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Abstract: The usual approach to nonlinear dynamic systems neural modeling has been that of training a feed forward neural 
network to represent a discrete nonlinear input-output NARMA (Nonlinear Auto Regressive Moving Average) type of model. 
In this paper, the recently developed alternative approach of combining feed forward neural networks with the structure of 
ordinary differential equations (ODE) numerical integrator algorithms is done in a way not yet considered. In this new 
approach, instead of using the neural network to learn the instantaneous derivative function of the ordinary differential 
equation (ODE) that describes the dynamic system, it is used to learn the dynamic system mean derivative function. This 
allows the use of an Euler structure to obtain a first order ODE neural integrator, which in principle can provide the same 
accuracy as that of any higher order integrator. The main objective is to have an approach in which the dynamic system neural 
modeling is simple. First in terms of the feed forward neural network training, since it has to learn only the algebraic and static 
functions of the system dynamic ODE mean derivatives. Second in terms of numerical complexity, since a first order integrator 
structure is sufficient to attain a specified accuracy. Test results of a practical problem, representing the dynamics of orbit 
transfer between the Earth and Mars, are used to illustrate the effectiveness of this new methodology. 
Index Terms: Dynamic Systems Modeling, Neural Models, Numerical Integrators, Feed Forward Neural Nets. 
 
1. INTRODUCTION 
The capacity to represent nonlinear dynamic systems is a major driver behind the recent interest in artificial neural networks 
(ANN) (e.g. Narendra and Parthasarathy, 1990; Chen and Billings, 1992), opening new possibilities in terms of simulation, 
monitoring and control applications. Of special interest is the control application (e.g. Norgaard, 2000) where the neural 
network plays the role of an internal model in the control structure to represent the nonlinear plant response. 

 
Because of their capacity to approximate any continuous function (Hornik et al, 1989; Cybenko, 1988), feed forward 

multi layer perceptrons (MLP) are used extensively as a NARMA (Nonlinear Auto Regressive Moving Average) model, in the 
representation of dynamic systems (e.g. Hunt et al, 1992; Chen and Billings, 1992). 
 

Recent works have shown the possibility of inserting feed forward neural networks into the structure of an ODE 
integrator in order to get a discrete model representation of a given autonomous dynamic system, where the neural network 
needs only to learn the derivative function of the system. Wang and Lin (1998) applied this approach using a fourth order 
Runge-Kutta integrator to represent ordinary dynamic systems, and introduced in the literature the term Runge-Kutta Neural 
Network. Rios Neto (2001) independently explored the approach considering other ODE integrators structures, and showing its 
use in neural control. Since the dynamics is taken into account by the ODE numerical integrator algorithm, the neural network 
has to learn only an algebraic function that is named the changing rates of system states or the instantaneous derivative of 
ODE.  Therefore, the direct benefit of this methodology is to lower the dimension of the neural network in terms of neurons 
and connections, facilitating its training and its implementation (Rios Neto and Tasinaffo, 2003). 
 

In this work the possibility of using mean derivatives instead instantaneous derivative in the design of a neural 
numerical integrator is demonstrated and preliminarily tested. The resulting novel approach (Tasinaffo, 2003) further 
simplifies the structure and complexity of the ODE neural integrator representing discrete models of nonlinear dynamic 
systems. It is demonstrated that a neural integrator with a first order (Euler) structure is enough to get the same accuracy as that 
given by any higher order numerical integrator. Thus, the analytical expression for backpropagation in supervision training to 
neural Euler integrator with mean derivative is simpler than any another instantaneous derivative methodology, although the 
means derivative gets only fixed time step and instantaneous derivative is not limited by this.   
 

In what follows, in Section 2, the possibility of representing discrete dynamic systems with Euler integrators using 
mean derivatives is given mathematical support. In Section 3, the proposed method is developed and analyzed. In Section 4, 
preliminary test results of application in a nonlinear dynamic system, corresponding to an Earth/Mars transfer orbit problem 
dynamics, are presented. And last, in Section 5, a few conclusions are drawn. 
 
