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Abstract — This paper presents a heuristic technique that uses the Wang Recurrent Neural Network with the
"Winner Takes All" principle to solve the Traveling Salesman Problem. When the Wang Neural Network presents
solutions for the Assignment Problem with all constraints satisfied, the "Winner Takes All" principle is applied to the
values in the Neural Network’s decision variables, with the additional constraint that the new solution must form a
feasible route for the Traveling Salesman Problem. The results from this new technique are compared to other
heuristics, with data from the TSPLIB (Traveling Salesman Problem Library). The 2-opt local search technique is
applied to the final solutions of the proposed technique and shows a considerable improvement of the results.
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I. INTRODUCTION

The Traveling Salesman Problem (TSP) is a classical problem of combinatorial optimization in the area of Operations
Research. The purpose is to find a minimum total cost Hamiltonian cycle [2]. There are several practical uses for this
problem, such as Vehicle Routing [12] and Drilling Problems [15].

This problem has been extensively used as a basis for comparison in order to improve several optimization
techniques, such as Genetic Algorithms [1], Simulated Annealing [6], Tabu Search [14], Local Search [5], Ant Colony
[7] and Neural Networks [13], the latter used in this work.

The main types of Neural Network used to solve the TSP are: Hopfield’s Recurrent Networks [21] and Kohonen’s
Self-Organizing Maps [13]. In a Hopfield Network, the main idea is to automatically find a solution for the TSP by
means of a equilibrium state of the equation system defined for the TSP. By using Kohonen’s Maps for the TSP, the
final route is determined through the cities corresponding to those neurons that have weights that are closest to the pair
of coordinates ascribed to each city in the problem.

The Wang Recurrent Neural Network (WRNN) with the "Winner Takes All" (WTA) principle [17] can be applied
to solve the TSP, solving this problem as if it were an Assignment Problem (AP) by means of the WRNN, and,
furthermore, using the WTA principle on the solutions found with the WRNN, with the constraint that the solutions
found must form a feasible route for the TSP. The parameters used for the WRNN are those that show the best solutions
for the AP.

The solutions found with the heuristic technique proposed in this work (WRNN+WTA) are compared with the
solutions from the Self-Organizing Maps (SOM) and the Simulated Annealing (SA) for the symmetrical TSP, as well as
with other heuristics for the asymmetrical TSP. The 2-opt Local Search technique [5] is used to improve the solutions
found with the technique proposed in this work. The data used for the comparisons are from the TSPLIB database [16].

This paper is divided into 6 sections, including this introduction. In Section 2, the TSP is defined. In Section 3, the
WRNN and the WTA principle are presented. In Section 4, the use of the technique proposed in this work is
demonstrated through the TSPLIB example of 42-city instance by Dantzig. In Section 5, the results of the proposed
technique are presented and comparisons between this technique and other heuristics in the literature are made. In
Section 6, conclusions are presented.

II. FORMULATION OF THE PROBLEM

The TSP can be mathematically formulated as follows [2, 4]:
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where c; and x; are, respectively, the costs and the decision variables associated to the assignment of element i to
position j. When x; = 1, the element i is assigned to the position j and this means that the route has a stretch that is the

sequence from city i to city j. Vector X has the whole sequence of the route that was found, i.e., the solution for the
TSP.

The AP has the same formulation, with exception of (5). The objective function (1) represents the total cost to be
minimized. The constraints sets (2) and (3) ensure that each city i will be assigned to exactly one city j. Set (4)
represents the integrality constraints of zero-one variables x;;, and can be replaced by constraints of the following type
[2, 4]

ij>

X; 20, i,j=1,2,...,n. (6)

Constraint (5) assures that in the final route each city will be visited once and that no sub-routes will be formed. The
matrix form of the problem described in (1)-(5) is the following [10]:

Minimize C = ¢'x 7

Subject to Ax=b (8)
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X forms a Hamiltonian cycle

where vectors ¢! and x contain all the rows from the cost matrix and from the matrix with decision elements X;;, this is,
T
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b has the number 1 in all of its positions and matrix A has the following form:
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where I is the identity matrix, of order n X n, and each matrix B;, for i = 1, 2, ..., n, has zeros, with the exception of the i
row, which has the number 1 in all of its positions.

