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Abstract – In this paper we review some recent advances on survival models which generalizes the Cox 
model. A review of neural networks used for survival data are presented 

 
1. Survival Analysis Models 
If T is a non-negative random variable representing the time to failure or death of an individual, we may specify the 
distribution of T any one of the probability density function f(t), the cumulative distribution function F(t), the survivor function 
S(t), the harzard function f(t) or the cumulative hazard function H(t). These are related by: 

 

∫=
t

0
du f(u)   F(t)  

 

F(t) 
dt
d  F´(t)  f(t) ==  

 
S(t) = 1 – F(t) 
 

[ S(t)ln  
dt
d -  

S(t)
f(t)  h(t) == ]                                                                                                                                      (1.1) 

 

∫=
t

0
du h(u)   H(t)  

 
h(t) = H´(t) 
 
S(t) = exp[- H(t)]. 
 
A distinct feature of survival data is the occurrence of incomplete observations. This feature is known as censoring 

which can arise because of time limits and other restrictions depending of the study. 
 
There are different types of censoring. 
 

• Right censoring occurs if the event is not observed before the pre-specified study-term or some competitive event (e.g. 
death by other cause) that causes interruption of the follow-up on the individual experimental unit. 

• Left censoring happens if the starting point is located before the time of the beginning of the observation for the 
experimental unit (e.g. time of infection by HIV virus in a study of survival of AIDS patients). 

• Interval censoring the exact time to the event is unknown but it is known that it falls in an interval Ii (e.g. when 
observations are grouped). 

 
The aim is to estimate the previous functions from the observed survival and censoring times. This can be done either 

by assuming some parametric distribution for T or by using non-parametric methods. Parametric models of survival 
distributions can be fitted by maximum likelihood techniques. The usual non-parametric estimator for the survival function is 
the Kaplan-Meier estimate. When two or more group of patients are to be compared the log-rank or the Mantel-Hanszel tests 
are used. 

 
General class of densities and the non-parametric procedures with estimation procedure are described in Kalbfleish 

and Prentice (2002). 
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Usually we gave covariates related to the survival time T. The relation can be linear  or non-liner 

. A general class of models relating survival time and covariates is studied in Louzada-Neto (1977, 1999). Here we 

describe the three most common particular cases of the Louzada-Neto model. 
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The first class of models is the accelerated failure time (AFT) models 
 

 W x e´  -  T log
~~
+= β                                                                                                                                               (1.2) 

 
where W is a random variable. Then exponentiation gives 
 

( ) ( )
~

ww

~
x ́exp T  e  T´or  e x ́ -exp  T ββ ===                                                                                                       (1.3) 

 
where T´ has hazard function h0 that does not depend on β. If hj(t) is the hazard function for the j´th patient it follows 

that 
 
hj(t) = h0(t exp β´x) exp β´x                                                                                                                                         (1.4) 
 
The second class is the proportional odds (PO) where the regression is on the log-odds of survival, correspondence to 

a linear logistic model with “death” or not  
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The third class if the “proportional hazard” or Cox regression model (PH). 
 

( ) ( )th log  x   th log 0~~
t += β                                                                                                                                     (1.7) 

 
( ) ( )

~~
0j x  exp th  th β=                                                                                                                                             .(1.8) 

 
Ciampi and Etezadi-Amoli (1985) extended models (1.2) and (1.7) under a mixed model and not only extend these 

models but also puts the three models under one more general comprehensive model (Louzada-Neto and Pereira, 2000). See 
Figure 6.1. 
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Figure1: Classes of regression model for survival data 
 
 

2. Neural Networks Model For Survival Analysis 
Ripley (1988) investigated seven neural networks in modeling breast cancer prognosis; her models were based on alternative 
implementation of models (1.2) to (1.8) allowing for censoring. There we outline the important results of the literature. 

 
The accelerated failure time – AFT model is implemented using the architecture of regression network with the 

censored times estimated using some missing value method as in Xiang et al (2000). 
 
For the Cox proportional hazard mode, Faraggi and Simon (1995) substitute the linear function βxj by the output f(xj, 

θ) of the neural network, that is 
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and estimations are obtained by maximum likelihood through Newton-Raphson. 
 
