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Abstract- In  this paper,  we build  multiple  local  ARX (Auto-Regressive model  with eXogenous variables)  models  for 
nonlinear  system  identification  based  on  Kohonen's  Self-Organizing  Map.  These  models  are  evaluated  in  the  task  of 
approximating the inverse dynamics of two benchmarking input-output data sets: a hydraulic actuator and a flexible robotic 
arm. Simulation results demonstrate that the proposed multiple local ARX modeling approach outperforms both single ARX 
model and MLP-based NARX model approaches in the aforementioned tasks.
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1 Introduction

Dynamical system identification is the field interested in building mathematical models of nonlinear systems, starting from 
experimental time series data, measurements, or observations (Ljung, 1999). Typically, a certain linear or nonlinear model 
structure which contains unknown parameters is chosen by the user. In general, the parameters should be computed so that the 
errors between estimated (or predicted) and actual outputs of the system are minimized in order to capture the dynamics of the 
system as  close  as  possible.  The  resulting model  can  be  used  as  a  tool  for  analysis,  simulation,  prediction,  monitoring, 
diagnosis, and control system design.

Artificial  neural  network (ANN) models  have been successfully applied  to  the identification and control  of  a  variety of 
nonlinear dynamical systems, such as chemical, economic, biological or technological processes (Chen et al., 1990; Narendra 
and Lewis,  2001;  Ibnkahla,  2003; Purwar et  al.,  2007).  Such achievements are mainly due to a  number of  theoretic and 
empirical  studies  showing that  supervised feedforward architectures,  such as  multilayer  perceptron (MLP) or  radial  basis 
function (RBF)  networks,  can approximate arbitrarily well  any continuous input-output  mapping (see  Pinkus (1999) and 
Schilling et al. (2001) for surveys). 

In this paper, we propose two system identification techniques which uses the self-organizing map (SOM) (Kohonen, 1997) as 
a basis for local  function approximation. Such an SOM-based local  dynamic modeling and control approaches have been 
successfully applied to complex system identification and control tasks (Cho et al., 2007; Díaz-Blanco et al., 2007; Cho et al., 
2006; Lan et al., 2005; Barreto et al., 2004; Principe et al.,  1998), such as chaotic time series prediction, aircraft control, 
inverted pendulum control, nonlinear missile control, biological reactor control, among others.

The SOM is an unsupervised neural algorithm designed to build a representation of neighborhood (spatial) relationships among 
vectors of an unlabeled data set. The neurons in the SOM are arranged in an output layer  A in one-, two-, or even three-
dimensional (1-D, 2-D, 3-D) arrays. Each neuron i ∈ A  has a weight vector wi with the same dimension of the input vector x. 
The network weights are trained according to a competitive-cooperative scheme in which the weight vectors of a winning 
neuron and its neighbors in the output array are updated after the presentation of an input vector. Usually, a trained SOM is 
used for clustering and data visualization purposes.

The SOM was previously applied to learn static input-output mappings (Barreto et al., 2003; Walter and Ritter, 1996; Midenet 
and Grumbach, 1994), which are usually represented as

y(t) = g(u(t)) (1)

in which the current output y(t) ∈ ℜ depends solely on the current input u(t) ∈ ℜ. In this paper, however, we are interested in 
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systems which can be described by the NARX model:

y(t) = f [y(t – 1), ..., y(t – ny); u(t), u(t – 1), ..., u(t – nu)], (2)

where ny and nu are the (memory) orders of the dynamical model. From (2), the system output y at time t depends, on the past 
ny output values and on the past  nu  values of the input u. In many situations, it is also desirable to approximate the inverse 
mapping of a nonlinear plant, given by

u(t) = f -1[y(t – 1), ..., y(t – ny); u(t – 1), ..., u(t – nu)]. (3)

In system identification, the goal is to obtain estimates of  f(•)  and  f--1(•)  from available input-output time series data pairs 
{u(t), y(t)}, t = 1, ..., N, where N is the time series length.

