OTIMIZAÇÃO DE DESPACHO ECONÔMICO COM PONTO DE VÁLVULA USANDO ESTRATÉGIA EVOLUTIVA E MÉTODO QUASE-NEWTON

Leandro dos Santos Coelho¹ Viviana Cocco Mariani²

 ¹ Programa de Pós-Graduação em Engenharia de Produção e Sistemas (PPGEPS), Grupo Produtrônica e-mail: leandro.coelho@pucpr.br
 ² Programa de Pós-Graduação em Engenharia Mecânica (PPGEM) e-mail: viviana.mariani@pucpr.br
 Centro de Ciências Exatas e de Tecnologia, Pontifícia Universidade Católica do Paraná Rua Imaculada Conceição, 1155, CEP 80215-901, Curitiba, PR, Brasil

Resumo - Os algoritmos evolutivos (AEs) são fundamentados em métodos de otimização e de busca estocástica, baseados nos princípios e modelos da evolução biológica natural (sistemas bioinspirados), destacam-se pelo crescente interesse recebido, nas últimas décadas, devido principalmente a sua versatilidade para a resolução de problemas complexos de otimização. As estratégias evolutivas são uma alternativa potencial de AE para a resolução de problemas de otimização contínua na área de sistemas de potência. As estratégias evolutivas utilizam como operador principal a mutação, que trabalha diretamente com vetores de valores reais (ponto flutuante) e permite a auto-adaptação dos parâmetros da estratégia através de desvio padrão e covariâncias. Este artigo apresenta uma abordagem híbrida de estratégia evolutiva (*Evolution Strategies*, ES) combinada ao método quase-Newton (QN) do tipo BFGS (Broyden-Fletcher-Goldfarb-Shanno) para busca local. Esta proposta de metodologia híbrida de otimização é validada em três problemas de despacho econômico de energia elétrica considerando ponto de válvula. Os sistemas testados consistem de 3, 13 e 40 unidades geradoras. Quando comparados os resultados obtidos pela metodologia híbrida, observa-se que esta supera em termos de qualidade as melhores soluções apresentadas na literatura para estes problemas de despacho econômico de energia elétrica.

Palavras-chaves – algoritmos evolutivos, estratégia evolutiva, sistemas de potência, despacho econômico de energia elétrica, quase-Newton.

1. Introdução

O objetivo básico do problema de despacho econômico da geração de energia elétrica é o escalonamento das saídas das unidades de geração conveniadas para encontrar a demanda de carga consumidora a um custo mínimo de operação, satisfazendo as restrições inerentes às unidades geradoras utilizadas e restrições de igualdade e desigualdade impostas pelo problema [1]. Quando o problema de despacho econômico trata de um intervalo de tempo simples, ele é referido como um problema de despacho econômico o problema de despacho econômico dinâmico considera um número finito de intervalos de despacho acoplados com a previsão de carga para providenciar uma trajetória de geração "ótima" seguindo uma demanda variável de carga [2].

Muitos dos problemas de otimização em sistemas de potência, incluindo os de despacho econômico, possuem características complexas e não-lineares com a presença, muitas vezes, de restrições de igualdade e desigualdade. Desde que o problema de despacho econômico foi introduzido, diversos métodos têm sido utilizados para resolver este problema, tais como método iterativo λ , técnicas baseadas em gradiente, método dos pontos interiores, programação linear e programação dinâmica. Entretanto, muitas das abordagens convencionais usadas em problemas de despacho econômico podem não estarem aptas a providenciar uma solução ótima e, muitas vezes, a solução fica retida em armadilhas de mínimos locais.

A literatura tem apresentado muitos estudos referentes à utilização de metodologias da inteligência artificial clássica (busca tabu, *simulated annealing*, sistemas especialistas) e inteligência computacional [3]-[6]. Algumas abordagens, emergentes da inteligência computacional são os algoritmos evolutivos ou evolucionários (AEs). Os AEs incluem algoritmos genéticos, programação evolucionária, estratégias evolutivas, programação genética, entre outras variantes [7]. Dentre estes algoritmos evolucionários destacam-se as estratégias evolutivas (*Evolution Strategies*, ES). As ES operam diretamente em vetores de ponto flutuante enquanto os algoritmos genéticos (AGs) clássicos (representação binária ou canônica) operam com *strings* binárias. Deve-se mencionar também que as ES utilizam a mutação como operador principal, o que difere dos AGs onde o operador principal é o de cruzamento.

As ES não são apenas eficientes para resolver uma grande variedade de problemas de otimização [9], [10] mas também possuem uma consistente fundamentação teórica [11]-[13]. Entretanto, as ES sofrem de ineficiência, caracterizada por convergência lenta para buscas locais. Em contraste, os métodos de busca determinísticos focam na obtenção de uma solução local promissora. A dicotomia entre buscas globais e locais é um tema recorrente em modelos computacionais bio-inspirados. No contexto computacional, a hibridização de busca global e local é conhecida por produzir algoritmos de otimização mais eficientes.

A contribuição deste artigo é descrever e avaliar uma metodologia híbrida para resolução do problema de despacho econômico de carga com a presença do efeito do ponto de válvula. O método híbrido proposto integra uma abordagem híbrida de ES para a etapa de busca global combinada com um método Quase-Newton (QN) para a etapa de busca local.

A metodologia híbrida é testada em três estudos de caso que consistem, respectivamente, de 3, 13 e 40 unidades geradoras [14], [15] considerando-se o efeito de válvula. A escolha destes três conjuntos de unidades geradoras foi decorrente da disponibilidade dos dados e por se tratar de problemas teste consolidados na literatura de despacho econômico.

Os resultados obtidos são analisados e comparados com outros apresentados na literatura, que ressaltam a eficiência da abordagem de otimização proposta neste artigo.

