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Abstract - This tutorial on fast Support Vector Machines (SVM) presents mathematical formulations and pseudo-
code Implementations of three algorithms used for fast SVM training. Traditional SVM training is a quadratic-
programming (QP) minimization problem that can be solved, e.g., using the Sequential Minimization Optimization 
(SMO) algorithm. This algorithm solves analytically a small QP optimization problem in each iteration, drastically 
reducing the training time needed by conventional QP optimizers. It is important to note that traditional SVM can be of 
two types: L1SVM and L2SVM, depending on the way that the training error is characterized in the SVM mathematical 
formulation. The SMO implementation presented in this tutorial applies only for the L1SVM, but it can be adapted to 
the L2SVM case. 

The Proximal SVM (PSVM) algorithm was also introduced as a fast alternative to traditional SVM classifiers that 
usually require a large amount of computation time for training. Unfortunately the PSVM algorithm may present poor 
performance due to biased optimal hyperplanes. The Unbiased Proximal SVM (UPSVM) algorithm uses a slightly 
different approach to circumvent this problem, such that an unbiased optimal hyperplane is always obtained. 

The results obtained show that the UPSVM algorithm performs better than the Sequential Minimal Optimization (SMO) 
algorithm with respect to training time with similar or better probability of correct pattern classification. The UPSVM 
algorithm also performs better than the PSVM algorithm with respect to probability of correct pattern classification 
(especially for low values of the regularization parameter C ), to training time, and to the number of floating point 
operations. 

Keywords - Support Vector Machines – SVM, fast algorithms, Pattern Recognition 

1 Introduction 

 Support Vector Machines (SVM) were first introduced by Vapnik based on the method of Minimal Structural Risk 
Minimization [1]. Since its proposal, it has been used in different applications, such as pattern classification [2, 3] and 
nonlinear regression [4, 5, 6]. In this work, we are particularly interested in explaining the use of SVM for pattern 
classification. A Support Vector Machine is basically a binary pattern classifier of M-dimensional data. A set of different 
SVMs can be used to solve the more general problem of N-class classification. An SVM classifier is obtained after a 
supervised training procedure where maximization of the distance between two classes (represented by two sets of training 
vectors) is done along with the minimization of the training error. 

 SVM training consists basically in finding two support hyperplanes, one for each class, so that the distance between 
classes can be measured as the distance between the support hyperplanes. The SVM classifier is represented by the optimal 
hyperplane located in the middle of both support hyperplanes and is defined by a small amount of training patterns called 
support vectors (SVs). In the case of linearly separable classes, as illustrated in Figure 1, the SVs are located at the respective 
support hyperplanes and correspond to the closest data of each class to the optimal hyperplane, giving the idea that the support 
hyperplanes really "support" each class. 
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 In other words, an SVM classifier is a kind of linear discriminator [7], i.e., it uses a hyperplane to divide an M-
dimensional space (the input or the feature space) in two regions, each one associated with a different class. What makes it 
different from other linear discriminators is the fact that maximization of the distance between two classes is done in the 
training procedure as a means to obtain good generalization capability. 

 As will be seen in the next section, in order to train an SVM classifier it is necessary to solve a quadratic-
programming (QP) optimization problem which is usually a slow and difficult task. Besides, the required memory to solve QP 
problems for a large data set is sometimes prohibitive. The most common technique used to circumvent these problems is 
based on the solution of many smaller QP problems in each iteration. Two classical methods often found in literature are 
interesting cases of this training technique: The SVMlight algorithm [8] and the Sequential Minimal Optimization (SMO) 
algorithm [9]. The SVMlight algorithm uses a decomposition method proposed by Osuna et al. [2] to obtain a smaller QP 
problem in each iteration but uses conventional QP optimizers to solve it. On the other hand, the SMO algorithm solves 
analytically one QP problem involving only two patterns in each iteration. The SMO algorithm is detailed in this tutorial 
because it does not need an external QP optimizer and, consequently, it can handle large training sets in a very fast and simple 
way. Besides, although it is claimed in [8] that the SVMlight algorithm was two times faster than the SMO algorithm, the latter 
was at least one order of magnitude faster than the former in [10]. 

Support Vectors

Support Vectors

w0
Tx + b0 = 1

w0
Tx + b0 =  -1

 
Figure  1: Example for separable classes. 