For the SOM and other unsupervised networks to be able to learn dynamical mappings, they must have some type of short-
term memory  (STM) mechanism (Wang, 2003; Wang and Arbib, 1990). That is, the SOM should be capable of temporarily 
storing past information about the system input and output vectors. There are several STM models, such as delay lines, leaky 
integrators, reaction-diffusion mechanisms and feedback loops (Principe et al., 2002; Barreto and Araújo, 2001), which can be 
incorporated into the SOM to allow it to approximate a dynamical mapping f(•) or its inverse f--1(•). In order to draw a parallel 
with standard system identification approaches, we limit ourselves to describe the VQTAM approach in terms of time delays as 
STM mechanisms.

The remainder of the paper is organized as follows. In Section 2 SOM architecture and its learning process are described. In 
Section 3 two SOM-based local ARX models are introduced. Simulations and performance are presented in Section 4. The pa-
per is concluded in Section 5.

2 The Self-Organizing Map

The self-organizing map, introduced by Kohonen (1997), is commonly used to transform high dimensional input vectors into a 
lower dimensional discrete representation that preserves topological neighborhoods. Basically, it works as a vector quantiza-
tion algorithm that adaptively quantizes the input space by discovering a set of representative prototype vectors (also called 
reference vectors or centroids). The basic idea of SOM is to categorize vectorial stochastic data into different groups by means 
of a winner-take-all selection rule.

The SOM is composed of two fully connected layers: an input layer and a competitive layer. The input layer simply receives 
the incoming input vector and forwards it to the competitive layer through weight vectors. The goal of SOM is to represent the 
input data distribution by the distribution of the weight vectors. Competitive learning drives the winning weight vector to be-
come more similar to the input data. Throughout this paper, we represent the weight vector between input layer and neuron i as

wi = [wi,1, wi,2, ..., wi,j, ..., wi,p]T, (4)

where wi,j ∈ ℜ denotes the weight connecting node j in the input layer with neuron i, and p, is the dimension of the input vec-
tor. In what follows, a brief description of the original SOM algorithm is given. Firstly, we use the euclidean distance metric to 
find the current winning neuron, i*(t), as given by the following expression:

i*(t) = arg min∀i ||x(t) – wi(t)||, (5)

where x(t) ∈ ℜp denotes the current input vector, wi(t) ∈ ℜp is the weight vector of neuron i, and t denotes the time steps as-
sociated with the iterations of the algorithm. Secondly, it is necessary to adjust the weight vectors of the winning neuron and of 
those neurons belonging to its neighborhood in the output array:

wi(t+1) = wi(t) + α(t)h(i*, i; t)[x(t) – wi(t)], (6)

where 0 < α(t) < 1 is the learning rate, which usually decay in time, and h(i*,  i;  t) is a weighting function that defines the 
boundaries of the neighborhood of the winning neuron at time t. 
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A common choice for the neighborhood function is the gaussian function given by

h i * ,i ; t =exp−∥r i *t −r it ∥
2

22 t  , (7)

where  ri(t) ∈ ℜD and ri*(t) ∈ ℜD, are respectively, the positions of neurons i and i* in a predefined output array (of dimen-
sion D) where the neurons are arranged in the nodes, and σ(t) > 0 defines the radius of the neighborhood function at time t.

The variables α(t) and σ(t) should both decay with time to guarantee convergence of the weight vectors to stable steady states. 
In this paper, we adopt an exponential annealing for both, as given by

α t =α0αT

α0 
 t /T

  and   t =0T

0 
 t /T 

,
(8)

where α0 (σ0) and αT (σT) are the initial and final values of α(t) (σ(t)), respectively. The operations defined from Eq. (5) to 
Eq.(8) are repeated until a steady state of global ordering of the weight vectors has been achieved. In this case, we say that the 
map has converged.

In addition to usual clustering properties, the resulting map also preserves the topology of the input samples in the sense that 
adjacent input patterns are mapped into adjacent neurons on the map. Due to this topology-preserving property, the SOM is 
able to cluster input information and spatial relationships of the data on the map. This clustering ability of the SOM has shown 
to be quite useful for the identification of nonlinear dynamical systems (Barreto and Araújo, 2004). However, the number of 
neurons required by the SOM to provide a good approximation of a given input-output mapping is very high, specially when 
compared to the MLP and RBF neural networks. To alleviate this limitation of the plain SOM algorithm to some extent, we in-
troduce two SOM-based local ARX models.