O artigo é organizado da seguinte forma. A formulação do problema de despacho econômico de energia elétrica é detalhada na Seção 2. Na Seção 3 são apresentados os fundamentos da ES e QN nas formas de concepção isolada e híbrida. O tratamento de restrições adotado é apresentado na Seção 4. A descrição de três estudos de caso de despacho econômico para 3, 13 e 40 unidades geradoras térmicas, respectivamente, e uma análise dos resultados de otimização obtidos são apresentados na Seção 5. Finalizando o artigo, a conclusão e as perspectivas de futuros trabalhos são apresentadas na Seção 6.

2. Problema de despacho econômico

O tipo de problema de despacho econômico, abordado neste artigo, pode ser descrito matematicamente com uma função objetivo e duas restrições. As restrições representadas pelas equações (1) e (2) devem ser satisfeitas, ou seja,

$$\sum_{i=1}^{n} P_i - P_L - P_D = 0 \tag{1}$$

$$P_i^{\min} \le P_i \le P_i^{\max} \tag{2}$$

A equação (1) representa as restrições de igualdade do balanço de potência (isto é, balanço entre suprimento e demanda), enquanto a expressão (2) representa as restrições de desigualdade relativas aos limites da capacidade de geração de potência de cada unidade geradora, onde P_i é a saída para a unidade geradora *i* (em MW); *n* é o número de geradores presente no sistema;

 P_D é a demanda de carga total (em MW); P_L são as perdas de transmissão (em MW) e P_i^{min} e P_i^{max} são respectivamente as saídas de operação mínimas e máximas da unidade geradora *i* (em MW). O custo total de combustível deve ser minimizado conforme representado na equação (3),

$$\min f = \sum_{i=1}^{n} F_i(P_i)$$
(3)

onde F_i é a função custo de combustível para a unidade geradora *i* (em h), que é definida pela equação,

$$F_i(P_i) = a_i P_i^2 + b_i P_i + c_i \tag{4}$$

onde a_i , b_i e c_i são restrições das características do gerador. A equação (4) para o cálculo do custo total pode ser modificada para considerar o efeito do ponto de válvula [16], tal que

$$\widetilde{F}_{i}(P_{i}) = F(P_{i}) + \left| e_{i} sen\left(f_{i}\left(P_{i}^{min} - P_{i}\right)\right)\right|$$
(5)

ou

$$\widetilde{F}_i(P_i) = a_i P_i^2 + b_i P_i + c_i + \left| e_i sen\left(f_i\left(P_i^{\min} - P_i\right)\right)\right|$$
(6)

onde e_i e f_i são constantes do efeito do ponto de válvula dos geradores. Conseqüentemente, o custo total de combustível que deve ser minimizado, conforme representado na equação (3), é modificado para

$$\min f = \sum_{i=1}^{n} \widetilde{F}_i(P_i)$$
⁽⁷⁾

onde \tilde{F}_i é a função custo para a unidade geradora *i* (em \$/h), que é definida pela equação (6). Nos exemplos abordados, neste artigo, são desconsideradas as perdas de transmissão P_L , portanto, neste caso $P_L = 0$.

3. Metodologia de otimização

Os métodos de otimização têm duas formas de configuração: os métodos determinísticos e os métodos estocásticos. Os métodos determinísticos tendem a buscar um ponto de mínimo (quando o problema é de minimização) no espaço de busca baseados na informação dada pelo gradiente da função objetivo (função custo). A eficiência destas técnicas depende de diversos fatores, tais como: a solução inicial, a precisão da avaliação da direção descendente, o método utilizado para executar a busca em linha e o critério de parada de otimização adotado.

Os métodos estocásticos, dos quais as abordagens de algoritmos e inteligência coletiva fazem parte, não necessitam do cálculo do gradiente e são aptos a encontrar a solução global. Contudo, o número de avaliações da função objetivo, necessárias para encontrar a solução, é geralmente maior que o número requerido pelos métodos determinísticos.

A seguir são detalhados os fundamentos das ES, do método QN e do método híbrido combinando ES e QN.

3.1. Estratégias evolutivas

Os AEs são paradigmas computacionais para resolução de problemas, inspirados nos princípios da teoria evolutiva e na genética. Os AEs são procedimentos de busca de propósito geral que sob o ponto de vista de otimização têm a vantagem de não necessitar de muitos requisitos matemáticos sobre o problema de otimização a ser resolvido. Os AEs são paradigmas da área do conhecimento denominada computação evolucionária (ou evolutiva) e são inspirados nos princípios da teoria da evolução natural (isto é, os mais adaptados ao ambiente sobrevivem) e na genética. Os AEs utilizam uma população de estruturas individuais, também denominadas de indivíduos, e cada indivíduo representa um ponto no espaço de busca de soluções potenciais para um dado problema.

Uma variedade de AEs tem sido desenvolvida e apresentada na literatura. Entretanto, todos os AEs têm uma base conceitual comum, através de procedimentos (operadores) de seleção, mutação e cruzamento (ou recombinação). O interesse nos AEs é por possuírem mecanismos de busca eficientes frente a buscas globais. A maioria das abordagens correntes dos AEs descende dos princípios de diferentes metodologias, principalmente: algoritmos genéticos, programação evolutiva, estratégias evolutivas e evolução diferencial.

No contexto das estratégias evolutivas, Rechenberg [17] foi pioneiro e desenvolveu a teoria de velocidade de convergência para (1+1)-ES denominada 1/5-success rule. Neste caso, Rechenberg criou um mecanismo simples de mutação e seleção em que um indivíduo (uma possível solução para o problema) gera um descendente por geração usando uma mutação baseada na geração de números com distribuição normal (Gaussiana). Rechenberg [17] também propôs a primeira estratégia evolutiva com múltiplos membros, a (μ +1)-ES onde $\mu \ge 1$ indivíduos trocam informações para gerar um descendente, que eventualmente substitui o pior indivíduo pai. Schwefel [18] introduziu o operador de recombinação e populações com mais de um indivíduo.

