implementing the technique presented in this 

work is the possibility of using the same technique to solve both symmetrical and asymmetrical TSPs as well. 
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