3 Local ARX Modeling Approaches
In this section, we describe two approaches to the system identification problem that use the SOM as a building block. The ba-
sic idea behind both is the partitioning of the input space into non-overlapping regions, called Voronoi cells, whose centroids 
correspond to the weight vectors of the SOM. Then an interpolating hyperplane is associated with each Voronoi cell or to a  
small subset of them, in order to estimate the output value of a function.

3.1 Local Linear Mapping

The first architecture to be described is called Local Linear Mapping (LLM) (Walter et al., 1990). The basic idea of the LLM is 
to associate each neuron in the SOM with a conventional FIR/LMS linear filter. The SOM array is used to quantize the input 
space in a reduced number of prototype vectors (and hence, Voronoi cells), while the filter associated with the winning neuron 
provides a local estimator of the output of the mapping being approximated.

For the sake of clarity, Figure 1 shows a sketch of the LLM model for a scalar-valued nonlinear function of a single variable, 
i.e. y = f(x). Note that the global nonlinear function, represented by the curved solid line, is approximated piecewise by three 
affine functions, associated with the available prototypes wi, i = 1, 2 and 3. In this example, the prototypes are along the x -
axis since they are scalar numbers. For each input x, the linear function associated with the closest prototype wi*  is used to 
generate the estimated output value ŷ . 

Thus, for the inverse modeling task of interest, each input vector x(t) ∈ ℜp+q is defined as

x(t) = [u(t-1), ..., u(t-q); y(t-1), ..., y(t-p)]T. (9)

Clustering (or vector quantization) of the input space X is performed by the LLM as in the usual SOM algorithm, with each 
neuron i owning a prototype vector wi, i = 1, ..., S, where S is the number of neurons of the output array A.
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Figure 1: Sketch of the local linear mapping implemented by the LLM architecture.

Additionally, there is a coefficient vector ai(t) ∈ ℜp+q associated to each weight vector wi, which plays the role of the coeffi-
cients of a (linear) ARX model:

ai(t) = [bi,1(t), ..., bi,q(t), ai,1(t), ..., ai,p(t)]T. (10)

The output value of the LLM-based multiple local ARX model is then computed as

u t =∑k=1

q
bi∗, k t u t−k ∑l=1

p
a i∗ ,l t  y t−l  = a i *

T t x t , (11)

where ai*(t) is the coefficient vector of the linear filter associated with the winning neuron i*(t). From Eq. (11), one can easily 
note that the coefficient vector ai*(t) is used to build a local approximation for the output of the desired nonlinear mapping.

Since the adjustable parameters of the LLM algorithm are the set of prototype vectors  wi(t) and their associated coefficient 
vectors ai(t), i = 1, 2,…, S, we need two learning rules. The rule for updating the prototype vectors wi follows exactly the one 
given in Eq. (6). The learning rule of the coefficient vectors ai(t) is an extension of the normalized LMS algorithm that also 
takes into account the influence of the neighborhood function h(i*, i; t):

ai(t+1) = ai(t) + α h(i*, i; t)ai(t), (12)

where 0 < α << 1 denotes the learning rate of the coefficient vector, and ai(t)  is the error correction rule of Widrow-Hoff 
(Widrow and Hoff, 1960), given by

2
( )( ) [ ( ) ( ) ( )] ,
( )

T
i i

tt u t t t
t

∆ = − xa a x
x

(13)

where u(t) is the actual output of the inverse nonlinear mapping being approximated. Once trained, the weight vectors wi of 
the SOM and the associated coefficient vectors ai(t), i = 1, 2, …, S, are “frozen”. The LLM-based local ARX model can then 
be used to estimate the outputs of input-output mapping.

