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Abstract — The knowledge of loads’ future behavior is very important for decision making in power system operation. 
During the last years, many load models have been proposed, and the neural ones have presented the best results. One of the 
disadvantages of the neural models for load forecasting is the possibility of excessive adjustment of the training data, named 
overfitting, which degrades the generalization capacity of the estimated models. This problem can be tackled by using 
regularization techniques. This paper shows the application of some of these techniques to short term load forecasting. 
 
Index Terms — Short-term load forecasting, artificial neural networks, regularization techniques, Bayesian training, gain 
scaling, support vector machines. 
 
1 Introduction 
Operational decisions in power systems, such as unit commitment, economic dispatch, AGC, and maintenance scheduling, 
depend on the future behavior of the load [1]. Therefore, several load forecasting models have been proposed during the last 
forty years. Such a long experience in dealing with the load forecasting problem has shown some successful models such as 
multiple regression, Box-Jenkins, neural networks, including multilayer perceptron (MLP) and radial basis function (RBF) 
networks, fuzzy logic based and hybrid models. 
 
One of the advantages of neural network models in short-term load forecasting is the property of being universal aproximators. 
However, this theoretical advantage can backfire if data overfitting is not avoided. Therefore, complexity control is crucial for 
nonlinear models. The main objective of model complexity control is to match the data regularity with the model nonlinearity, 
avoiding overfitting or underfitting, and maximizing the generalization capacity. 
 
This paper compares different procedures for controlling the complexity of feedforward neural networks. In order to minimize 
the out-of-sample forecasting error, Bayesian training [8], [10], activation function gain scaling [14] and Support Vector 
Machines (SVM) [5]-[7] are compared. The database for testing corresponds to the load and temperature series, in hourly 
basis, from a North-American electric utility (http://www.ee.washington.edu/class/559/2002spr), which has been used in 
several load forecasting studies. One day ahead predictions have been simulated to compare the different proposals for 
regularizing the neural models. 
 
2 Artificial Neural Networks 
The neural network models commonly used in electric load forecasting have a feedforward structure with one hidden layer 
only. The following section presents the popular multilayer perceptron and the recently proposed Support Vector Machine, 
which has the MLP as a special case. 
 
2.1 Multi-Layer Perceptrons 
Let nx ∈ �  be a vector representing input signals, d ∈ �  the corresponding desired output, Mw ∈ �  the vector of connection 
weights of the neural network, with , where m is the number of neurons in the hidden layer, and  and , 

, the bias for the activation functions 
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Given a dataset D with N input/output pairs, { }, ,   1,2,...,i iD x d i N= = , the traditional training objective of an MLP is to 
estimate the weight vector w  such that the empirical risk is minimized, i.e.: 
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There are several algorithms for minimizing (2). Independently of using the classical error backpropagation, or second order 
methods, such as the Levenberg-Marquardt [8], the main drawback of those training methods is the risk of overfitting. 
 
2.2 Support Vector Machines (SVMs) 
For SVMs, the model output is given by: 
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functions. Let the loss function be the ε -insensitive ( ),L d yε , given by [5]: 
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In equation (4), ε  can be understood as the additive noise variance of the regression model [6]. In the following development, 
ε  is assumed to be known, i.e., defined by the user. The training objective of an SVM model is the minimization of the 
empirical risk, i.e.: 
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where  is responsible for the model complexity control 0c [6].  
 
The nonlinear constraint in (6) can be incorporated by the objective function with the addition of new constraints, as follows: 
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model 
omplexity. In practice, this parameter is empirically determined using resampling techniques, such as cross-validation. 

 
In equation (7), C is a pre-specified parameter responsible for the balance between the training data fitting and the 
c
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In order to solve the optimization problem formulated in (7) and (8), the following Lagrangean function can be defined: 
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w  α  and 'α  are the Lagrange multipliers. 

quation (10) is obtained from the optimality conditions of (9), 
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he dual maximization problem corresponding to the primal minimization problem in (9) is formulated as: 

 
 
T
 

( ) ( ) ( )

( )( ) ( )
1 1

max , ' ' '

1 ' ' ,
2

N N

i i i i i
i i

N N

i i j j i j

Q d

K x x
1 1i j

α α α α ε α

α α α α

= =

⎧ = − − +⎨
⎩

⎫
− − − ⎬

∑ ∑

∑∑
 

α

= = ⎭

(11) 

bject to: 

,   0 ' ,   1, 2,...,

N

i i
i

i iC C i N

α α

α α
=

− =

≤ ≤ ≤ ≤ =

∑
(12) 

 
su
 

( )
1

' 0

0  
 
In equation (11), ( ) ( ) ( )i jxφ  is the inner product kernel defined according to Mercer’s theorem [5]. Therefore, 

e output of an SVM is given by: 
, T

i jK x x xφ=
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As can be seen from equation (13), the support vectors are the training patterns in which 'i iα α≠ , i.e., the ones located 
outside the band defined by ε . An SVM model is, in fact, a feedforward neural network model with hidden layer units 
activation functions defined by the kernels ( ), , as in Fig. 1. iK x x
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Fig. 1 – SVM architecture 