A motivação para estender (1+1)-ES e (μ +1)-ES para (μ + λ)-ES e (μ , λ)-ES possui dois aspectos de importância essencial: a utilização de plataformas computacionais com processamento paralelo e habilitar auto-adaptação dos parâmetros (por exemplo, desvios padrões) da estratégia.

A nomenclatura (μ + λ)-ES sugere que μ antecessores (pais) produzam λ descendentes e toda população é reduzida novamente a μ antecessores na próxima geração. Neste caso, embora os antecessores sobrevivam até eles serem superados por descendentes melhores. A (μ , λ)-ES, por outro lado, sugere que somente os descendentes sofram seleção, e os antecessores sejam descartados.

A implementação básica da ES consiste das seguintes etapas:

(i) iniciar o contador de número de gerações, k = 1;

(ii) iniciar a população, P(k) de μ indivíduos (x_i, σ_i) , $\forall i \in \{1, ..., \mu\}$, onde os x_i 's são dados pelo *i*-ésimo objeto variável (solução do problema) e os σ_i 's são as variáveis da estratégia (parâmetros de auto-adaptação);

(iii) avaliar a função de aptidão, $f(x_i)$, em cada indivíduo da população;

(iv) cada μ antecessor cria seus μ / λ descendentes, onde

$$x_i'(j) = x_i(j) + \sigma_i(j) \cdot N_i(0,1)$$
(8)

onde $N_i(0,1)$ é um vetor de números independentes gerados aleatoriamente com função densidade de probabilidade Gaussiana (média zero e desvio padrão unitário) para a *i*-ésima variável objeto.

(v) avaliar a função aptidão, $f(x_i)$, de cada descendente (x_i, σ_i) , $\forall i \in \{1, ..., \lambda\}$;

(vi) classificar os descendentes (x_i ', σ_i '), $\forall i \in \{1,...,\lambda\}$ em ordem ascendente de acordo com seus valores de função de aptidão, e aplicar o operador de seleção de (μ + λ) ou (μ , λ) para a determinação dos antecessores na próxima geração;

(vii) incrementar o contador de gerações, tal que k = k + 1;

(viii) enquanto o critério de parada (número de gerações máximo) não é satisfeito retornar para a etapa (iv).

As ES possuem bio-inspiração nos seguintes efeitos de alterações genéticas: (i) *pleiotropia* (um simples gene afeta múltiplas características fenotípicas), e (ii) *poligenia* (uma simples característica fenotípica é afetada por múltiplos genes).

A estratégia evolutiva utiliza como operador principal a mutação, que trabalha diretamente com vetores de valores reais (ponto flutuante) e permite a auto-adaptação dos parâmetros da estratégia através de desvio padrão e covariâncias. Diversos mecanismos de recombinação são utilizados em ES [7], [8] produzindo um novo indivíduo de dois indivíduos antecessores selecionados aleatoriamente com função densidade de probabilidade uniforme. O operador de recombinação pode ser aplicado tanto nos parâmetros da estratégia quanto nas variáveis objeto.

Neste trabalho, o operador de recombinação intermediária é aplicado aos parâmetros da estratégia. Na literatura, diversas estratégias de auto-adaptação têm sido propostas para ES [8], [19]. O procedimento usado nas ES clássicas (CES) para o passo de mutação é dado por uma estratégia de adaptação lognormal tal que,

$$\sigma_i'(j) = \sigma_i(j) \cdot exp \left[\tau' \cdot \mathcal{N}(0,1) + \tau \cdot \mathcal{N}_i(0,1)\right]$$
(9)

onde N(0,1) representa um vetor de números independentes gerados aleatoriamente com função densidade de probabilidade Gaussiana (média zero e desvio padrão unitário). O fator global, τ ', permite uma mudança completa na mutabilidade, e o fator local τ permite mudanças individuais dos tamanhos de passo. Os fatores $\tau \in \tau$ ' são usualmente configurados para $1/\sqrt{2\sqrt{n}} = 1/\sqrt{2n}$, onde *n* é o número de parâmetros a serem otimizados [19].

3.2. Método de quase-Newton

Uma aplicação direta do método de Newton é computacionalmente proibitiva devido ao custo computacional da avaliação da matriz Hessiana. Abordagens alternativas, conhecidas como Quase-Newton (QN) ou métodos da variável métrica, constroem uma aproximação da inversa da Hessiana usando somente a informação das primeiras derivadas da função erro sobre um número de passos [20].

Os procedimentos mais comumente utilizados são o Davidson-Fletcher-Power (DFP) e o Broyden-Fletcher-Goldfarb-Shanno (BFGS). Neste trabalho, a abordagem BFGS é utilizada. A rotina BFGS utilizada neste trabalho é providenciada pelo *Matlab Optimization Toolbox* (função *fminunc*). Os detalhes do procedimento BFGS são apresentados em [21]-[23].

3.3. Estratégia evolutiva combinada com método de quase-Newton

O método QN e as ES possuem vantagens complementares. A combinação proposta neste artigo de CES com QN consiste em uma forma de hibridização seqüencial baseada em [24] e [25]. Foram testadas três abordagens de métodos híbridos CES-QN, que são as seguintes:

CES-QN(1): Este método híbrido consiste em aplicar a CES ao problema de otimização e a melhor solução, a cada geração, é utilizada como solução inicial para o método de QN, que realiza a busca local. O método QN é utilizado em 40 avaliações da função objetivo. Neste contexto, se a melhor solução do problema de uma geração para outra não mudou, o método de QN não é aplicado.

CES-QN(2): O método QN é utilizado para gerar a população inicial da CES com 30 indivíduos. Neste caso, o QN é utilizado em 40 avaliações da função objetivo por indivíduo da população inicial.