3.2 Prototype-Based Local Least-Squares Model

The algorithm to be described in this section, called K-winners SOM (KSOM), was originally applied to nonstationary univari-
ate time series prediction (Barreto et al., 2004; Barreto et al., 2003). In this paper we aim to evaluate this architecture in the 
context of nonlinear system identification. For training purposes, the KSOM algorithm depends on the VQTAM (Vector-Quan-
tized Temporal Associative Memory) model, proposed by Barreto and Araújo (2004), which is a straightforward extension of 
the SOM algorithm that can be used for system identification and control purposes. Roughly speaking, the VQTAM is just a 
SOM algorithm that simultaneously performs vector quantization on the input and output spaces of a given nonlinear mapping.
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Figure 2: Sketch of the associative mapping implemented by the VQTAM method.

In the VQTAM model, the input vector at time step t, x(t), is composed of two parts. The first part, denoted xin(t) ∈ ℜp+q, car-
ries data about the input of the dynamic mapping to be learned. The second part, denoted xout(t) ∈ ℜ, contains data concerning 
the desired (scalar) output of this mapping. The weight vector of neuron  i, wi(t), has its dimension increased accordingly. 
These changes are formulated as follows:

( )( )
( )  and ( ) ,

( )( )

inin
i

i outout
i

tt
t t

w tx t
  

= =   
   

wx
x w

(14)

where qpin
i t +ℜ∈)(w  and ℜ∈)(txout

i  are, respectively, the portions of the weight vector which store information about the in-
puts and the outputs of the desired mapping. Depending on the variables chosen to build the vector xin(t) and the scalar xout(t) 
one can use the SOM algorithm to learn the forward or the inverse mapping of a given plant (system). For instance, if the inter-
est is in inverse identification, then we define

xin(t) = [u(t-1), ..., u(t-q); y(t-1), ..., y(t-p)]T, (15)

and 

xout(t) = u(t). (16)

The winning neuron at time step t is determined based only on xin(t), i.e.

i * t =arg min∀ i∥x in t−wi
in t ∥. (17)

For updating the weights, however, both xin(t) and xout(t) are used:

wi
in t1=wi

in t α t h i * ,i ; t [xin t −wi
in t ] , (18)

w i
out t1=wi

out t α t h i * , i ; t [ xout t −wi
out t ] , (19)

where 0 < α(t) << 1 is the learning rate, and h(i*,i; t) is a time-varying gaussian neighborhood function defined as in Eq. (7). 
In words, the learning rule in Eq. (18) performs topology-preserving vector quantization on the input space, while the rule in 
Eq. (19) acts similarly on the output space of the mapping being learned. 

As training proceeds, the SOM learns to associate the input prototype vectors wi
in with the corresponding output prototype 

vectors wi
out (see Fig. 2). The SOM-based associative memory procedure implemented by the VQTAM can then be used for 

function approximation purposes.

After training the VQTAM model, the coefficient vector a(t) of a local ARX model for estimating the output of the mapping is 
computed for each time step t by the standard least-squares estimation (LSE) technique, using the weight vectors of the K neu-
rons closest to the current input vector, instead of using the original data vectors. Note that in order to avoid numerical prob-
lems we must have K >> 1.
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Let the set of K winning weight vectors at time t to be denoted by { **
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where a(t) = [b1(t), ...,  bq(t), a1(t), ..., ap(t)]T is a time-varying coefficient vector. Equation (20) can be written in a matrix 
form as

wout(t) =  R(t)a(t), (21)

where the output vector wout(t) and the regression matrix R at time t are defined as follows
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In practice, we usually have  p+q >  K, i.e.  R is a non-square matrix. In this case, we resort to the pseudo-inverse method 
(Principe et al., 2000; Haykin, 1994). Thus, the coefficient vector ai(t) is computed by

a(t) = (RT(t)R(t) + λI)-1RT(t)wout(t), (24)

where I is a identity matrix of order K and λ > 0 is a small regularization constant which is added to the diagonal of  RT(t)R(t) 
to make sure that this matrix is full rank. The parameter λ is found by trial-and-error and it is set to small values to avoid ex-
cessively biased estimates of a(t). It turned out that the KSOM model is relatively insensitive to the choice of λ as long as it is 
kept small (suggested range: λ ∈ [0.001, 0.005]).