 Recently, Vishwanathan et al. proposed the SimpleSVM algorithm [11]. This algorithm also solves many smaller QP 
problems in each iteration, but its main difference to the two algorithms briefly discussed above is that the set of support-vector 
candidates (and the small QP problem) grows at most one training example in each iteration. This algorithm is based on the 
idea that the number of support vectors is small relative to the size of the data set and that the original QP problem can be 
solved with a smaller one that takes into account only the SVs. But it is also important to note that the number of SVs can vary 
with respect to the regularization parameter C (present in the SVM mathematical formulation) whose optimal value depends on 
the application. 

 It is important to note that traditional SVM can be of two types: L1SVM and L2SVM, depending on the way that the 
training error is characterized in the SVM mathematical formulation (see next section). The tree methods cited were derived 
for the L1SVM classifier but can be adapted for the L2SVM formulation. 

 This work also describes in detail two other algorithms used for supervised training of a modified SVM classifier. The 
first algorithm is called Proximal SVM (PSVM) and was introduced by Mangasarian and Fung [10]. The second algorithm is 
called Unbiased PSVM (UPSVM) and was introduced in [12] and always generates an unbiased optimal hyperplane, which is 
not the case when using the PSVM algorithm. The UPSVM algorithm is slightly faster than the PSVM algorithm and much 
faster than the SMO algorithm, but maintains equal or better performance [12, 13]. PSVM and UPSVM algorithms have 
computational complexity of O(N) in the case of linear classifiers [13], and the SMO algorithm has computational complexity 
of O(N2) in the best case [9]. 

In order to present SMO, PSVM, and UPSVM algorithms and their implementations, this work is divided as follows: 
Section 2 summarizes the theory about SVM used for pattern classification, including linear and nonlinear classifiers for 
Large-Margin SVM (L1SVM) and Proximal SVM (PSVM and UPSVM) algorithms. In section 3, SMO, PSVM, and UPSVM 
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algorithms are described and pseudo-code implementations are given. Finally, section 4 presents the conclusions. 

2 SVM and PSVM Formulations 

2.1 Support Vector Machines 

The classification surface is a hyperplane on the input space (linear SVMs) or on the feature space (nonlinear SVMs) 
obtained after applying a nonlinear transformation to the input space. For linear classifiers, the separating hyperplane in the 
input space is given by  

 0=oo
T b+wx  (1) 

where, in the SVM nomenclature, w ∈ RM and b ∈ R denote weight vector and bias, respectively, and x ∈ RM is a vector in the 
input space. An input pattern, xi, is said to belong to class C1 if  xi

Two + bo ≥0, and to belong to class C2 otherwise. For 
nonlinear classifiers, the separating hyperplane in the feature space is given by  

 0=)( oo
T bg +wx  (2) 

where )(xg  is a mapping function that maps the M-dimensional input space into the L-dimensional feature space ( ML ≥ ). 

In the case of linearly separable patterns shown in figure 1 (hard margin), the support vectors are defined as the 
closest data to the optimal hyperplane, i.e., without loss of generality, for a linear classifier, a support vector xS must satisfy  
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The distance between the support hyperplanes defined by Eq. 3 is called margin of separation. Let x1 be a support 
vector belonging to class C1 and x be its projection onto the optimal hyperplane. The distance between x1 and the optimal 
hyperplane is given by  
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where both )( 1 xx −  and wo are vectors perpendicular to the optimal hyperplane that can be pointing in the same, or in opposite 
directions. Applying Eqs.1 and 3 to Eq.4, we obtain  
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1=1  (5) 

Proceeding in the same way for 2x , a support vector belonging to class 2C , the distance between it and the optimal 
hyperplane is  

 
o

r
w
1=2  (6) 

So the margin of separation, calculated as 21= rr +ρ , is inversely proportional to the magnitude of w  and is given by  

 
ow

2=ρ  (7) 

When input patterns are not linearly separable (soft margin), the support vectors are still given by Eq. 3, but some 
input patterns may lay inside the margin of separation, or on the wrong side of the optimal hyperplane. 
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Figure 2 shows the use of a hyperplane for the classification of input vectors from two non-linearly separable classes. 
Let us define ix  the observed pattern and iξ  the training error, which is equal to zero if and only if ix  is bounded by the 
respective support hyperplane, otherwise iξ  is equal to the distance from ix  to the respective support hyperplane. As it can be 
seen, some vectors of both classes can be located on the wrong side of its support hyperplane, which means training error 
different from zero ( 0>iξ ), but only those located on the wrong side of the optimal hyperplane are wrongly classified 
( 1>iξ ). 