The corresponding network is shown in Figure 2. 
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Figure 2: Neural network model for survival data (Single hidden layer neural network) 

 
As an example (Faraggi and Simon, 1995) consider the data related to 506 patients with prostate cancer in stage 3 and 

4. The covariates are: stage, age, weight, treatment (0.2; 1 or 5 mg of DES and placebo). 
 
The results are given in the tables 1, 2, 3 below: 
 

(a) First-order PH model 4 (parameters); 
(b) Second-order (interactions) PH model (10 parameters); 
(c) Neural network model with two hidden nodes (12 parameters); 
(d) Neural network model with three hidden nodes (18 parameters). 

 
Table 1 – Summary statistics for the factors included in the models 
 

 Complete Data Training Set Validation Set 
Sample size 
Stage 3 
Stage 4 
Median age 
Median wight 
Treatment: Low 
Treatment: High 
Median survival 
% censoring 

475 
47.5% 
52.5% 

73 years 
98-0 

49.9% 
50.1% 

33 months 
28.8% 

238 
47.6% 
52.4% 

73 years 
97-0 

48.3% 
51.7% 

33 months 
29.8% 

237 
47.4% 
52.6% 

73 years 
99-0 

51.5% 
48.5% 

34 months 
27.7% 
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Table 2 – Log-likelihood and c statistics for first-order, second-order and neural network proportional hazards models 
 
 Training Data Test Data 

Model Numbe
r of 

Param
eter s 

Log 
lik 

c Log 
lik 

c 

First order PH 
Second-order PH 
Neural network H = 2 
Neural network H = 3 

 4 
10 
12 
18 

- 
814.3 

- 
805.6 

- 
801.2 

- 
794.9 

0.608
0.648
0.646
0.661

- 
831.0 

- 
834.8 

- 
834.5 

- 
860.0 

0.607 
0.580 
0.6000
0.582 

 
Table 3 – Estimation of the main effects and higher order interactions using 24 factorial design contrasts and the 

predictions obtained from the different models 
 

Effects PH 
1st 

order 

PH 
2nd 

order 

Neural 
Network 

H = 2 

Neural 
Network 

H = 3 
Stage 
Rx* 
Age 
Weight 
Stage x Rx 
Stage x Age 
State x Wt* 
Rx x Age 
Rx x Wt 
Stage x Rx x Age 
Stage x Rx x Wt 
Stage x Age x Wt 
Rx x Age x Wt 
State x Ex x Age x Wt 

 0.300 
-0.130 
 0.323 
-0.249 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

 
0.325 

-
0.248 

 
0.315 

-
0.238 

-
0.256 

-
0.213 

-
0.069 

 
0.293 

-
0.195 

0 
0 
0 
0 
0 

 0.451 
-0.198 
 0.219 
-0.302 
-0.404 
-0.330 
-0.032 
 0.513 
-0.025 
 0.360 
 0.026 
-0.024 
 0.006 
 0.028 

 0.450 
-0.260 
 0.278 
-0.581 
-0.655 
-0.415 
-0.109 
 0.484 
 0.051 
 0.475 
 0.345 
 0.271 
-0.363 
-0.128 

 
* Rx = Treatment 
  Wt – Weight 
 
Implementation of the proportional odds and proportional hazard were implemented also by Liestol et al (1994) and 

Biganzoli at al (1998). 
 
Liestol, Anderson (1994) used a neural network for Cox’s model with covariates in the form. 
 
Let T be a random survival time variable, and Ik the interval tk-1 < t < tk, k = 1, …, K where 0 < t0 < t1 < … < tk < ∞. 
 
The model can be specified by the conditional probabilities. 
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for K = 1, …, K. 
 
The corresponding neural network is the multinomial logistic network with k outputs. 
 
 

 
 

Figure 3: Log odds survival network 
 

 
The output 0k in the kth output neuron corresponds to the conditional probability of dying in the interval Ik. 
 