III. WRNN AND WTA TO SOLVE THE TSP

The Recurrent Neural Network proposed by Wang, published in [10], [19] and [20], is characterized by the following
differential equation:

du, (1) U L £

# =-nY X, (=1 x,(1)+06,; — Acye 7, 9)
k=1 1=1

where x; = g(u;(#)) and this Neural Network’s equilibrium state is a solution for the AP. Function g is the sigmoid

function, with a £ parameter, i.e.,

u) = . 10
sw=—7 (10)
The boundary vector is defined as 6= ATp = 2,2,..,2)€ ER”ZX‘. Parameters 77, A and 7are constant and empirically

chosen [10], thus affecting the Neural Network’s convergence. Parameter 77 penalizes violations of the constraint set of



Learning and Nonlinear Models - Revista da Sociedade Brasileira de Redes Neurais (SBRN), Vol. 5, No. 1
pp- 1-9, 2007 ©Sociedade Brasileira de Redes Neurais

the problem defined by (1)-(4). Parameters A and 7 control the AP’s objective function minimization (1). The matrix
form for this Neural Network can be written as follows:

du(t)
dt

t

=—n(Wx(t)— )~ Ace * an

where x = g(u(f)) and W= A"A.

The heuristic technique proposed in this work uses the WTA principle, accelerating the WRNN’s convergence and
correcting eventual problems that may appear due to multiple optimal solutions or optimal solutions that are very close
to each other [17].

The parameters chosen for the WRNN are those that determine the best results for the AP [17]. Parameter 7 is
considered equal to 1 in all cases tested within this work. Parameter A is taken as a vector defined by:

d=p =L L (12)
51 9 52 EARAS] 5n 9
where d, for i =1, 2, ..., n, represents the standard deviation for each row in the cost matrix c¢. Each element of vector

A is used to update the corresponding row in decision matrix x.
The best choice for parameter 7 uses the WRNN’s definition’s fourth term (9). When ¢; = cpa, the term
Acexp(—t/7) = amust be such that g(@) = ¢=0.

—ln(l—lJ
__ ¢ (13)

B
Using the value of @= Acexp(—t/7) and expression (13), the value of parameter 7is obtained.
-t
(I
nl =% (14)
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In equation (11), Wx(f) — € measures the AP’s constraints violation. After a certain number of iterations this term
suffers no substantial changes of its value. This evidences the fact that the problem’s constraints are almost satisfied. At
this moment, the WTA principle can be applied.

When all the elements of x satisfy the condition Wx(f) — 6 < ¢, where ¢ € [0, 2], the proposed technique can be

used and its algorithm is presented below:

Step 1: Determine a maximum number of routes 7,,,x. Find an AP’s x solution using the WRNN. If Wx(r) — 8 < ¢, then
go to Step 2. Otherwise, find another solution x.

Step 2: Given the decision matrix, consider matrix x, where x =x, m =1 and go to Step 3.
Step 3: Choose a row k in decision matrix x. Do p =k, X (m) = k and go to Step 4.

Step 4: Find the biggest element of row k, x . This element’s value is given by the half of the sum of all elements of
row k and of column [/ of matrix x, this is,

_ 1 n n
Xy =5(2xﬂ +Zxkj] . (15)
i=1 j=1

The other elements of row k and column / become null. So that sub-routes are not formed, the other elements
of column k must also be null. Do X (m + 1) = [; to continue the TSP’s route, make & = [ and go to Step 5.

Step 5: If m < n, then make m = m + 1 and go to Step 4. Otherwise, do
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X (n+ 1) = p, determine the route’s cost, C, and go to Step 6.