Classification error may occur when classes are non-linearly separable. In this case, the optimal hyperplane 
parameters are obtained by the minimization of the training error (indirectly related to the classification error) along with the 
maximization of the margin of separation. The latter can be understood as a way to obtain classification error minimization for 
unknown data. 

Support Vectors

Support Vectors
Classification

with error

Classification
without error

w0
Tx + b0 = 1

ξ i

w0
Tx + b0 =  -1

 
Figure  2: Example for non-separable classes. 

To take into account both the maximization of the margin of separation and the minimization of the training error, the 
following linearly-constrained convex minimization problem was proposed [1]  
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where each column of X ∈ RMxN is an observation ( ix ), D is a diagonal matrix with class-label elements Dii equal to 1 if xi 
belongs to class C1, or -1 otherwise, ξ ∈ RN is a vector of training errors and vector e has all its elements equal to one. 

The first term of the objective function in Eq. 8 is due to the maximization of the margin of separation. Its second 
term corresponds to the training error weighted by the regularization parameter C, which measures how much emphasis is 
given to the minimization of the training error. The parameter p defines the classifier type. When p=1 the obtained classifier is 
called L1 large-margin SVM (L1SVM), and when p=2 it is called L2 large-margin SVM (L2SVM). The choice of value for C is 
a very important matter because if too much emphasis is given to the minimization of the training error, then the trained 
classifier can achieve poor generalization performance, or if too much emphasis is given to the maximization of the margin of 
separation, then the classification error for the training patterns may be too big and the classifier would be useless. 

The solution for the L1SVM classifier ( 1=p ) can be obtained using the method of Lagrange multipliers. The 
Lagrangian function is given by  

 ( ) ξμξeewXDαeξwwμαξw TTTTT bCJ −+−+−⎟
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where α and μ are the Lagrange multiplier vectors associated to the constraint in Eq. 8, and to the constraint 0≥iξ , 
respectively. 

In order to obtain the optimal solution that minimize the Lagrangian function, it is necessary to calculate 0=J∇ , 
obtaining 

 XDαw =o  (10) 

 0=DeαT  (11) 

and  

 eμα C=+  (12) 

Eqs. 10, 11, and 12 result from making the the partial derivatives of the Lagrangian function with respect to w, b, and ξ all 
equal to zero. Substituting Eq. 10 in Eq. 9 and using Eqs. 11 and 12, we obtain  

 eαXDαDXαα TTTJ −
2
1=)(  (13) 

Therefore the solution to Eq. 8 can also be obtained by the solution of the dual-problem described below [1]  
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where the constraints 0≥iα , Ni ,1,2,= K , are imposed by the method of Lagrange multipliers, and all αi  must be less than 
or equal to C due to Eq. 12 and because μi is also a Lagrange multiplier and must also be nonnegative. 

After solving Eq. 14, an optimal Lagrange multiplier vector αo is obtained. Each element of αo  must obey the 
Karush-Kuhn-Tucker (KKT) conditions for optimality given by:  

 0=     1>)( iioo
T db α↔+wx  

 Cdb iioo
T <<0      1=)( α↔+wx  (15) 

 Cdb iioo
T =       1<)( α↔+wx  

where id  is the classification label of the training pattern xi, i.e., it is the i-th element of the vector De. The optimal weight 
vector wo is given by using αo in Eq. 10. The optimal bias is given by Eq. 3, rewritten below in a different manner  

 S
T
oSo db xw−=  (16) 

where dS is the classification label (±1) of the support vector xS, associated to a Lagrange multiplier that is not equal to zero or 
C. 

To classify an unknown pattern y after the L1SVM classifier was trained, it is necessary to calculate  

 oo
T b+wyy =)(dist  (17) 

which is proportional to the distance of y  from the optimal hyperplane. If dist(y) is greater than or equal to zero, then y 
belongs to class C1, otherwise it belongs to class C2. 

A nonlinear L1SVM classifier can be easily obtained proceeding in the same way used to obtain a linear L1SVM 
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classifier, but replacing x for g(x) and XTX for the kernel matrix K ∈ RNxN whose element Kij = g(xi)Tg(xj) and N is the number 
of training observations. A radial-basis function (RBF) kernel, defined below, is usually used in nonlinear classifiers [14]  

 ⎟⎟
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 (18) 

where σ is a parameter defined by the user. 