Data for the individual n consist of the regressor xn and the vector ( )nn

1 y , ,y L  where  is the indicator of 

individual n, y in I

n
ky

k and kn ≤ K is the number of intervals where n is observed. Thus  are all 0 and y1-n
nn

1 k y , ,y L n kn = 1 of 
n dies in Ikn and 
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and the function to optimize 
 

( ) ( )(∑ ∑
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N

1-h

K
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nn
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n

 w,xf - y - 1log -    w*E )

)

                                                                                                        (1.12) 

 
and ( Ik0k01  , , , ,  w βββ LL=  and under the hypothesis of proportional rates make the restriction 

j4j3j21j           βββββ ===== L . Other implementations can be seen in Biganzoli et al (1998). 
 
An immediate generalization would be to substitute the linearity for non-linearity on the regressors adding a hidden 

layer as in the figure 4. 
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Figure 4– Non-linear survival network (Two-layer feed-forward neural nets, showing the notation for nodes and 

weights: input nodes (•), output (and hidden) nodes (0), covariates Zj, connection wrights wij, output values ( )2
10  

. 
An example from Liestol et al (1994) used the data from 205 patients with melanoma of which 53 died, 8 covariates 

were included). 
 
Several networks were studied and the negative of the likelihood (interpreted as prediction error) is given in the table 

4 below: 
 
Table 4 – Cross validation of models for survival with malignant melanoma. Column 1. Linear model; 2. Linear 

model with weight-decay; 3. Linear model with a penalty term for non-proportional hazards; 4. Non-linear model with 
proportional hazards; 5. Non-linear model with a penalty term for non-proportional hazards; 6. Non-linear model with 
proportional hazards in first and second interval and in third and fourth intervalo; 7. Non-linear model with non-proportional 
hazards 

 
 1 2 3 4 5 6 7 

Prediction error 
Change 

17
2.6 

170.
7 

-  1.9

168.
6 

-  4.0

18
1.3 

   
8.7 

16
7.0 

-  
5.6 

16
8.0 

-  
4.6 

1
70.2 

-  
2.4 

 
The main results for non-linear models with two hidden nodes were: 
 

• Proportional hazard models produced inferior predictions, decreasing the test log-likelihood of a two hidden node model 
by 8.7 (column 4) when using the standard weight decay, even more if no weight decay was used. 

• Again the test log-likelihood was obtained by using moderately non-proportional models. Adding a penalty term to the 
likelihood of a non-proportional model or assuming proportionality over the two first and last time intervals improved the 
test log-likelihood by similar amounts (5.6 in the former case (column 5) and 4.6 in the latter (column 6)). Using no 
restrictions on the weights except weight decay gave slightly inferior results (column 7, improvement 2.4). 

 
In summary, for this small data set the improvements that could be obtained compared to the simple linear models 

were moderate. Most of the gain could be obtained by adding suitable penalty terms to the likelihood of a linear but non-
proportional model. 

 
An example from Biganzoli et al (1998) is the application neural networks in the data sets of Efron´s brain and neck 

cancer and Kalbfleish and Prentice lung cancer using the network architecture of figure 5.  The results of survival curve fits 
follows in figures 6 and 7. 
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Figure 5 – Feed forward neural network model for partial logistic regression (PLANN). The units (nodes) are 
represented by circles and the connections between units are represented by dashed lines. The input layer has J units for time α 
and covariates plus one … unit (0). The hidden layer has H units plus the … unit (0). A single output unit (K = 1) compute 
conditional failure probability x1 and x2 are the weights for the connections of the … unit with the hidden and output unit wa 
and w… are the weights for the connections between input and hidden units and hidden and output unit, respectively. 

 
 
 
 

 
 

 
Figure 6 – Head and neck cancer trial( (a) estimates of conditional failure probability obtained with a sub optional 

PLANN model (solid line) and the cubic-linear spline proposed by Efron13 (dashed lines); (b) corresponding survival function 
and Kaplan-Meyer estimates 
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Figure 7 – Head and neck cancer trial ( (a) estimates of conditional failure probability obtained with the best PLANN 

configuration (solid line) and the cubic-linear spline proposed by Efron13 (dashed lines); (b) corresponding survival function 
and Kaplan-Meyer estimates) 

 
 
A further reference is Bakker et al (2005) who have used a neural-Bayesian approach to fit Cox survival model using 

MCMC and an exponential activation function. Other applications can be seen in Lapuerta et al (1995), Ohno-Machado et al 
(1995) and Mariani at al (1997). 
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