Step 6: If C < Cyyin» then do Cpy, = C and x = x . Make r = r + 1. If r < rp,,, then run the WRNN again and go to Step 2,
otherwise Stop.

The technique proposed in this work can be applied to symmetrical or asymmetrical TSPs. The following Section
shows an example of application of this heuristic to symmetrical TSP dantzig42 [16].

IV. PROPOSED HEURISTIC TECHNIQUE APPLIED TO A TSPLIB PROBLEM

Consider the symmetrical TSP with 42-city instance by Dantzig [16], as shown in Fig. 1 and 2.
This problem contains coordinates of cities in The United States, and after 25 epochs the condition Wx(¢) — 8 < ¢@1is

satisfied with ¢ = 0.01and the WRNN presents the first solution X; for the TSP, as shown in Fig. 1 (a).

The solution X; is presented to WRNN, and after 20 iterations an improved solution is reached, with the average
error decreasing from 6.29% to 5.58% as shown in Fig. 1 (a) and (b).

(@) (b)
Fig. 1 — (a) First feasible tour found through the proposed heuristic, with an average error of 6.29%.
(b) Tour with 5.58% of average error.

An improvement to heuristic WRNN is the application of local search 2-opt heuristic on Step 5 of the algorithm
shown on previous section. This application is made after the expression (16), to the WRNN solution, just as an
improvement. The results of WRNN with 2-opt on problem dantzig42 is shown in Fig. 2, where after 76 epochs a
optimal solution is found.
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(a) (b)
© d
(e) ()

Fig. 2 — (a) First feasible solution found, in 26 epochs and average error of 6.44%. (b) 34 epochs and error 4.01%.
(c) 35 epochs and error 3.29%. (d) 37 epochs and error 2.15%. (e) 53 epochs and error 0.29%.
(f) 76 epochs and optimal solution found.

The next Section shows the results of applying this technique to some of the TSPLIB’s problems for symmetrical and
asymmetrical TSPs.
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V. RESULTS OF APPLYING THE PROPOSED HEURISTIC TO SOME OF THE TSPLIB’S PROBLEMS

The results found with the technique proposed in this work for the TSPLIB’s TSP’s symmetrical cases are compared
with SOM and SA results, and the asymmetrical cases are compared to removal and insertion arc heuristic.

For symmetrical TSPs, the following methods were used to compare with the technique presented in this work: the
method that involves statistical methods between a SOM’s neurons’ weights [3] and has a global version (KniesG:
Kohonen Network Incorporating Explicit Statistics Global), where all cities are used in the neuron dispersion process,
and a local version (KniesL), where only some represented cities are used in the neuron dispersion step; the SA
technique [6], using the 2-opt improvement technique; Budinich’s SOM, which consists of a traditional SOM applied to
the TSP, presented in [6]; the expanded SOM (ESOM) [13], which, in each iteration, places the neurons close to their
corresponding input data (cities) and, at the same time, places them at the convex contour determined by the cities; the
efficient and integrated SOM (eISOM) [11], where the ESOM procedures are used and the winning neuron is placed at
the mean point among its closest neighboring neurons; the efficient SOM technique (SETSP) [18], which defines the
updating forms for parameters that use the TSP’s number of cities; and Kohonen’s cooperative adaptive network (CAN)
[8] uses the idea of cooperation between the neurons’ close neighbors and uses a number of neurons that is larger than
the number of cities in the problem.

The computational complexity of the proposed heuristic is O(n” + n) [20], considered competitive when compared
to the complexity of mentioned SOM neural network, which have complexity O(n”) [13]. The CAN technique has a
computational complexity of O(nzlog(n)) [8], while the SA technique has a complexity of O(n4log(n)) [14].

In Table 1 are shown the average errors of the techniques mentioned above. The "pure" technique proposed in this
work, the proposed technique with the 2-opt improvement algorithm, as well as the best (max) and worst (min) results
of each problem considered are also shown.