2. DISCRETE DYNAMIC SYSTEMS AND EULER INTEGRATOR WITH MEAN   
DERIVATIVES 
Here, the mathematical fundamentals supporting the possibility of modeling discrete nonlinear dynamic systems by using 
mean derivative functions in the structure of Euler integrators are presented. These results show that, in principle, its is 
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possible to have a discrete dynamic system model with accuracy equal to any higher order ODE integrator, using the structure 
of an Euler integrator, as long as sufficiently accurate values of the dynamic system mean derivatives are available. In the 
sequel the capacity of neural networks to represent nonlinear functions (e.g. Zurada, 1992) will be used to give a practical 
realization to this possibility. 
 

Consider the following nonlinear autonomous system of ordinary differential equations, representing a given dynamic 
system: 

 
f(y)y =&                                                    (1a) 

 
T

n 21 ]y  ... y   [yy =                                     (1b) 
 

T
n21 (y)]f  ...  (y)f   (y)[ff(y) =                                                 (1c) 

 
It is convenient to introduce the following vector notation, to indicate possible initial condition sets at the initial time 

 and the respective trajectory solutions of (1a): ot
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where, i = 1, 2, ..., ∞; and ∞  is adopted to indicate that the mesh of discrete initial conditions can have as many points as 
desired, starting from  at initial time , that belong to a domain of interest , where  

and , j = 1, 2, …, n, are finite. 
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Two important results (e.g., Braun, 1983) about the solution of differential equations (1a) are considered. The first is 

about the existence and uniqueness of solutions and the second about the existence of stationary solutions. 
 

Theorem 1 (T1) - Let each of the functions  have continuous partial derivatives with 

respect to . Then, the initial value problem 

)y ..., ,y ,(yf ..., ),y ..., ,y ,(yf n21nn211

n1 y ..., ,y f(y)y =& , , inside a domain of interest , j = 1, 2  

..., n, in , has one and only one solution , in , for each  initial state. If two solutions, 
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nmax

j
min
j ]y , [y

ot (t)yy ii= nR )(ty o
i (t)y φ=  and 

(t)y ϕ= , have a common point, then they must be identical. 
 
Property 1 (P1) - If (t)y φ=  is a solution of (1a), then c)(ty += φ  is also a solution of (1a), where c is any real constant. 

Consider the situation where  does not have an analytical solution, and this solution is to be represented by a set of 

discrete points of , , for a given . To prepare for the 
possibility of getting these discrete points by using mean derivative functions in the structure of Euler integrators, the secant 
formed by the two points  and , belonging to the curve , is defined as the straight-line segment joining them, 
and the correspondent tangent is: 
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where, k i
jα  is thus the angle of the secant which links the two points  and  belonging to the curve . i
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Property 2 (P2) - If  is a discrete solution of  and ik y )f(yy ii =& 0t ≠Δ  then , the vector of , 
j = 1, 2, ..., n, exists and is unique. 
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Two other important theorems, which relate the values of  and , with the values of the mean 

derivatives calculated from  and , respectively, are the differential and integral mean value 
theorems (e.g., Wilson, 1958; Munem et al, 1978; Sokolnikoff et al, 1966), enunciated without demonstration in what follows. 

ik
t tan αΔ

ik
t tan α&Δ

]y  y[ 
i1kik + ]y  y[ i1kik && +

 
Theorem 2 (T2) - (Differential mean value theorem): If a function , for j = 1, 2, ..., n, is defined and continuous in the 

closed interval  and is differentiable in the open interval , then there exists at least one , 

 such that  
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Theorem 3 (T3) - (Integral mean value theorem): If a function, , for j = 1, 2, ..., n, is continuous in the closed interval 

, then there exists at least one  interior to this interval, such that 
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In general  and  are different and it is important to notice that the theorems do not tell how to determine these points. *

kt x
kt

Property 3 (P3) - The mean derivative  of  in the closed interval  is equal to , as an 
immediate consequence of the definition of mean derivatives. 
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Theorem 4 (T4) - The point  of the solution of the system of nonlinear differential equations  can be 

determined through the relation  for a given  and 
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The application of the theorem of the mean integral value, T3, to the curve in the interval  implies the 

existence of at least one  interior to  such that  
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From the application of  = , substituting  in Eq. (7) and this in Eq. (6), it follows that: )(ty x

k
i& ik

ttan αΔ )(ty x
k

i&

 
ikik

t
i1k y ttany +Δ⋅= Δ

+ α                                      (8) 
 