CES-QN(3): O método QN é utilizado para gerar apenas um indivíduo da população inicial da CES. Neste caso, o QN é utilizado em 40 avaliações da função objetivo para gerar o indivíduo.

4. Tratamento de restrições

O problema de despacho econômico abordado neste artigo possui uma restrição de igualdade (1) e outras restrições de desigualdade. Neste trabalho adota-se uma função de penalidade quando do aparecimento de soluções infactíveis para tratar com as restrições, tal que

$$\min f = \begin{cases} f(P_i), & \text{se } P_i \in F \\ f(P_i) + \text{ penalidade (} P_i), & \text{outros casos} \end{cases}$$
(10)

onde *penalidade*(P_i) é zero se nenhuma restrição é violada; em outros casos ela é positiva. A função de penalidade adotada é baseada na distância da solução mais próxima a região factível F.

A metodologia proposta para tratar com restrições é dividida em duas etapas. A primeira envolve as soluções encontradas pelas variáveis que estejam fora do limite superior (lim_{sup}) e inferior (lim_{inf}) definido pelo usuário, tal que $x \in [lim_{sup}, lim_{inf}]$, ou seja, $x \in [P_{min}, P_{max}]$. Neste contexto, a regra de reparo é a seguinte:

$$P_i^j(G+1) = P_i^j(G) + w \cdot rand_i[0,1] \cdot \left\{ lim_{sup} \left(P_i^j(G) \right) - lim_{inf} \left(P_i^j(G) \right) \right\}$$
(11)

$$P_i^j(G+1) = P_i^j(G) - w \cdot rand_i[0,1] \cdot \left\{ lim_{sup} \left(P_i^j(G) \right) - lim_{inf} \left(P_i^j(G) \right) \right\}$$
(12)

onde adotou-se w=0,05, G é a geração considerada, e rand[0,1] é o número gerado aleatoriamente usando uma função densidade de probabilidade uniforme no intervalo entre 0 e 1.

Na segunda etapa, as variáveis de decisão são consideradas na equação (1). Neste trabalho, se a igualdade da equação (1) não é satisfeita, a equação (7) é reescrita como:

$$\min f = \sum_{i=1}^{n} \widetilde{F}_{i}(P_{i}) + q_{1} \left| \sum_{i=1}^{n} P_{i} - P_{L} - P_{D} \right| \qquad \text{se} \quad \sum_{i=1}^{n} \widetilde{F}_{i}(P_{i}) < \left| \sum_{i=1}^{n} P_{i} - P_{L} - P_{D} \right|$$
(13)

$$\min f = \sum_{i=1}^{n} \widetilde{F}_{i}(P_{i}) + q_{2} \left| \sum_{i=1}^{n} P_{i} - P_{L} - P_{D} \right| \qquad \text{se} \quad \sum_{i=1}^{n} \widetilde{F}_{i}(P_{i}) > \left| \sum_{i=1}^{n} P_{i} - P_{L} - P_{D} \right|$$
(14)

onde $q_1 e q_2$ são as constantes positivas, $e |\cdot|$ é valor absoluto da expressão matemática $\sum_{i=1}^{n} P_i - P_L - P_D$.

5. Descrição de 3 casos e análise dos resultados de simulação

Para mostrar o desempenho relativo da CES, QN e CES-QN, três casos são testados. As simulações são validadas para sistemas com 3, 13 e 40 unidades geradoras térmicas com funções incrementais de custo de combustível considerando o efeito de ponto de válvula. Os algoritmos para resolução do exemplo foram implementados em ambiente computacional Matlab 6.5[©], da MathWorks, usando processador Pentium IV de 3,2 GHz com 2 MB de memória.

Foram realizados 30 experimentos com cada abordagem de otimização testada. No caso do CES, a cada simulação os membros da população foram iniciados usando uma semente diferente de números aleatórios. Além disso, na CES do tipo $(\mu + \lambda)$ foi utilizado um critério de parada G_{max} com valor de 1000. Em relação ao método de QN, a cada simulação a estimativa inicial foi gerada usando uma semente de números aleatórios (geração com distribuição uniforme) diferente.

5.1. Estudo de caso 1: Sistema com 3 unidades geradoras

O primeiro estudo de caso consiste de 3 unidades geradoras e está descrito em [14] e [15]. Neste caso a demanda de potência a ser encontrada pelas unidades geradoras é $P_D = 850$ MW. Os dados do sistema são apresentados na Tabela 1 e também podem ser encontrados em [14] e [15]. Os parâmetros de configuração usados na estratégia evolutiva nas simulações foram: G=50 gerações, $\mu = 1$ indivíduo e $\lambda = 30$ indivíduos. Neste primeiro estudo de caso foram utilizados $q_1=1500$ e $q_2=100$ presentes nas equações (13) e (14), respectivamente.

Os resultados de convergência são apresentados na Tabela 2 que mostram as características de convergência e tempo computacional com cada abordagem avaliada. Os diferentes tempos de processamento dos diferentes métodos são importantes para avaliação da complexidade computacional de cada método de otimização testado. Entretanto, embora os tempos de processamento apresentados na Tabela 2 sejam de ordens de grandeza diferentes entre si não são, na maior parte das vezes, relevantes se fossem de fato aplicados em situações reais.

Na Tabela 3 é apresentado o melhor resultado, este obtido usando CES-QN(1) e também CES-QN(2). Nota-se que a restrição de igualdade de $P_D = 850$ MW e também as de desigualdade são todas satisfeitas.