For a nonlinear L1SVM classifier, Eq. 17 becomes  

 oo
T b+Dαky y=)(dist  (19) 

where 
T

r
TTT gggggg )]()()()()()([= 21 xyxyxyky K  and x1, x2, …, xr are support vectors, also obtained after training. Again, 

if dist 0)( ≥y  then 1C∈y , otherwise 2C∈y . 

With respect to the L2SVM classifier, its dual-problem described in Eq. 20 [15] is obtained by the same procedure 
that was carried out to derive the L1SVM classifier, i.e., calculating )(J∇ , with 2=p  in Eq. 8, and making it equal to zero.  
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It is important to note that Eqs. 10 and 11 remain valid for the L2SVM classifier, but making the partial derivative of 
J  with respect to ξ equal to zero gives  

 C
o

o
α=ξ  (21) 

Applying Eq. 21 in Eq. 8 results in the third term in Eq. 20. The Eq. 21 also gives the explanation for the difference in 
the constraint relative to the upper bound of α  for the L2SVM classifier when compared to the L1SVM classifier. This 
L2SVM formulation is valid for the linear case, where the kernel matrix K is equal to XTX, as well as for the nonlinear case. It 
is also important to note that Eq. 17 (or Eq. 19 in the nonlinear case) remains valid for the L2SVM classifier, but Eq. 16 must 
be changed to  

 o
T
SSSo db wxξ −− )(1=  (22) 

where ξS is the training error associated with the support vector xS. 

2.2  Proximal Support Vector Machines 

The PSVM algorithms was first introduced by Mangasarian and Fung [10] as a fast-training algorithm for a modified 
SVM problem. The PSVM algorithm associated with the DAGSVM algorithm [16] was used by Li and others in [17] for the 
generalization of the PSVM classifier for more than 2 classes. The formulation for the linear case is described below  

 ( ) ( )bbCbJ TTT

b
ewXDeξwwξξξw

ξw
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⎡ ++ =osubject  t
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The PSVM algorithm is a natural evolution of a similar approach that had been used before in the formulation of the 
Active SVM (ASVM) algorithm proposed by Mangasarian et al. [18], where the term b2 was added to the objective function, in 
the same way that was done in Eq. 23, as an artificial tool included to obtain an analytic solution for w, b and ξ based on a 
small system of linear equations. It is important to note that the inclusion of b2 in Eq. 23 does not improve classification 
performance, but rather, it will decrease the probability of correct classification on training and test sets for small values of the 
regularization parameter C [13]. This happens because much effort is made to minimize the magnitudes of w and b 
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simultaneously, which implies that parameter  b be unnecessarily small and the optimal hyperplane be biased, i.e., closer to the 
origin than necessary. 

Eq. 23 also shows that the traditional SVM inequality constraint is replaced by an equality constraint. This fact 
changes the nature of the support hyperplanes (wo

Tx + bo = ±1). These hyperplanes are no longer bounding hyperplanes. 
Instead, they correspond to proximal hyperplanes around which the points of each class are clustered. Figure 3 illustrates this 
approach. In this case, the training error is always greater than zero for vectors not located at the proximal hyperplane. As it 
occurs with traditional L1SVM or L2SVM, only those vectors located on the wrong side of the optimal hyperplane are 
wrongly classified (ξi > 1). In fact, the geometrically motivated proximal formulation has been considered in the more general 
context of regularization networks [10]. 

Using Lagrange for solving the PSVM minimization problem and considering α  as a vector of Lagrange multipliers, 
the solution for the PSVM problem in Eq. 23 can be obtained as follows:  

 eHHIα
1

=
−

⎟
⎠
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⎛ + T

o C  (24) 

 oo XDαw =  (25) 

 o
T

ob Dαe=  (26) 

 C
o

o
αξ =  (27) 

where H = D[XT   -e ]. The Eq. 24 was obtained after substituting wo, bo and ξ, given by Eqs. 25 to 27, respectively, in the 
equality constraint given in Eq. 23. 

w0
Tx + b0 =  -1

Classification
with error

w0
Tx + b0 = 1

Classification
without error

Proximal
Hyperplanes

 
Figure 3: Example for non-linearly separable classes with proximal hyperplanes. 