Corollary 1 (C1) - The solution of the system of nonlinear differential equations, , at a given discrete point, , 

for j = 1, 2, ..., n, can be determined, given an initial , by the relation: 
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Corollary 2 (C2) - For the system  the following relation is valid )f(yy ii=& ∑
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In the situation where the system of Eq. (1a) is autonomous, , for  and )(ty)(ty 2
i

1
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. This property establishes that two trajectories of )(ty)(ty 2
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system is autonomous. The question remaining is if the mean derivative  is also autonomous, that is, time invariant. 
The properties that follow answer this question. 

ik
ttan αΔ

 
Property 4 (P4) – If  and  are solutions of (t)y 1i (t)y 2i f(y)y =&  starting from  and , respectively, and 

if  for T>0, then  for any given 

0)(ty o
i1 = 0)(ty o

i2 =

(T)y0)(ty 21 i
o

i == t)(Tyt)(y 21 ii Δ+=Δ tΔ . 
 
Demonstration: if  is a trajectory solution of (t)y 2i f(y)y =& , then  belongs to this trajectory (see P1). By 

hypothesis,  and thus  for t = 0. Since T1 guarantees uniqueness of solution, 
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This result is very useful, since it determines that it is enough to know the values of , for ik
ttan αΔ ∞= ...,2,1,i  at 

, in a region of interest , j=1, 2, ..., n, because for  they will repeat.  Figure 1 illustrates this property of 
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Notice also that due to the existence and uniqueness of  the forward propagation of the dynamic system 

will have unique values of  varying only in the interval 
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Theorem 5 (T5) - The result of T4 is still valid when discrete values of control  in each  are used to solve the 
dynamic system: 

uk ]t ,[t 1kk +

 
u) ,f(yy ii=&                                      (10) 

 
Demonstration: in this case the continuous function, , with  approximated as a constant in , can be 
viewed as being parameterized with respect to the control variable and, therefore, for any discrete interval the existence of the 

mean derivative 

u),f(y i uk ]t ,[t 1kk +

ik
t

iki1k
*
k

i tan
t

y-y)(ty αΔ
+

=
Δ

=&  is guaranteed and the result in Eq. (8) is still valid. 



Learning and Nonlinear Models - Revista da Sociedade Brasileira de Redes Neurais (SBRN), Vol. 3, No. 2, pp. 98-109, 2005 
©Sociedade Brasileira de Redes Neurais 

 

 102

 
Figure 1 – Autonomous and time invariant . ik

ttan αΔ
 
 

3. NEURAL NUMERICAL INTEGRATORS WITH MEAN DERIVATIVES TO REPRESENT 
DYNAMIC SYSTEMS  

In the previous section it was demonstrated that  has the following relevant characteristics: ik
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 is a static function with the same qualitative properties of the function of derivatives . As a 

matter of fact, it is true that . It is also important to observe that the function of derivatives 

 does not depend on , but   does. This property implies that the integration method with mean 
derivatives works with a fixed step size, while those with instantaneous derivatives allow the possibility of working with 
variable step sizes; 
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d) From T3, T4 and P3 it follows that the recurrent relation relating ,  and , to get a discrete solution of 

, is given by , which is a simple Euler integration structure; 
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From the previous characteristics, one concludes that it is possible to use a neural network to represent a dynamic 

system with the Euler integration structure for a given step size tΔ . It is enough to consider the capacity of the neural network 
to approximate nonlinear functions (e.g., Zurada, 1992), using it to approximate the function correspondent to the dynamic 
system mean derivative. 
 