Table 1 — Results of the experiments for the symmetrical TSP, with techniques presented on TSPLIB: KniesG, KniesL,
SA, Budinich’s SOM, ESOM, EISOM, SETSP, CAN and a technique presented on this paper: WRNN with WTA. The
solutions presented in bold characters show the best results for each problem, disregarding the results with the 2-opt

technique. (NC = not compared)
average error (%)

TSP’s number optimal

name  of cities solution for 8 algorithms presented on TSPLIB WRNN with WTA
KniesG KniesL SA Budinich ESom EiSom Setsp CAN Max Min 2-opt
eil51 51 430 2.86 2.86 233 3.10 2.10 256 222 094 1.16 1.16 0

st70 70 678.6 2.33 .51 2.14 1.70 209 NC 1.60 133 4.04 271 0
eil76 76 545.4 5.48 498 554 5.32 389 NC 423 2.04 249 1.03 0
gr96 96 514 NC NC 4.12 2.09 103 NC NC NC 6.61 4.28 0
rd100 100 7,910 2.62 209 3.26 3.16 196 NC 260 123 7.17 683 0.08
eill01 101 629 5.63 4.66 5.74 5.24 343 359 NC 111 795 3.02 048
lin105 105 14,383  1.29 1.98 1.87 1.71 025 NC 130 0 594 433 0.20
pr107 107 44303 0.42 0.73  1.54 1.32 148 NC 041 017 3.14 3.14 0
pri24 124 59,030 0.49 0.08 1.26 1.62 0.67 NC NC 236 263 033 0
bierl27 127 118,282 3.08 2776 3.52 3.61 1.70 NC 185 0.69 508 422 0.37
pr136 136 96,772  5.15 453 490 5.20 431 NC 440 394 686 599 121
pr152 152 73,682  1.29 097 2.64 2.04 089 NC 1.17 0.74 327 3.23 0
rat195 195 2,323 1192 1224 1329 1148 7.13 NC 11.19 527 882 555 331
kroa200 200 29,368  6.57 572 5.61 6.13 291 1.64 3.12 092 1225 895 0.62
lin318 318 42,029 NC NC 7.56 8.19 411 205 NC 265 865 835 190
pcb442 442 50,784 10.45 11.07 9.15 8.43 743 6.1 10.16 5.89 13.18 9.16 2.87
att532 532 27,686 6.8 6.74 5.38 5.67 495 335 NC 332 1543 14.58 1.28

The results of the heuristic proposed in this paper, together with the 2-opt improvement, presented an average error
range from O to 3.31%, as shown in the 2-opt column of Table 1. The methods that use improvement techniques to their
solutions are SA, CAN and WRNN with WTA. The techniques proposed in this paper, with 2-opt, present better results
that SA and CAN methods in almost every problem, with the only exception being the lin/05 problem. Without the
improvement 2-opt, the results of problems eil76, eil51, eill101 and rat195 are better than the results of the other neural
networks that do not use improvement techniques.

For the asymmetrical TSP, the techniques used to compare with the technique proposed in this work were [9]: the
Karp-Steele path methods (KSP) and general Karp-Steele (GKS), which begin with one cycle and by removing arcs and
placing new arcs, transforming the initial cycle into a Hamiltonian one. The difference between these two techniques is
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that the GKS uses all of the cycle’s vertices for the changes in the cycle’s arcs. The following techniques were also
used: the path recursive contraction (PRC) that consists in forming an initial cycle and transforming it into a
Hamiltonian cycle by removing arcs from every sub-cycle; the contraction or path heuristic (COP), which is a
combination of the GKS and RPC techniques; the “greedy” heuristic (GR) that chooses the smallest arc in the graph,
contracts this arc creating a new graph, and keeps this procedure up to the last arc, thus creating a route; and the random
insertion heuristic (RI) that initially chooses 2 vertices, inserts one vertex that had not been chosen, thus creating a
cycle, and repeats this procedure until it creates a route including all vertices.