We can use the matrix inversion Lemma [19] to obtain:  
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The solution given by Eq. 28 is less complex than the one given by Eq. 24 because it involves the inversion of the 

1)(1)( +×+ MM  matrix HHI T

C
+ , where M is the number of observation parameters, which is much smaller than N, the 
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number of observations used in training. 

For the nonlinear case, the PSVM classifier is given by the following equations (see [10] for details):  

 eGGIDKDα
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o C  (29) 

 o
T

ob Dαe=  (30) 
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where G=D[K   –e], and K is the Kernel Matrix. Given αo and bo, the Eq. 19 can be used to classify a test pattern y. It is very 
important to note that the generalization to the nonlinear PSVM classifier was done by replacing X for K. This non-
conventional procedure may degrade its performance in the nonlinear case. 

The PSVM algorithm leads to an analytic solution for a modified SVM problem. Its main advantage compared to 
traditional SVM problems is its low computational complexity for the linear case. For the nonlinear case, reduced-kernel 
techniques [10] can be used to reduce the N x N dimensionality of the kernel matrix K. In the next section, a new algorithm 
called UPSVM, is presented. It eliminates the dependence of the objective function to the bias parameter b and therefore 
eliminates a disadvantage of the PSVM algorithm: The biased optimal hyperplane obtained for small values of the 
regularization parameter C. Besides, the UPSVM-algorithm generalization to the nonlinear classifier is similar to that used in 
the L1SVM-classifier generalization. 

2.3  Unbiased Proximal SVM 

The minimization of b2 does not lead to improved classifier generalization or to less training errors. Instead, it can 
decrease the probability of correct classification of test data and increase the number of training errors. Therefore, a new 
algorithm was proposed in [12] that does not take into account parameter b in the objective function to be minimized. Using 
proximal hyperplanes, the new problem for the linear case can be mathematically formulated as 
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Substituting the equality constraint into the objective function in Eq. 32, we obtain  
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Eq. 33 shows the dependence of the objective function to the hyperplane parameters w and b. In order to find a 
solution for w and b, the gradient of J(w,b) is calculated, which gives  

 ( ) wXDeXewXX
w
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Making 0=J∇  gives  
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and  

 N
b o

TTT

o
wXeDee −=  (37) 

Supposing the same number of training observations for classes C1 and C2, then eTDe = 0, and Eqs 36 and 37 can be 
simplified to  
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An analytic solution for a Proximal SVM has been found, but without taking into account the minimization of b. It 
means that the optimal hyperplane will be unbiased even for small values of C. The solution of Eqs. 38 and 39 also involves 
the inversion of an M x M matrix instead of the inversion of an N x N matrix, which guarantees low computational complexity 
(O(N) [12]). This complexity is much lower than that of the Sequential Minimal Optimization (SMO) algorithm [9] used to 
train L1SVM. Its important to observe that the computational complexity of the Sequential Minimal Optimization (SMO) 
algorithm used to train L1SVM is not deterministic, but has been estimated [9] as kNγ, where N is the number of observations 
used in training, k is a positive real number, and γ = 2 in the best case. 

To obtain a nonlinear UPSVM algorithm we will proceed in the same way that traditional SVM problems were 
generalized [1], i.e., substituting XTX by the kernel matrix K, whose element Ki,j = g(xi)Tg(xj). Applying the inversion lemma 
[19] to Eq. 38 yields 
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If  
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we can rewrite Eqs. 39 and 40, respectively, as  
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o

TT

o
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−− ==  (43) 

and  

 oo XDαw =  (44) 

Note that Eq. 44 has the same form as Eq. 10. Therefore αo can be understood as a Lagrange-multiplier vector, 
although it was not calculated explicitly. Substituting XTX by K we obtain the nonlinear UPSVM algorithm as  
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After obtaining αo and bo from the training procedure described by Eqs. 45 and 46, the classification task is 
accomplished by calculating the distance from the test vector y to the optimal hyperplane. This can be done without knowing 
the vector wo by using Eq. 11, where bo is given by Eq. 46. If dist(y) is positive than y ∈ C1, otherwise y ∈ C2. 