 
2.3 Multilayer Perceptron versus Support Vector Machine 
From the previous presentation, several important differences between MLPs and SVMs can be observed. First of all, training 
an MLP via error backpropagation presumes the pre-specification of the neural network architecture. With SVMs, the model 
structure is a by-product of training, depending on the parameters ε  and . Objective functions to be minimized in MLP 
training via error backpropagation generally focus on the empirical risk (training set error), only. On the other hand, SVM 
training is based on the minimization of the structural risk, i.e., the minimization of the upper bound of the generalization 
error. Therefore, SVM models have their complexity implicitly controlled. Another important difference is related to the 
nonlinearity of the objective functions. While for error backpropagation local minima can be troublesome, in SVM training the 
solution is unique, due to the quadratic nature of the optimization problem. 

C

 
3 Regularization Techniques 
There are two basic procedures to control an MLP extent of nonlinearity. The first one is called structure stabilization [8], 
where the aim is to determine the minimum number of neurons in the hidden layer, which can be implemented in three ways: 
comparison of different structures using resampling or analytical qualification (e.g., NIC (Network Information Criterion) [9], 
Bayesian model comparison [10], etc.); pruning [8]; and constructive networks [13]. 
 

The second basic procedure for controlling the neural network complexity is based on regularization theory. In this 
procedure, a balance between training error and generalization capacity can be obtained through the minimization of the total 
risk, i.e.: 

 
( ) ( ) ( ){ }min ,s cR w E w D E wλ= +  (14) 

 
In equation (14), ( ),sE w D  represents the empirical risk, given by (2), while ( )cE w  denotes the model complexity [8], 

[10], [13]. The factor λ  is known as the regularization parameter, which weights the balance between training error and model 
complexity. The setting of the regularization parameter, associated with the bias-variance trade-off, is performed by 
resampling techniques and/or analytical methods [10]. 

 
One way to define the functional form of ( )cE w  is through the application of Bayesian inference [8], [10]. Using Bayes’ 

rule, the conditional probability density function of w , given the dataset D, ( )|p w D , is estimated by: 
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In equation (15), ( )|p D w  is the likelihood of D given w , ( )p w  is the a priori probability density function of w , and 

( ) ( ) ( )|p D p D w p w d= ∫ w  is a normalization factor, which guarantees that ( )| 1p w D d w =∫ . 
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It is assumed that w  presents a Gaussian distribution with zero mean and diagonal covariance matrix 1 Iα − , and that the 

desired outputs are given by ( ),i id f x w ζ= + , where ζ  is Gaussian white noise with zero mean and variance 1β − . With the 

previous hypotheses, the maximization of the a posteriori distribution of w , i.e., ( )|p w D , is equivalent to the minimization 
of the following expression [10]: 
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Dividing (16) by β , ( )S w becomes equal to ( )R w , therefore, 
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This regularization term is known as “weight decay”, which favors neural models with small magnitudes for the connection 

weights. 
 

One of the advantages of the Bayesian approach for training an MLP is the embedded iterative mechanism for estimating λ  
[10]. 
 

As already mentioned, there are other techniques for estimating neural models with good generalization capacity, in which 
complexity control is not attained by adding ( )cE wλ  in the objective function to be minimized. Among these techniques the 
early stopping procedure and the activation function gain scaling method [14] deserve more investigation. 
 

In the early stopping procedure, cross validation is usually applied to partitioning the data into two subsets: one for training 
and the other for validation. The iterative updating of the weight w  is interrupted during training as soon as the error for the 
validation subset stops decreasing. Although very popular in practice, [13], [15], this procedure is very heuristic. Moreover, it 
can deteriorate the extraction of information related to serial correlation in the load curve. Other drawbacks of early stopping 
can be seen in [11], [12]. 
 

The activation function gain scaling method is a post-training method equivalent to inserting noise in the training patterns 
(without doing that explicitly). The idea of including corrupted versions of the original input patterns in the training set is to 
smooth the mapping, avoiding divergent outputs for similar inputs [14]. 
 

Let’s consider neural networks with one hidden layer of sigmoidal activation functions and one linear output unit. 
According to [14], if the training data is generated so that the input space is uniformly covered and the additive noise is 
Gaussian  distributed, i.e., ( )20, noiseN σ I , then one network trained with noise to minimize the empirical risk will have a 

performance comparable to another neural network estimated with the original (non-corrupted) dataset, but with 
regularization. Similar generalization capacity can be obtained with a neural network trained on the original dataset and aiming 
at minimizing the empirical risk, i.e., without regularization, if the activation functions gains from the hidden units are 
multiplied by a factor , such that: ka
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This procedure produces analogous results to the weight decay regularization method [14]. 
 