Nota-se que o QN para o caso estudado foi afetado pela estimativa inicial, contudo apresenta pequeno tempo computacional, ou seja, 0,05 segundos para obtenção de uma solução. As abordagens CES-QN(1) e CES-QN(2) obtiveram o mesmo resultado na análise estatística de desempenho e entre as abordagens testadas neste trabalho tiveram o melhor custo médio, menor desvio padrão e menor custo máximo. Entretanto, a CES-QN(1) e também a CES-QN(2) apresentaram maior custo computacional que a QN e CES quando usadas de forma isolada.

No final desta Seção, os resultados obtidos neste trabalho são também comparados com outros métodos apresentados na literatura, conforme apresentado na Tabela 4. Nota-se que o valor obtido para este estudo de caso é de aproximadamente 8234,07 \$/h.

unidade geradora	P_i^{min}	P_i^{max}	а	b	С	е	f
1	100	600	0,001562	7,92	561	300	0,0315
2	100	400	0,001940	7,85	310	200	0,042
3	50	200	0,004820	7,97	78	150	0,063

Tabela 1: Dados para o estudo de caso 1, onde as potências $P_i^{min} \in P_i^{max}$ são em MW.

Tabela 2. Resultados de convergência para o caso de 3 unidades geradoras com ponto de válvula e $P_D = 850$ MW (dados de 100 experimentos com cada método de otimização).

	too enpermientes et	in caaa meteae ac	ounneașao).	
tempo	custo	custo	desvio padrão	custo
médio (s)	mínimo (\$/h)	médio (\$/h)	do custo (\$/h)	máximo (\$/h)
0,05	8234,584	8448,123	159,870	9050,271
0,23	8255,084	8407,921	77,361	8550,491
0,69	8234,074	8318,197	84,108	8512,424
1,55	8234,074	8318,197	84,108	8512,424
0,28	8241,390	8396,927	81,815	8550,492
	tempo médio (s) 0,05 0,23 0,69 1,55 0,28	tempo custo médio (s) mínimo (\$/h) 0,05 8234,584 0,23 8255,084 0,69 8234,074 1,55 8234,074 0,28 8241,390	tempo custo custo médio (s) mínimo (\$/h) médio (\$/h) 0,05 8234,584 8448,123 0,23 8255,084 8407,921 0,69 8234,074 8318,197 1,55 8234,074 8318,197 0,28 8241,390 8396,927	tempo custo custo desvio padrão médio (s) mínimo (\$/h) médio (\$/h) do custo (\$/h) 0,05 8234,584 8448,123 159,870 0,23 8255,084 8407,921 77,361 0,69 8234,074 8318,197 84,108 1,55 8234,074 8318,197 84,108 0,28 8241,390 8396,927 81,815

Tabela 3. Melhor resultado (100 experimentos) para o estudo de caso 1 obtido usando CES-QN(1) e CES-QN(2).

1 / 1	
Potência	geração
P_1	300,26418
P_2	400,00000
P_3	149,73583
somatório de P_i , <i>i</i> =13	850,00000

Tabela 4. Comparativo dos resultados apresentados na literatura e os obtidos neste trabalho para a função custo f.

metodo de otimização	referencia	custo minimo (\$/h) para 3 unidades geradoras
programação evolucionária	[15]	8234,07
nuvem de partículas	[26]	8234,07

nuvem de partículas modificado	[27]	8234,07	
programação evolucionária híbrida com SQP	[26]	8234,07	
nuvem de partículas híbrida com SQP	[26]	8234,07	
busca tabu modificada	[28]	8234,07	
programação evolucionária	[29]	8234,07	
QN	este artigo	8234,58	
CES	este artigo	8255,08	
CES-QN(1) e CES-QN(2)	este artigo	8234,07	
\mathbf{N}_{1}			

Notação: SQP (Sequential Quadratic Programming)

5.2. Estudo de caso 2: Sistema com 13 unidades geradoras

O segundo caso de despacho econômico estudado consiste de 13 unidades geradoras e está descrito em [15] e [30]. Neste caso a demanda de potência a ser encontrada pelas unidades geradoras é $P_D = 1800$ MW. Os dados do sistema são apresentados na Tabela 5. Os parâmetros de configuração usados na estratégia evolutiva nas simulações foram: *G*=800 gerações, $\mu = 1$ indivíduo e $\lambda = 30$ indivíduos. Neste segundo estudo de caso foram utilizados q_1 =500 e q_2 =50 presentes nas equações (13) e (14), respectivamente.

Na Tabela 6 são apresentados os resultados numéricos de simulação e o tempo demandado com cada abordagem avaliada do estudo de caso 2. Na Tabela 7 é apresentado o melhor resultado, este obtido usando CES-QN(2)de 17964,878 \$/h.

Nota-se que o método QN (realizados 100 experimentos usando diferentes valores de solução inicial) teve o menor tempo computacional dos métodos testados. O melhor resultado de simulação do QN, ou seja, um custo mínimo de 17998,199 \$/h ficou próximo ao melhor resultado obtido pelo CES-QN(2).

Dos métodos testados, nota-se pela Tabela 6 que a CES-QN(2) foi a técnica de otimização com menor custo mínimo e médio. Neste contexto, a CES-QN(2) apresentou maior custo computacional que a QN e CES quando usadas de forma isolada, mas menor que a CES-QN(1).

No final desta Seção, os melhores resultados de cada abordagem (apresentados na Tabela 6) são comparados com outros métodos apresentados na literatura, conforme apresentado na Tabela 8. Uma rápida análise da Tabela 8 mostra que o melhor resultado do CES-QN(2) é superior aos apresentados na literatura recente sobre o estudo de caso com 13 unidades geradoras.