Once a(t) has been computed, one can estimate the output of the nonlinear mapping being approximated by the output of an 
ARX model:

u t =∑k=1

q
bk t u t−k ∑l=1

p
a l t  y t−l = aT(t)xin(t). (25)

Note that, for each time step t, the KSOM builds a single local ARX model over a subset of K weight vectors chosen from the 
whole set of S weight vectors. Thus, the coefficient vector a(t) is time-variant. This is one of the differences between KSOM 
and LLM. 

In a sum, while the KSOM-based local ARX model uses K < S prototype vectors to build a single local ARX model with a 
time-variant coefficient vector, the LLM-based approach builds S  local ARX models with time-invariant coefficients (one for 
each prototype vector). Another difference is that the LLM approach uses a LMS-like learning rule to update the coefficient 
vector of the winning neuron. Once training is completed all coefficient vectors ai, i=1, 2, …, S, are frozen for posterior use. 
The KSOM, instead, uses a LSE-like procedure to find the coefficient vector a(t) each time an input vector is presented, so that 
a single linear mapping is built at each time step (see Fig. 3). 
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Figure 3: Sketch of the local linear mapping implemented by the KSOM architecture.

Some authors have proposed local modeling approaches that closely resemble the KSOM model (Cho et al., 2006; Principe et 
al., 1998; Chen and Xi, 1998). Principe et al. (1998) proposed a neural architecture that is equivalent to KSOM in the sense 
that the coefficient vector a(t) is computed from K prototype vectors of a trained SOM using the LSE technique. However, the 
required prototype vectors are not selected as the K nearest prototypes to the current input vector, but rather automatically se-
lected as the winning prototype at time t and its K-1 topological neighbors. If the trained SOM presents topological defects, as 
usually occurs for multidimensional data, the KSOM generally provides more accurate results.

Chen and Xi (1998) also proposed a local regression model whose coefficient vectors are computed using the prototypes of a 
competitive learning network through the Recursive Least-Squares (RLS) algorithm. However, the competitive network used 
by Chen and Xi does not have the topology-preserving properties of the SOM algorithm, which has shown to be important for 
system identification purposes (Barreto and Araújo, 2004).

It is worth mentioning that  here is no specific difference between the SOM-based local models evaluated in Barreto et al. 
(2003, 2004) and the ones presented in the current paper. The main difference is related with the kind of application discussed 
in them. They have different demands. For example, for univariate time series prediction we require only one memory order 
parameter, while for NARX modeling we need two memory parameters. Another important point is that in Barreto et al. (2003, 
2004), the data set was artificially generated chaotic (noise free) time series. In the current paper, both data sets are comprised 
of real-world noisy input/output time series. 

Our focus is in evaluating the local modeling approach on system identification, more specifically, on local NARX modeling 
for system identification. It should be pointed out that the local modeling approach itself is not novel, it has been used before 
for time series prediction, system identification and control purposes, as can be observed in many of the cited references. 
However, application of local modeling to system identification is in its first infancy, in the sense that there is still room for 
applications and theoretic advances. For example, performance comparison with more traditional global (linear or not) system 
identification approaches is missing in the literature. It is exactly in this regard that the paper contributes the most, with a  
performance  evaluation of  several  neural-based  models  (including different  MLP topologies)  for  local  ARX modeling of 
nonlinear systems. 

4 Computer Simulations and Discussion

Hydraulic Actuator: The proposed SOM-based local linear NARX models are evaluated in the identification of the inverse 
dynamics of a hydraulic actuator and compared with standard MLP-based global NARX models. Figure 4 shows the measured 
values of the valve position (input time series, {u(t)}) and the oil pressure (output time series, {y(t)}). The oil pressure signal 
sequence shows a highly oscillating behavior caused by mechanical resonances (Sjöberg et al., 1995). 
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For the sake of completeness, the LLM- and KSOM-based local ARX models are compared with an one-hidden-layer MLP 
trained by the standard backpropagation algorithm (MLP-1h), another one-hidden-layer MLP trained by the Levenberg-Mar-
quardt (MLP-LM) algorithm and, finally, a two-hidden-layer MLP (MLP-2h) trained by the standard backpropagation algo-
rithm. All these models are also compared with the standard linear Auto-Regressive with eXogenous variables (ARX) model, 
trained on-line through the plain LMS algorithm.