Table 2 shows the average errors of the techniques described, as well as those of the "pure" technique presented in
this work and of the proposed technique with the 2-opt technique.

The results of the "pure" technique proposed in this work are better or equivalent to those of the other heuristics
mentioned above, for problems brl7, ftv33, ftv44, {t53, ft70 and kro124p, as shown in Table 2. By using the 2-opt
technique on the proposed technique, the best results were found for problems brl7, ftv33, pr43, ry48p, ftv44, ft53, ft70
and kro124p, with average errors ranging from 0 to 16.14%.

Table 2 — Results of the experiments for the asymmetrical TSP with techniques presented on TSPLIB: GR, RI, KSP,
GKS, RPC, COP and a technique presented on this paper: WRNN with WTA. The solutions presented in bold
characters show the best results for each problem, disregarding the results with the 2-opt technique.

average error (%)

TSP’s number optimal

name  of cities solution for 5 algorithms WRNN with WTA
GR RI KSP GKS PRC COP max Min 2-opt

Brl7 17 39 10256 0 0 0 0 0 0 0 0

Ftv33 33 1,286 31.34 11.82 13.14 8.09 21.62 949 7.00 0 0

Ftv35 35 1,473 2437 937 156 1.09 21.18 156 570 3.12 3.12
Ftv38 38 1,530 14.84 1020 1.50 1.05 25.69 359 379 373 3.01
Pr43 43 5,620 3,59 030 041 032 066 068 046 029 0.05
Ftv44 44 1,613 18.78 14.07 7.69 533 2226 10.66 2.60 2.60 2.60
Ftv47 47 1,776  11.88 12.16 3.04 1.69 28.72 8.73 8.05 3.83 3.83
ry48p 48 14,422 3255 11.66 723 4.52 2950 797 639 559 124
Ft53 53 6,905 80.84 24.82 1299 1231 18.64 1568 3.23 2.65 2.65
Ftv55 55 1,608 2593 1530 3.05 3.05 3327 479 12.19 11.19 6.03
Ftvo4 64 1,839 2577 1849 3.81 261 29.09 196 250 250 250
Ft70 70 38,673 1484 932 188 284 589 190 243 174 1.74
Ftv70 70 1,950 31.85 16.15 333 287 2277 1.85 887 877 8.56
krol24p 100 36,230 21.01 12.17 1695 &.69 23.06 879 1052 7.66 7.66
ftv170 170 2,755 3205 2897 240 138 25.66 359 14.66 12.16 12.16
rbg323 323 1,326 8.52 29.34 0 0.53 0 16.44 16.14 16.14
rbg358 358 1,163 774 42.48 0 232 026 2201 1273 8.17
rbg403 403 2465 085 9.17 0 0.69 020 471 471 471
rbg443 443 2,720 092 1048 0 0 0 805 8.05 217

==}

VI. CONCLUSIONS

This work presented the WRNN with the WTA principle to solve the TSP. By means of the WRNN, a solution for the
AP is found and the WTA principle is applied to this solution, transforming it into a feasible route for the TSP. These
technique’s solutions were considerably improved when the 2-opt technique was applied on the solutions presented by
the technique proposed in this work. The data used for testing were obtained at the TSPLIB and the comparisons that
were made with other heuristics show that the technique proposed in this work achieves better results in several of the
problems tested, with average errors below 16.14%. A great advantage of implementing the technique presented in this
work is the possibility of using the same technique to solve both symmetrical and asymmetrical TSPs as well.

REFERENCES

[1] M. Affenzeller, S. Wanger, A Self-Adaptive Model for Selective Pressure Handling within the Theory of Genetic
Algorithms, EUROCAST 2003, Las Palmas de Gran Canaria, Spain, 2003, Lecture Notes in Computer Science
2809 (1) (2003) 384-393.

[2] R.K. Ahuja, T.L. Mangnanti, J.B. Orlin, Network Flows, Prentice Hall, New Jersey, 1993.