. Duuos pi	ind O colu	ao ao case	$^{\prime}2,$ onde us	potenei	u_{i}	c_{l}	sao en
unidade geradora	P_i^{min}	P_i^{max}	а	b	С	е	f
1	0	680	0,00028	8,10	550	300	0,035
2	0	360	0,00056	8,10	309	200	0,042
3	0	360	0,00056	8,10	307	150	0,042
4	60	180	0,00324	7,74	240	150	0,063
5	60	180	0,00324	7,74	240	150	0,063
6	60	180	0,00324	7,74	240	150	0,063
7	60	180	0,00324	7,74	240	150	0,063
8	60	180	0,00324	7,74	240	150	0,063
9	60	180	0,00324	7,74	240	150	0,063
10	40	120	0,00284	8,60	126	100	0,084
11	40	120	0,00284	8,60	126	100	0,084
12	55	120	0,00284	8,60	126	100	0,084
13	55	120	0,00284	8,60	126	100	0,084

Tabela 5. Dados para o estudo de caso 2, onde as potências $P_i^{min} \in P_i^{max}$ são em MW.

Tabela 6. Resultados de convergência para o caso 2 com 13 unidades geradoras com ponto de válvula e P_D = 1800 MW (dados de 100 experimentos com cada método de otimização).

técnica	tempo	custo	custo	desvio padrão	custo				
	médio (s)	mínimo (\$/h)	médio (\$/h)	do custo (\$/h)	máximo (\$/h)				
QN	0,12	17998,199	18944,079	783,309	22967,708				
CES	9,10	18090,446	18356,618	135,191	18699,437				
CES-QN(1)	28,15	17978,589	18099,839	56,855	18240,399				
CES-QN(2)	12,19	17964,878	18092,163	70,838	18304,597				
CES-QN(3)	9,14	18093,726	18315,100	122,966	18650,402				

Potência	geração
P_1	628,319808
P_2	224,112656
P_3	149,272752
P_4	109,865856
P_5	60,000000
P_6	109,866532
P_7	109,233651
P_8	109,831405
P_9	109,497379
P_{10}	40,000000
P_{11}	40,000000
P_{12}	55,000000
P_{13}	55,000000
somatório de P _i ,	1800,0000
<i>i</i> =113	

Tabela 7. Melhor resultado (100 experimentos) para o estudo de caso 2 obtido usando CES-QN(2).

Tabela 8. Comparativo dos resultados apresentados na literatura e os obtidos neste trabalho para a função custo f.método de otimizaçãoreferênciacusto mínimo (\$/h) para 13 unidades

,		geradoras
programação evolucionária	[15]	17994,070
nuvem de partículas	[26]	18030,720
programação evolucionária híbrida com SQP	[26]	17991,030
nuvem de partículas híbrida com SQP	[26]	17969,930
QN	este artigo	17998,199
CES	este artigo	18090,446
CES-QN(2)	este artigo	17964,878

Notação: SQP (Sequential Quadratic Programming)

5.3. Estudo de caso 3: Sistema com 40 unidades geradoras

O terceiro estudo de caso consiste de 40 unidades geradoras. Neste caso a demanda de potência a ser encontrada pelas 40 unidades geradoras é $P_D = 10500$ MW. Os dados do sistema são apresentados na Tabela 9 e também podem ser encontrados em Sinha *et al.* [15]. Os parâmetros de configuração usados na estratégia evolutiva nas simulações foram: G=1000 gerações, $\mu = 1$ indivíduo e $\lambda = 30$ indivíduos. Neste terceiro estudo de caso foram utilizados $q_1=500$ e $q_2=50$ presentes nas equações (13) e (14), respectivamente.

Os resultados de convergência são apresentados na Tabela 10 que mostram as características de convergência e tempo demandado com cada abordagem avaliada. Na Tabela 11 é apresentado o melhor resultado, este obtido usando CES-QN.

Nota-se que o QN para o caso estudado foi afetado pela estimativa inicial, contudo apresenta pequeno tempo computacional para obtenção de uma solução. A CES-QN foi a abordagem que obteve o menor custo para o problema de despacho econômico e obteve melhor custo médio, menor desvio padrão e menor custo máximo entre as técnicas utilizadas. Entretanto, a CES-QN apresentou maior custo computacional que a QN e CES quando usadas de forma isolada. A CES obteve resultados superiores ao método de QN, no entanto com tempo computacional aproximadamente 71,75 vezes maior.

Os melhores resultados obtidos para este estudo de caso (ver Tabela 10) são também comparados com outros métodos apresentados na literatura na Tabela 12. O resultado obtido com a CES-QN(1) é superior aos obtidos por [15], [26] e [27].

	1		,	1	i	i	
unidade geradora	P_i^{min}	P_i^{max}	Α	b	С	е	f
1	36	114	0,00690	6,73	94,705	100	0,084
2	36	114	0,00690	6,73	94,705	100	0,084
3	60	120	0,02028	7,07	309,54	100	0,084
4	80	190	0,00942	818	369,03	150	0,063
5	47	97	0,01140	5,35	148,89	120	0,077

Tabela 9. Dados para o estudo de caso, onde as potências $P_i^{min} \in P_i^{max}$ são em MW.