3 Algorithms and Implementations 

3.1  SMO Algorithm and Implementation 

The L1SVM dual problem described by Eq. 14 can be solved using the SMO algorithm. The SMO algorithm can be 
divided in three sub-algorithms. The main routine establishes the loop and rules for the choice of the first pattern (xi) to be used 
in each loop iteration. The second routine implements heuristic rules to choose the second pattern, and the third routine 
implements the small QP optimization problem and updates an error cache and the bias parameter b when the Lagrange 
multipliers associated with the training patterns being used are changed. 

The main routine of SMO pseudo-code consists of an outer loop that checks if there is any training pattern that violates the 
Karush-Kuhn-Tucker (KKT) conditions, given a chosen tolerance ε. The KKT conditions are shown in Eq. 47, where di is the 
i-th element of the vector De and αi is the Lagrange multiplier associated with the training pattern xi. 

 0=     1>)( iioo
T db α↔+wx  

 Cdb iioo
T <<0      1=)( α↔+wx  (47) 

 Cdb iioo
T =       1<)( α↔+wx  

Every time a pattern that violates the KKT conditions is found, another pattern is chosen using heuristic rules (second 
routine), and both are used to minimize the objective function (third routine). The search for violating patterns is done once 
over the entire training set. Thereafter the search is done over a small training subset made of patterns associated with 
Lagrange multipliers different from zero and C. This subset contains patterns which are candidates for SVs and have more 
difficulty to satisfy the KKT conditions. The outer loop continues to search exclusively on this subset until it is self 
conditioned, i.e., all patterns in this subset do not violate the KKT conditions. When this happens, the outer loop searches once 
again over the entire training set. If no violating patterns are found after the last iteration over the entire training set, the outer 

loop ends and an optimal Lagrange-multiplier vector oα  is returned along with an optimal bias bo. 

In the second routine, the second pattern xj is chosen from the subset of patterns associated with Lagrange multipliers 
different from zero and different from C, so that | Ei – Ej | is maximized, where Ei = dist(xi) – di, i.e., Ei is the i-th training 
pattern error. This is done because the maximum step in the objective function minimum direction is proportional to  
| Ei – Ej | and inversely proportional to η (see Eq. 53), a parameter that depends on kernel evaluation. Because kernel evaluation 
is time consuming, the rule is simplified. If no joint optimization can be achieved using these two patterns, then the SMO 
algorithm continues to search randomly a second pattern inside this subset and, after that, over the entire training set. 

It is also important to note that it is suggested in [9] to maintain a cached error vector to speed the SMO algorithm, 
but in the Matlab implementation, it is faster to maintain a complete updated error vector than to update specific error values in 
a cache vector in each iteration. 

In the third routine, constrained optimization using only two Lagrange multipliers is done, if possible. Due to the 
constraints in Eq. 14, the optimal Lagrange multipliers lie in a diagonal line within a square. It can be proved [9] that new 
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Lagrange multipliers in each iteration, if they exist, are given by: 
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where s = didj, and L and H are the minimum and maximum values for αi, respectively. The equations for L, H and αi
aux are 

given below:  
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and  
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where  

 jjiiji KKK ,,,2= −−η  (53) 

The third and innermost routine ends with the calculation of newb  and the error cache vector, newE . The updated value 
for newb  is 
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where  
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It is important to state that if Canew
i <<0  and Canew

j <<0  then bi is equal to bj. 

The updated value for newE  is  
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where ki corresponds to the i-th column of matrix K. The complete pseudo-code implementation for the SMO algorithm is 
given on Tables 1, 2, and 3. It is also made available online at  www.lps.ufrj.br/profs/campos. To use it, it is necessary to 
provide the kernel matrix (XTX in the linear case), the vector of classification labels, the value of the regularization parameter 
C and the maximal number of iterations. The program will return the vector of Lagrange multipliers, the bias parameter and the 
actual number of iterations spent. 

 
Table  1: Program Listing – SMO 

 
function [alpha,b,N iter] = smo(Kernel,d1,C1,LIMIT) 
clear global X K d C sv E alpha b 
global X K d C sv E alpha b 
K = Kernel; d = d1; C = C1; 
E = -d;   % Vector of Training error 
alpha = zeros(N,1); % Lagrange Multipliers 
b = 0;% Bias paremeter 
ExamineAll = 1; % Control Flag 
N iter = 1;   % Number of iterations 
NKKTV = 0;   % Number of KKT Violations 
while (ExamineAll | NKKTV > 0)&(N iter<LIMIT) 

sv = find((alpha ˜= 0)&(alfa ˜= C)); 
NKKTV = 0; 
if ExamineAll 

for i=1:N 
NKKTV = NKKTV + ExamineExample(i); 

end 
ExamineAll = 0; 

else 
for i=1:length(sv) 