The analysis of the Euler integration local error takes into consideration the exact value  and the neural 

integrator approximated value , as given by Eqs. (11a) and (11b). 
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where em is the output error of the neural network trained to learn the function of mean derivatives  inside the 
domain of interest. Due to the capacity of approximation of the neural network, this error can be less than any specified value.  

ik
ttan αΔ

 

Accordingly, , in Eq. (11b), can have the desired accuracy, given that for a fixed ,  can be made as 

small as specified, when the neural network is approximating the time invariant function of mean derivatives  inside 
a domain of interest. 
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In the proposed approach, a first possibility was adopted as illustrated in Fig. 2, where the neural network is trained to 

directly learn the dynamic system mean derivative, which is then inserted in the structure of the Euler numerical integrator. In 
this scheme, the neural network is trained to learn the function of mean derivatives from the sampled input values of state  

and control , with a previously fixed discrete interval 
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is generated with the help of a numerical integrator of high order used to simulate one step ahead with negligible errors , 

the solution of the system . 
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A second possibility that could be used, based on that adopted by Wang and Lin (1998), and depicted in Fig. 3, is one 
where using the outputs of an Euler integrator the neural network is indirectly trained to learn the dynamic system mean 
derivative. In this case, , the value of state estimated by the neural Euler numerical integrator, is the output value 

compared to the training pattern  to generate the error signal for the supervised training.  
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Figure 2 – Supervised Training of Mean Derivatives of . u),f(yy ii=&



Learning and Nonlinear Models - Revista da Sociedade Brasileira de Redes Neurais (SBRN), Vol. 3, No. 2, pp. 98-109, 2005 
©Sociedade Brasileira de Redes Neurais 

 

 104

 
Figure 3 – Supervised Training of an Euler Neural Integrator Using Mean Derivatives of . u),f(yy ii=&

 
The relation of recurrence between the true values of  and  is expressed by . 

Therefore, if  is obtained with negligible errors, either from the use of a high order integrator or experimentally, then 

, which is the mean derivative approximated by the neural network. It should be observed that if 

 is obtained as an approximation from a Euler integration, the neural network will approximate the function of 

derivatives . Figure 4 illustrates this situation. Consider ,  and , representing the exact value 

of the solution of  at , the approximate value of  obtained from a high order numerical integrator, and 

the approximate value of  obtained from an Euler integrator, respectively. As indicated by Fig. 4, when it is assumed 

that , in the scheme of Fig. 3, then it follows that . On the other hand, taking 

, in this scheme, and if is away from , then, during the training phase, the neural network will 

converge to , the function of mean derivatives, instead of converging to . 
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The use of this approach to nonlinear dynamic systems neural modeling shall provide the following advantageous 

characteristics: (i) less complexity in terms of architecture (number of layers and neurons), and less difficulty in terms of 
training, as compared to a NARMA type model, since the discrete modeling of the dynamic system is accomplished using feed 
forward neural networks in the structure of ODE numerical integrators, and the neural network has to only learn an algebraic 
and static function, instead of having to learn the dynamic system discrete model based in delayed inputs, as is the case with a 
NARMA type of model; (ii) the accuracy of any high order neural integrator with the minimum possible complexity, since the 
neural network is inserted in a simple first order Euler structure; and (iii) in the case of a control application, it permits an 
internal dynamic system model that simplifies the determination of partial derivatives, without destroying the accuracy in the 
approximation of dynamic system outputs. 
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Figure 4 – Representation of mean  and instantaneous  derivatives, for . ik
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4 DEMONSTRATION TEST AND RESULTS  
This new approach was tested in a practical problem of ODE modeling for the dynamics of an orbit transfer between Earth and 
Mars. In this problem the state variables are the rocket mass m, the orbit radius r, the radial speed u and the transversal speed 
v, and the control variable is the thrust steering angle θ , measured from local horizontal (e.g., Sage, 1968): 
 

-0.0749m =&                                    (12a) 
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r
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+

⋅
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where the variables have been normalized with: μ =1.0, the gravitational constant; T=0.1405, the thrust; to=0 and tf=5, initial 
and final times. The normalized unit of time is taken to be 58.2 days; and the unit of distance is equal to the astronomical unit 
(mean distance from Earth to Sun). 
 