6	68	140	0,01142	8,05	222,33	100	0,084
7	110	300	0,00357	8,03	278,71	200	0,042
8	135	300	0,00492	6,99	391,98	200	0,042
9	135	300	0,00573	6,60	455,76	200	0,042
10	130	300	0,00605	12,90	722,82	200	0,042
11	94	375	0,00515	12,90	635,20	200	0,042
12	94	375	0,00569	12,80	654,69	200	0,042
13	125	500	0,00421	12,50	913,40	300	0,035
14	125	500	0,00752	8,84	1760,4	300	0,035
15	125	500	0,00708	9,15	1728,3	300	0,035
16	125	500	0,00708	9,15	1728,3	300	0,035
17	220	500	0,00313	7,97	647,85	300	0,035
18	220	500	0,00313	7,95	649,69	300	0,035
19	242	550	0,00313	7,97	647,83	300	0,035
20	242	550	0,00313	7,97	647,81	300	0,035
21	254	550	0,00298	6,63	785,96	300	0,035
22	254	550	0,00298	6,63	785,96	300	0,035
23	254	550	0,00284	6,66	794,53	300	0,035
24	254	550	0,00284	6,66	794,53	300	0,035
25	254	550	0,00277	7,10	801,32	300	0,035
26	254	550	0,00277	7,10	801,32	300	0,035
27	10	150	0,52124	3,33	1055,1	120	0,077
28	10	150	0,52124	3,33	1055,1	120	0,077
29	10	150	0,52124	3,33	1055,1	120	0,077
30	47	97	0,01140	5,35	148,89	120	0,077
31	60	190	0,00160	6,43	222,92	150	0,063
32	60	190	0,00160	6,43	222,92	150	0,063
33	60	190	0,00160	6,43	222,92	150	0,063
34	90	200	0,00010	8,95	107,87	200	0,042
35	90	200	0,00010	8,62	116,58	200	0,042
36	90	200	0,00010	8,62	116,58	200	0,042
37	25	110	0,01610	5,88	307,45	80	0,098
38	25	110	0,01610	5,88	307,45	80	0,098
39	25	110	0,01610	5,88	307,45	80	0,098
40	242	550	0,00313	7,97	647,83	300	0,035

Tabela 10. Resultados de convergência para o caso de 40 unidades geradoras com ponto de válvula e $P_D = 10500$ MW. (dados de 30 experimentos com cada método de otimização)

de 30 experimentos com cada método de otimização)							
técnica	tempo	custo	custo	desvio padrão	custo		
	médio (s)	mínimo (\$/h)	médio (\$/h)	do custo (\$/h)	máximo (\$/h)		
QN	0,41	124095,342	126133,553	955,354	128247,588		
CES	28,67	122589,907	123104,353	631,358	123808,925		
CES-QN(1)	97,41	121894,524	122170,622	239,109	122309,405		
CES-QN(2)	39,43	122616,133	123231,149	785,581	123116,111		
CES-QN(3)	28,94	122287,940	123426,552	1015,131	123237,030		

Tabela 11. Melhor Resultado (30 experimentos) obtido usando CES-QN(1).

potência	geração	potência	geração	potência	geração
P_1	113,997453	P_{15}	394,279398	P_{29}	10,000000
P_2	113,626347	P_{16}	394,279381	P_{30}	88,297938
P_3	97,399937	P_{17}	489,279397	P_{31}	190,000000
P_4	179,733101	P_{18}	489,279390	P_{32}	190,000000
P_5	90,494299	P_{19}	511,279371	P_{33}	190,000000
P_6	105,400153	P_{20}	511,279371	P_{34}	164,888390
P_7	259,599877	P_{21}	523,279390	P_{35}	164,812509
P_8	300,000000	P_{22}	523,279437	P_{36}	200,000000
P_9	284,601078	P_{23}	523,279474	P_{37}	91,371556
P_{10}	204,799816	P_{24}	523,279398	P_{38}	93,306261
P_{11}	94,000001	P_{25}	523,279375	P_{39}	110,000000
P_{12}	94,000000	P_{26}	523,279370	P_{40}	511,279371
P_{13}	214,759791	P_{27}	10,000000	somatório de P_i , <i>i</i> =140	10500,0000
P_{14}	394,279373	P_{28}	10,000000		

método de otimização	referência	custo mínimo (\$/h) para 40 unidades	
		geradoras	
programação evolucionária	[15]	122624,350	
nuvem de partículas	[26]	122930,450	
nuvem de partículas modificado	[27]	122252,265	
programação evolucionária híbrida com SQP	[26]	122379,630	
nuvem de partículas híbrida com SQP	[26]	122094,670	
método Taguchi	[31]	122477,780	
QN	este artigo	124095,342	
CES	este artigo	122589,907	
CES-QN(1)	este artigo	121894,524	

Tabela 12. Comparativo dos resultados apresentados na literatura para a função custo f e os obtidos neste trabalho.

Notação: SQP (Sequential Quadratic Programming)

6. Conclusão e pesquisa futura

Neste artigo, foi apresentada uma nova metodologia híbrida combinando CES e QN para resolução do problema de despacho econômico de energia elétrica com a presença do efeito do ponto de válvula. A CES foi utilizada junto ao método QN em três diferentes configurações de projeto.

Em relação ao procedimento de resolução do problema de despacho econômico de energia elétrica considerando o efeito do ponto de válvula, os resultados de algumas abordagens de métodos híbridos de CES e QN testados para a otimização (problema de minimização) das equações (1) e (2) foram melhores que os apresentados na literatura atual para o caso de 13 e 40 unidades térmicas.

A QN quando aplicada de forma isolada explora o espaço de busca rapidamente com a direção do gradiente e garante uma solução "ótima" local. O desempenho da CES-QN testada foi animador, pois estas abordagens encontraram solução global de alta qualidade em tempo computacional aceitável. No entanto, em relação ao método de QN aplicado de forma isolada, a desvantagem foi o custo computacional maior da CES e da CES-QN para obtenção da convergência para um valor de função custo competitivo com outras técnicas apresentadas na literatura, tais como programação evolucionária e nuvem de partículas.

Outros problemas de otimização podem beneficiar-se da utilização das abordagens híbridas de CES e QN. Neste contexto, em futura pesquisa, os autores desejam estender a utilização do CES-QN em problemas de otimização nas áreas de projeto de dispositivos eletromagnéticos, identificação de sistemas não-lineares e sintonia de controladores para aplicações multivariáveis.

Agradecimentos

Os autores agradecem ao editor Prof. Dr. Carlos E. Pedreira e aos revisores deste trabalho, que contribuíram significativamente através de suas sugestões.

Referências bibliográficas

[1] B. H. Chowdhury & S. M. Rahman: "A review of recent advances in economic dispatch," *IEEE Transactions on Power Apparatus and Systems*, **5**(4), 1990, pp. 1248-1259.