Learning and Nonlinear Models - Revista da Sociedade Brasileira de Redes Neurais (SBRN), Vol. 5, No. 1
pp- 1-9, 2007 ©Sociedade Brasileira de Redes Neurais

[3] N. Aras, B.J. Oommen, I.K. Altinel, The Kohonen network incorporating explicit statistics and its application to
the traveling salesman problem, Neural Networks 12 (9) (1999) 1273-1284.

[4] M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, Wiley, New York, 1990.

[5] L. Bianchi, J. Knowles, J. Bowler, Local search for the probabilistic traveling salesman problem: Correction to the
2-p-opt and 1-shift algorithms, European Journal of Operational Research 162 (1) (2005) 206-219.

[6] M. Budinich, A self-organizing neural network for the traveling salesman problem that is competitive with
simulated annealing, Neural Computing 8 (1996) 416-424.

[7] S.C. Chu, J.F. Roddick, J.S. Pan, Ant colony system with communication strategies, Information Sciences 167 (1-
4) (2004) 63-76.

[8] E.M. Cochrane, J.E. Beasley, The Co-Adaptive Neural Network Approach to the Euclidean Travelling Salesman
Problem. Neural Networks 16 (10) (2003) 1499-1525.

[9] F. Glover, G. Gutin, A. Yeo, A. Zverovich, Construction heuristics for the asymmetric TSP, European Journal of
Operational Research 129 (3) (2001) 555-568.

[10] D.L. Hung, J. Wang, Digital Hardware realization of a Recurrent Neural Network for solving the Assignment
Problem, Neurocomputing 51 (2003) 447-461.

[11] H.D. Jin, K.S. Leung, M.L. Wong, Z.B. Xu, An Efficient Self-Organizing Map Designed by Genetic Algorithms
for the Traveling Salesman Problem, IEEE Transactions On Systems, Man, And Cybernetics - Part B: Cybernetics
33 (6) (2003) 877-887.

[12] G. Laporte, The vehicle routing problem: An overview of exact and approximate algorithms, European Journal of
Operational Research 59 (2) (1992) 345-358.

[13] K.S. Leung, H.D. Jin, Z.B. Xu, An expanding self-organizing neural network for the traveling salesman problem,
Neurocomputing 62 (2004) 267-292.

[14] G. Liu, Y. He, Y. Fang, Y. Oiu, A novel adaptive search strategy of intensification and diversification in tabu
search, Proceedings of Neural Networks and Signal Processing, Nanjing, China, 2003.

[15] G.C. Onwubolu, M. Clerc, Optimal path for automated drilling operations by a new heuristic approach using
particle swarm optimization, International Journal of Production Research 42 (3) (2004) 473-491.

[16] G. Reinelt, TSPLIB — A traveling salesman problem library, ORSA Journal on Computing 3 (4) (1991) 376-384.

[17] P.H. Siqueira, S. Scheer, M.T.A. Steiner, Application of the "Winner Takes All" Principle in Wang's Recurrent
Neural Network for the Assignment Problem, Advances in Neural Networks - ISNN 2005, Chongqing, China,
2005, Lecture Notes in Computer Science 3496 (1) (2005) 731-738.

[18] F.C. Vieira, A.D. Doria Neto, J.A. Costa, An Efficient Approach to the Travelling Salesman Problem Using Self-
Organizing Maps, International Journal Of Neural Systems 13 (2) (2003) 59-66.

[19] J. Wang, Analog Neural Network for Solving the Assignment Problem, Electronic Letters 28 (11) (1992) 1047-
1050.

[20] J. Wang, Primal and Dual Assignment Networks, IEEE Transactions on Neural Networks 8 (3) (1997) 784-790.

[21] R.L. Wang, Z. Tang, Q.P. Cao, A learning method in Hopfield neural network for combinatorial optimization
problem, Neurocomputing 48 (4) (2002) 1021-1024.