NKKTV = NKKTV + ExamineExample(sv(i)); 
end 
if NKKTV == 0 

ExamineAll = 1; 
end 

end 
N iter = N iter + 1; 

end 
Table  2: Program Listing – ExamineExample 

 
function result=ExamineExample(i2) 
global X K d C sv E alpha b 
result=0; tol=0.001; 
r2=E(i2)*d(i2); 
if ( (r2<-tol) & (alpha(i2)<C) ) | ( (r2>tol) & (alpha(i2)>0) ) 

% KKT condition violation - use heuristic rules to choose 2nd pattern 
% 1th rule (choose the most promising sv cadidate) 
if length(sv)>0 

if E(i2) >0 
[value,i]=min(E(sv)); 

else 
[value,i]=max(E(sv)); 

end 
if TakeStep(sv(i),i2) 

result=1; 
return; 

else 
% 2nd rule (Search for other sv candidate) 
[value,k]=sort(rand(1,length(sv))); 
for i=1:length(sv) 

if TakeStep(sv(k(i)),i2) 
result=1; 
return; 

end 
end 

end 
end 
% 3rd rule (Search all non sv candidates) 
i1=find( (alpha==0) |(alpha==C) ); 
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if length(i1) >0 
[value,k]=sort(rand(1,length(i1))); 
for i=1:length(i1) 

if TakeStep(i1(k(i)),i2) 
result=1; 
return; 

end 
end 

end 
end 

 

Table  3: Program Listing – TakeStep 
 

function result=TakeStep(i1,i2) 
global X K d C sv E alpha b 
result=0; tol2=10ˆ (-4); 
if i1==i2 

return; 
end 
s=d(i1)*d(i2); 
if s ˜= 1 

L=max([0,alpha(i2)-alpha(i1)]); H=min([C,C+alpha(i2)-alpha(i1)]); 
else 

L=max([0,alpha(i2)+alpha(i1)-C]); H=min([C,alpha(i2)+alpha(i1)]); 
end 
if L==H 

return; 
end 
eta=2*K(i1,i2)-K(i1,i1)-K(i2,i2); 
if eta<0 

a2=alpha(i2)-d(i2)*(E(i1)-E(i2))/eta; 
if a2 <L 

a2=L; 
elseif a2>H 

a2=H; 
end 

else 
gama=alpha(i1)+s*alpha(i2); 
v1 = E(i1)+d(i1)-alpha(i1)*d(i1)*K(i1,i1)-d(i2)*alpha(i2)*K(i1,i2)+b; 
v2 = E(i2)+d(i2)-alpha(i1)*d(i1)*K(i1,i2)-d(i2)*alpha(i2)*K(i2,i2)+b; 
Lobj = L*(1-s) - 0.5*K(i1,i1)*(gama-s*L)ˆ 2 - 0.5*K(i2,i2)*Lˆ 2 - s*K(i1,i2)*( ... 

gama-s*L)*L - d(i1)*(gama-s*L)*v1-d(i2)*L*v2; 
Hobj = H*(1-s) - 0.5*K(i1,i1)*(gama-s*H)ˆ 2 - 0.5*K(i2,i2)*Hˆ 2 - s*K(i1,i2)*( ... 

gama-s*H)*H - d(i1)*(gama-s*H)*v1-d(i2)*H*v2; 
if Lobj >Hobj+eps 

a2=L; 
elseif Lobj <Hobj-eps 

a2=H; 
else 

a2=alpha(i2); 
end 

end 
if a2 <tol2 

a2=0; 
elseif a2 >C - tol2 

a2=C; 
end 
if abs(a2-alpha(i2)) <eps*(a2+alpha(i2)+eps) 

return 
end 
a1=alpha(i1)+s*(alpha(i2)-a2); 
% calculation of the bias parameter 
if (a2>0)&(a2 <C) 