In all the MLP training, in the tests that follow, the same Extended Kalman filtering algorithm, with the same 
calibration conditions was used, as implemented by Tasinaffo (2003) based on a version from the literature, as presented in 
Rios Neto (1997). This algorithm results from viewing the training of a fedforward neural network as a problem of parameter 
estimation where the neural network can be treated as a parameterized mapping formally represented as 

 
                                                                               (13) w)(x(t),f̂(t)ŷ =
 
where w is the vector of weight parameters to be identified by fitting a given data set of input-output training patterns 
 
                                                                 (14) } L ..., 2, 1,t    y(t){(x(t), =
 

An iterative algorithm is obtained when a linear approximation is taken, and the following stochastic linear estimation 
problem is solved with a sequential Kalman filtering in a ith iteration (Rios Neto, 1997): 

 
ew(i)w +=                                                               (15a) 
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v(t)w(i)i)H(t,i)z(t, +⋅=                                                            (15b) 
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where, i = 1, 2, ..., I; t= 1,2,…, L; (i)w  is the a priori estimate of w coming from the previous iteration, starting with 

w(1)w = ; (i))w(x(t),f̂i)(t,y =  is the output of the feedforward network; (i))w(x(t),f̂ w  is the matrix of first partial 
derivatives with respect to w; 1 (i) 0 <<α  is a parameter to be adjusted in order to guarantee the hypothesis of linear 
perturbation. In the MLPs training, the calibration conditions were as following: initial weights were randomly generated from 
Gaussian distributions with unit standard deviation; P was taken to be the identity matrix at the beginning of each new 
iteration; initially R=0.1I and after each iteration was taken as this initial value multiplied by the square root of attained mean 
square error; and the parameter to guarantee linear perturbation was taken as 0.1(i)=α . With this calibration, each iteration 
took a few minutes (at most 8 minutes) in a PC computer (Athlon, 256 Mbytes, 1.6 GHz) and of the order of 1000 iterations 
were necessary. 
 

Initially tests were conducted to evaluate the capacity of the mean derivatives based neural Euler integrator in 
generating an accurate discrete model for the dynamics of the test problem. A 4th order Runge-Kutta integrator (e.g. Lambert, 
1973) was used to generate the training and test patterns, from initial conditions and control values randomly generated from 
uniform distributions inside the hypercube defined by the domains of the variables as in Table 1. A MLP neural network with 
the following characteristics was empirically adjusted and used to learn the mean derivatives, according to the scheme of Fig. 
2: Five inputs (four state variables and one control); one hidden layer with 41 biased neurons using hyperbolic tangent (λ=2) as 
activation function, and an output layer with 4 biased neurons, yielding the approximation of the mean derivatives vector. The 
MLP was trained with the Kalman filtering algorithm, until the learning stabilized with 3600 patterns for training and 1400 
patterns for testing. Mean square errors attained by the procedure, for this specific problem, were 2.4789.10-6 and 2.7344.10-6, 
respectively. To assess the capacity of generalization, a test trajectory was generated with the 4th order Runge Kutta, from 
standard initial conditions (m = 1.0, r = 1.0, w = v = 0) using an open loop random control law, with values of control in each 
discrete interval being the outcomes of a uniform distribution between π-  and π+ . From the same initial conditions and 
with the same sequence of controls a correspondent approximation trajectory using the mean derivative Euler neural integrator 
was generated. The results are shown in Fig. 5. These results indicate the effectiveness of the proposed approach in providing 
accurate discrete models of dynamic systems. 
 