(a) (b)
Figure 4: Measured values of valve position (a) and oil pressure (b).

For all MLP-based global NARX models, the transfer function of the hidden neurons is the hyperbolic tangent function, while 
the output neuron uses a linear one. After some experimentation with the data, the best configuration of the MLP-1h and MLP-
LM models have 20 units in the hidden layer. For the MLP-2h, the number of neurons in second hidden layer is heuristically 
set to half the number of neurons in the first hidden layer. This value for the number of neurons in the second hidden layer 
turned out to be satisfactory. The learning rate for the MLPs was set to 0.1. No momentum term is used. The programming 
codes for all models were implemented in Matlab© 7.0.

During the estimation (testing) phase, for evaluation purposes, the neural models should compute the estimation error (residu-
als) e(t)=u(t) – û(t), where u(t) is desired output and û(t) is the estimate provided by each neural model. For quantitative as-
sessment of the performance of all models accuracy we use the NMSE (normalized mean squared error):

NMSE=
∑t=1

M
e2 t 

M .  u
2

(26)

where 2ˆuσ  is the variance of the original time series {u(t)}, t = 1, ..., M , where M is the length of the sequence of residuals.

The models are trained using the first 512 samples of the input/output signal sequences and tested with the remaining 512 sam-
ples. The input and output memory orders are set to p = 4 and q = 5, respectively. For each SOM-based model, the initial and 
final learning rates are set to α0 = 0.5 and αT = 0.01. The initial and final values of radius of the neighborhood function are σ0 

= 0.5S and σT = 0.001, where S, the number of neurons in the SOM is set to 20. The learning rate α is set to 0.1. 

For the KSOM-based local ARX model, the best number of winning neurons was found to be K = 15. In the first simulation, 
the NMSE values were averaged over 100 training/testing runs, in which the weights of the neural models were randomly ini-
tialized at each run. The obtained results are shown in Table 1, which shows the mean, minimum, maximum and variance of 
the NMSE values, measured along the 100 training/testing runs. In this table, the models are sorted in increasing order of the 
mean NMSE values.
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Table 1: Performances of the global and local models for the hydraulic actuator data.
Neural 
Models

NMSE
mean min max Variance

KSOM 0.0019 0.0002 0.0247 1.15×10-5

LLM 0.0347 0.0181 0.0651 1.58×10-4

ARX 0.0380 0.0380 0.0380 0.0083
MLP-LM 0.0722 0.0048 0.3079 0.0041
MLP-1h 0.3485 0.2800 0.4146 4.96×10-4

MLP-2h 0.3516 0.0980 2.6986 0.0963

One can easily note that the performances of KSOM- and LLM-based local models on this real-world application are far better 
than those of MLP-based global models. The better performance of the KSOM-based model in comparison to the LLM-based 
is due to the use of the LSE algorithm to estimate the coefficient vector a(t), as indicated in Eq. (24). Among the MLP-based 
global models, the use of second-order information also explains the better performance of the MLP-LM, which uses curvature 
information extracted from an approximation of the Hessian matrix. 

Figure 5 shows typical sequences of estimated values of the valve position provided by the best local ARX and global NARX 
models. Figure 5a shows the sequence generated by the KSOM-based model, while Figure 5b shows the sequence estimated by 
the MLP-LM model. One can note that the local approach provides better approximation in regions of higher curvature, e.g. 
around the time steps 350, 410 and 500. These regions are highlighted in the figures and denoted R1, R2 and R3, respectively.

Flexible Robotic Arm: An additional data set is used to evaluate all the aforementioned models in the estimation of the inverse 
dynamics of a flexible robot arm. The arm is installed on an electric motor. It had modeled the transfer function from the mea-
sured reaction torque of the structure on the ground to the acceleration of the flexible arm1. Figure 6 shows the measured val-
ues of the reaction torque of the structure (input time series, {u(t)}) and the acceleration of the flexible arm (output time series, 
{y(t)}).