[2] M. A. Abido: "A novel multiobjective evolutionary algorithm for environmental/economic power dispatch," *Electric Power Systems Research*, **65**(1), 2003, pp. 71-81.

[3] P. Attaviriyanupap, H. Kita, E. Tanaka & J. Hasegawa: "A fuzzy-optimization approach to dynamic economic dispatch considering uncertainties," *IEEE Transactions on Power Systems*, **19**(3), 2004, pp. 1299-1307.

[4] V. Miranda, D. Srinivasan & L. M. Proença: "Evolutionary computation in power systems," *Electric Power Energy Systems*, **20**(2), 1998, pp. 89-98.

[5] S. C. Lee &Y. H. Kim: "An enhanced Lagrangian neural network for the ELD problems with piecewise quadratic cost functions and nonlinear constraints," *Electric Power Systems Research*, **60**(3), 2002, pp. 167-177.

[6] W. M. Lin, F. S. Cheng & M. T. Tsay: "An improved tabu search for economic dispatch with multiple minima," *IEEE Transactions on Power Systems*, **17**(1), 2002, pp. 108-112.

[7] T. Bäck, D. B. Fogel & Z. Michalewicz (eds.): *Handbook of evolutionary computation*, Bristol, Philadelphia: Institute of Physics Publishing, NY, Oxford: Oxford University Press, 1997.

[8] T. Bäck: Evolutionary algorithms in theory and practice, New York: Oxford University Press, 1996.

[9] V. Oduguwa, A. Tiwari & R. Roy: "Evolutionary computing in manufacturing industry: an overview of recent applications," *Applied Soft Computing*, **5**, 2005, pp. 281-299.

[10] H. -G. Beyer & H. -P. Schwefel: "Evolution strategies," Natural Computing, 1, 2002, pp. 3-52.

[11] H. -P. Schwefel: Evolution and optimum seeking, Wiley, New York, NY.

[12] H. -G. Beyer: "Toward a theory of evolution strategies: self-adaptation," *Evolutionary Computation*, **3**(3), 1996, pp. 311-347.

[13] A. Ostermeier, A. Gawelczyk & N. Hansen: "A derandomized approach to self-adaptation of evolution strategies," *Evolutionary Computation*, **2**(4), 1995, pp. 369-380.

[14] D. C. Walters & G. B. Sheble: "Genetic algorithm solution of economic dispatch with valve point loading," *IEEE Transactions on Power Systems*, **8**(3), 1993, pp. 1325-1332.

[15] N. Sinha, R. Chakrabarti & P. K. Chattopadhyay: "Evolutionary programming techniques for economic load dispatch," *IEEE Transactions on Evolutionary Computation*, **7**(1), 2003, pp. 83-94.

[16] A. Wood & B. F. Wollenberg: Power generation, operation and control, New York, John Wiley & Sons, 1994.

[17] I. Rechenberg: *Evolutionsstrategie: optimierung systeme nach prinzipien der biologischen evolution*, Dr. -Ing. Thesis, Technical University of Berlin, Department of Process Engineering, Germany, 1973.

[18] H. -P. Schwefel: Kybernetische evolution als strategie der exprimentellen forschung in der strömungstchnik, Master's thesis, Technical University of Berlin, Germany, 1965.

[19] T. Bäck & H. -P. Schwefel: "An overview of evolutionary algorithms for parameter optimization," *Evolutionary Computation*, **1**(1), 1993, pp. 1-23.

[20] C. M. Bishop: Neural networks for pattern recognition, Oxford University Press, New York, USA, 1995.

[21] R. Fletcher: Practical methods of optimization, 2nd edition, John Wiley & Sons, New York, NY, 1987.

[22] M. S. Bazarra, H. D. Sherali & C. M. Shetty: *Nonlinear programming: theory and algorithms*, John Wiley & Sons, New York, USA, 2nd edition, 1979.

[23] J. Nocedal: "Theory of algorithms for unconstrained optimization," Acta Numerica, 1, 1991, pp. 199-242.

[24] Ph. Preux & E. -G. Talbi: "Towards hybrid evolutionary algorithms," *International Transactions in Operational Research*, **6**, 1999, pp. 557-570.

[25] N. Krasnogor & J. Smith: "A tutorial for competent memetic algorithms; model, taxonomy, and design issues," *IEEE Transactions on Evolutionary Computation*, **9**(5), 2005, pp. 474-488.

[26] T. A. A. Victoire & A. E. Jeyakumar: "Hybrid PSO-SQP for economic dispatch with valve-point effect," *Electric Power Systems Research*, **71**(1), 2004, pp. 51-59.

[27] J. -B. Park, K. -S. Lee, J. -R. Shin & K. Y. Lee: "A particle swarm optimization for economic dispatch with nonsmooth cost function," *IEEE Transactions on Power Systems*, **20**(1), 2005, pp. 34-42.

[28] W. -M. Lin, F. -S. Cheng & M. -T. Tsay: "An improved tabu search for economic dispatch with multiple minima," *IEEE Transactions on Power Systems*, **17**(1), 2002, pp. 108-112.

[29] H. -T. Yang, P. -C. Yang & C. -L. Huang: "Evolutionary programming based on economic dispatch for units with nonsmooth fuel cost functions," *IEEE Transactions on Power Systems*, **11**(1), 1996, pp. 112-118.

[30] K. P. Wong & Y. W. Wong: "Genetic and genetic/simulated-annealing approaches to economic dispatch," *IEE Proc. Generation, Transmission, and Distribution*, **141**(5), 1994, pp. 507-513.

[31] Y. Cai & D. Liu: "An orthogonal array optimization for the economic dispatch with nonsmooth cost functions," *Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference*, Seville, Spain, 2005, pp. 1264-1269.