b New=E(i2)+d(i1)*(a1-alpha(i1))*K(i1,i2)+d(i2)*(a2-alpha(i2))*K(i2,i2)+b; 
else 

if (a1>0)&(a1<C) 
b New=E(i1)+d(i1)*(a1-alpha(i1))*K(i1,i1)+d(i2)*(a2-alpha(i2))*K(i1,i2)+b; 
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else 
b1=E(i1)+d(i1)*(a1-alpha(i1))*K(i1,i1)+d(i2)*(a2-alpha(i2))*K(i1,i2)+b; 
b2=E(i2)+d(i1)*(a1-alpha(i1))*K(i1,i2)+d(i2)*(a2-alpha(i2))*K(i2,i2)+b; 
b New=(b1+b2)/2; 

end 
end 
% calculation of the training error 
E=E+d(i1)*(a1-alpha(i1))*K(:,i1)+d(i2)*(a2-alpha(i2))*K(:,i2)+(b-b New); 
% Update of Lagrange multipliers and bias 
b=b New; 
alpha(i1)=a1; 
alpha(i2)=a2; 

result=1; 

3.2  PSVM Algorithm and Implementation 

The PSVM Algorithm is described by Eqs. 25, 26 and 28, for the linear case, and by Eqs. 29 and 30 for the nonlinear 
case. Table 4 shows a pseudo-code implementation for the PSVM algorithm, where X is the data matrix for the linear case, or 
the kernel matrix for the nonlinear case and D is the classification label matrix. In the linear case, wo and bo are returned in 
variables w0 and b0, respectively. In the nonlinear case, Dαo (not αo) is returned in variable w0, and bo is returned in variable 
b0. 

 

Table  4: Program Listing – PSVM 
 

function [w0,b0]=psvm(X,D,C,linear) 
M = size(X,1); % Number of parameters (in linear case) 
N = size(X,2); % Number of observations 
e = ones(N,1); 
H = D*[X’ -e]; 
alpha0 = H*((eye(M+1)/C+H’*H)\(H’*e)); 
alpha0 = C*(e - alpha0); 
b0 = sum(D*alpha0); 
if linear 

w0 = X*D*alpha0; 
else 

w0 = alpha0; 
end 

 

3.3  UPSVM Algorithm and Implementation 

The UPSVM Algorithm is described by Eqs. 38 and 39, for the linear case, and by Eqs. 45 and 46, for the nonlinear 
case. Table 5 shows a pseudo-code implementation for the proposed algorithm, where X is the data matrix for the linear case ( 
linear = 1 ), or the kernel matrix for the nonlinear case ( linear = 0 ), and D is the classification label matrix. In the linear case, 
wo and bo are returned in variables w0 and b0, respectively. In the nonlinear case, Dαo (not αo) is returned in variable w0, bo is 
returned in variable and b0. 

 
Table  5: Program Listing – UPSVM 

function [w0,b0]=upsvm(X,D,C,linear) 
M = size(X,1); % Number of parameters 
N = size(X,2); % Number of observations 
e = ones(N,1); 
d = D*e; % Classification vector 
A = (eye(N)-e*e’/N); 
if linear 

H = eye(M)/C+X*A*X’; 
w0 = H\(X*d); 
b0 = -mean(w0’*X); 

else 
H = eye(N)/C+ A*X; 
w0 = C(1-H\(A*X*d)); 
b0 = -mean(w0’*X); 
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end 

 

4 Conclusions 

 Support Vector Machines is an important and increasingly used tool for Pattern classification and Regression 
applications. This Tutorial detailed three algorithms (SMO, PSVM, UPSVM) used for training SVM to be applied to pattern 
classification. All algorithms discussed can be used to train linear or nonlinear classifiers that can be used to classify linear or 
nonlinear separable classes, respectively. Their Matlab implementations are also presented and detailed. 

The SMO algorithm solves the original L1SVM quadratic-programming (QP) minimization problem iteratively by 
working with only two Lagrange Multipliers at a time while maintaining the rest unchanged. Differently from other known fast 
training algorithms, the SMO does not need an external QP optimizer. The small QP problem solved in each iteration is done 
analytically which gives to SMO its fastness. 

In the PSVM formulation derived as an evolution from the Active SVM (ASVM), the original L2SVM is modified to 
obtain an analytical solution based on a small system of linear equations in the case of linearly separable classes. Unfortunately 
the optimal hyperplane can be biased when low values of the regularization parameter C is considered. The UPSVM 
circumvent this problem by eliminating the bias parameter from the objective function to be minimized, always leading to an 
unbiased optimal hyperplane. Another difference between UPSVM and PSVM is that the former uses a conventional and more 
correct approach to generalize the linear classifier to the nonlinear case. 
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