The number of neurons for all SOM-based local ARX models is set to 30. For the KSOM model, K is now equal to 25. For 
each SOM-based model, the training parameters are the same as those used for the hydraulic actuator data set. The MLP-1h 
and MLP-LM models have 30 hidden neurons, while the MLP-2h has 30 and 15 neurons in the first and second hidden layers, 
respectively. The MLP-based models used a constant learning rate equal to 0.1. No momentum term is used. The LMS algo-
rithm is used again for training the linear ARX model.

The models are trained using the first 820 samples of the input-output signal sequences (approximately, 80% of the total) and 
tested with the remaining 204 samples. The input and output memory orders are set to p = 4 and q = 5, respectively. The ob-
tained results are shown in Table 2, where are displayed the mean, minimum, maximum and variance of the NMSE values, 
measured along the 100 training/testing runs. The weights of the neural models were randomly initialized at each run. In this 
table, the models are again sorted in increasing order of the mean NMSE values.

Table 2: Performances of the global and local models for the robotic arm data.
Neural 
Models

NMSE
mean min max Variance

KSOM 0.0064  0.0045 0.0117 1.83×10-6

MLP-LM 0.1488 0.0657 0.4936 0.0107
MLP-1h 0.1622 0.1549 0.1699 1.03×10-5

LLM 0.3176 0.2685 0.3558 2.23×10-4

ARX 0.3848 0.3848 0.3848 0.0445
MLP-2h 0.6963 0.5978 1.5310 0.0368

1 These data were obtained in the framework of the Belgian Programme on Interuniversity Attraction Poles ({IUAP}-nr.50) initiated by 
the Belgian State (available at http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html).
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(a) (b)
Figure 5: Typical estimated sequences of the valve position provided by the KSOM and MLP-LM models. 

Open circles ‘o’ denote actual sample values, while the solid line indicates the estimated sequence.

Again, the performance of KSOM-based local ARX model on this real-world application is far better than those of MLP-based 
global models. The better performance of the KSOM-based model in comparison to the LLM-based model remains, but this 
time the LLM model performed worse than the MLP-LM and MLP-1h models, being only better than the ARX and MLP-2h 
models. As before, time the use of second-order information was crucial to the good performance of the MLP-LM model with 
respect to the other MLP-based models.

Figure 7 shows typical sequences of estimated values of the reaction torque of the structure provided by the best local ARX 
and global NARX models. Figure 7a shows the sequence generated by the KSOM model, while Figure 7b shows the sequence 
estimated by the MLP-LM model.

(a) (b)
Figure 6: Measured values of reaction torque of the structure (a) and acceleration of the flexible robotic arm (b).

4 Conclusion

In this paper, we have attempted to tackle the problem of nonlinear system identification using the local modeling methodolo-
gy. For that purpose we evaluated two local ARX models based on Kohonen’s self-organizing map in the identification of the 
inverse dynamics of two real-world data sets, a hydraulic actuator and a flexible robotic arm. The first local ARX model pro-
posed builds multiple linear ARX models, one for each Voronoi region associated with the prototype vectors of the SOM. 



Learning and Nonlinear Models - Revista da Sociedade Brasileira de Redes Neurais (SBRN), Vol. 4, No. 2  pp. 112-123, 2006
©Sociedade Brasileira de Redes Neurais

The second one builds only a single ARX model using the prototypes vectors closest to the current input vector. It has been 
shown for the hydraulic actuator data set that the local ARX models outperform the conventional MLP-based global NARX 
models, and for the robot arm data set, considerably more difficult than the first data set, the KSOM-based local NARX model 
presented the best performance among all models. Currently, we are evaluating the SOM-based local ARX modeling approach 
on other data sets for benchmarking purposes. Also, we are assessing their computational complexity (i.e. the number of opera-
tions required) during both training and testing phases.

(a) (b)
Figure 7: Typical estimated sequences of reaction torque of the structure provided by the KSOM and MLP-LM models. 

Dashed lines denote actual sample values, while the solid line indicates the estimated sequence.
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