For the sake of comparison, a neural network with the same architecture as the previous one was trained under similar 
conditions in terms of generation of training and test patterns, with the same Kalman filtering algorithm, to learn the 
instantaneous derivatives used in the structures of 4th order Runge Kutta and Adams Bashfort numerical integrators. In this 
case, the learning stabilized with 9000 training patterns and 1000 testing patterns, when mean square errors of 3.3580.10-5 and 
3.3565.10-5 were respectively attained. These errors were the best errors that could be achieved before the Kalman filter 
training saturated. From the same initial conditions and with the same sequence of controls used in the test trajectory, 
correspondent approximation trajectories using these 4th order, instantaneous derivative based neural integrators were 
generated. In this case the results were not satisfactory, the 4th order, instantaneous derivative based neural integrators were not 
accurate discrete models for the dynamics of the test problem and were not able to avoid bad results in terms of cumulative 
errors as depicted in Fig. 6, thus indicating that a more complex neural network, in terms of number of neurons in the hidden 
layer, might be necessary for the approximation of the instantaneous derivatives, in order to provide an accuracy of 
approximation as good as that provided by the mean derivatives based neural Euler integrator. 

 
TABLE 1 – Hypercube of Training Domain of Variables 

 
Variable Max Min. 

m 0.2 1.0 
R 0.8 2.0 
W -1.5 +1.5 
V 0.0 1.5 
θ  -1.2.π  +1.2.π  
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Figure 5 – Numerical Results in the Earth to Mars Orbit Transfer Dynamics with Randomly Applied Control (Mean 

Derivatives Based Neural Euler Integrator with Δ T=0.01). 
 

Figure 7 presents the results when again a neural network with the same architecture as the one in the mean 
derivatives based neural Euler integrator is trained under similar conditions in terms of generation of training and test patterns, 
with the same Kalman filtering algorithm, but now playing the role of a zero order NARMA model, that is, having to directly 
learn the discrete model for the dynamics of the test problem, as represented by the 4th order Runge-Kutta integrator which is 
playing the role of the validation model. In this case, 3600 training patterns and 1400 testing patterns were used and mean 
square errors of 2.1115.10-7 and 2,1983.10-7 were respectively attained. Visual inspection is enough to conclude that the results 
in this case were the worst. As a matter of fact, this comparison is not fair, since this kind of results was expected when the 
neural network with the same architecture was used, because now the neural net needs to have a more complex architecture to 
afford the capacity of learning the dynamics of the problem. 

 
Figure 6 – Numerical Results in the Earth to Mars Orbit Transfer Dynamics with Randomly Applied Control (instantaneous 

derivative function with Δ t=0.01). 
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Figure 7 – Numerical Results in the Earth to Mars Orbit Transfer Dynamics with Randomly Applied Control (NARMA 

method with Δ T=0.01). 
 
5 CONCLUSIONS  
A new approach for using neural networks to model discrete dynamic systems was presented, mathematically demonstrated 
and preliminarily tested. By exploring the possibility of using ODE numerical integrators as discrete models of dynamic 
systems, it was demonstrated that the structure of these numerical integrators could be simplified to the limit of an Euler first 
order integrator without compromising the accuracy of approximation, when a neural model of the dynamic system mean 
derivatives is adopted. This led to an approach which not only offers the advantages of ODE neural numerical integrators as 
compared to neural networks used as a NARMA model, but also provides an additional advantage in terms of numerical 
complexity. In fact, with the structure of an Euler first order integrator it is possible to get the same accuracy as that given by 
any higher order numerical integrator. 
 

These characteristics were verified in tests carried out with a representative example of a nonlinear dynamic system. 
The mean derivatives based neural Euler integrator was able to generalize and to provide approximations with the same level 
of accuracy of the Fourth Order Runge Kutta validation model used to simulate the true model. The use of neural networks 
playing the role of dynamic system instantaneous derivatives in ODE neural integrators of fourth order, or representing a 
discrete nonlinear zero order input-output NARMA type of model, with the same architecture and under the same training 
conditions as those used with the mean derivatives based neural Euler integrator, did not produce as good results, 
substantiating the advantage of the latter method in its ability to provide more accurate results with lower numerical cost and 
complexity. 
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	In what follows, in Section 2, the possibility of representing discrete dynamic systems with Euler integrators using mean derivatives is given mathematical support. In Section 3, the proposed method is developed and analyzed. In Section 4, preliminary test results of application in a nonlinear dynamic system, corresponding to an Earth/Mars transfer orbit problem dynamics, are presented. And last, in Section 5, a few conclusions are drawn. 
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