4 Data Pre-processing 
Data pre-processing is essential for the success of any system identification method. Besides estimating the missing data, the 
data have been transformed in order to improve the time series stationarity. Therefore, seasonalities and trends have been 
removed from the load and temperature series. Missing data have been estimated by linear interpolation. Seasonal behavior has 
been removed by seasonal differencing, while trends have been mitigated with first order differencing, i.e.: 
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The load series “Series3” has been generated from October 30th. 1990 to December 31st 1991. This series has been 

standardized (zero mean and unit variance) also, producing the series ( )S k . The sample autocorrelation functions, including 

the partial one, of  have been estimated in order to select the input variables for the neural NARX (Nonlinear 
Autoregressive Exogenous) model. From the correlograms, the most significant load variables have been S(k-1), S(k-2), S(k-
24) and S(k-168). 

( )S k

 
After removing the daily seasonality and applying standardization to the temperature series, temperature lagged variables 

were added for every time instant for which a load variable was included, plus the forecasted temperature for the target hour, 
i.e., T(k), T(k-1), T(k-2), T(k-24) and T(k-168). Measured temperatures have been employed as temperature predictions for the 
next day. 
 

Besides those input variables, two other variables for coding the hour of the day have been used [15], [16]: 
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5 Load Forecasting Models 
As the load dynamics varies from day to day, one model has been developed for each day of the week (holidays have not been 
considered). The training set for each model is formed by the corresponding data from the six weeks before the 24-hour 
forecasting horizon. For example, the forecasting model for Tuesdays uses a training set with 144 patterns. The forecasters are 
retrained at the end of each day to incorporate the most recent load information. Fig. 2 presents a diagram showing the 
procedure for building the training sets and the corresponding forecasting horizon. 
 

FORECASTING
5/17/90 5/24/90 5/31/90 6/7/90 6/14/90 6/21/90 6/28/90

24 PATTERNS 24 PATTERNS 24 PATTERNS 24 PATTERNS 24 PATTERNS 24 PATTERNS 24 PATTERNS
FORECASTING

5/24/90 5/31/90 6/7/90 6/14/90 6/21/90 6/28/90 7/5/90
24 PATTERNS 24 PATTERNS 24 PATTERNS 24 PATTERNS 24 PATTERNS 24 PATTERNS 24 PATTERNS

TRAINING DATASET

TRAINING DATASET

 
 

Fig. 2 – Training and forecasting for each model 
 

For the MLP, hyperbolic tangents have been used as activation functions of the hidden layer units. For the SVMs, Gaussian 
kernels have been employed, requiring the specification of σkernel. 
 

Test results in the next section compare the following training methods: 
 

conventional error backpropagation (minimization of the empirical risk; 
backpropagation followed by gain scaling; 
Bayesian training; and 
SVM learning. 
 

In order to establish a basic benchmark, ARX (Auto-Regressive Exogenous) linear models have been tested too. 
 
6 Results 
Test results for all days of the week, with the different models and methods, are shown in Tables I, II and III. In Table I, the 
models’ structures and training parameters that have provided the best results are presented. The first three columns in Table I 
show the number of neurons in the hidden layer of the MLP for each day of the week, and the corresponding training method. 
The last column in this Table shows the average number of Support Vectors (ANSV) for each day of the week. 
 

In Table II, a comparison among the mean absolute percentage errors is performed. Its last column shows the differences (in 
%) between the best and the worse results for each day of the week. The outstanding performance of the SVMs is remarkable, 
considering the lack of experience on their application to regression problems. It is curious to verify that for Thursday and 

 24



  Learning and Nonlinear Models – Revista da Sociedade Brasileira de Redes Neurais, Vol. 3, No. 1, pp. 19-26,2005 
                                                                                                                                 © Sociedade Brasileira de Redes Neurais    

Fridays, when the Bayesian training has been the winner, the number of support vectors (ANSV) has been much less than in 
the other days of the week. (Table I). More research is needed to clarify this problem. Table III is analogous to Table II, but 
contains maximum percentage errors. 

 
Table I - Model Structure and Training Parameters 

 

Neurons Neurons Neurons σ2
noise C ε σkernel ANSV

Monday 2 2 2 0.12 0.1 0.100 4.24 57.3
Tuesday 2 2 2 0.16 1.0 0.001 4.24 140.6

Wednesday 3 2 3 0.07 1.0 0.100 2.72 58.7
Thursday 3 2 2 0.17 1.0 0.400 1.96 12.8

Friday 2 2 2 0.12 1.0 0.400 3.48 11.7
Saturday 4 2 4 0.05 0.1 0.001 5.00 143.4
Sunday 2 2 2 0.11 1.0 0.100 1.96 59.1

SVMWithout 
regularizer

Bayesian 
Training Gain Scaling

 
 

Table II – Comparison Among Different Models (Error Percentage) 
 

Monday 8.23 8.76 6.43 7.00 5.23 40.3
Tuesday 8.16 7.04 7.47 6.52 4.97 39.1

Wednesday 8.15 6.94 7.08 6.18 5.00 38.7
Thursday 8.15 10.21 6.93 8.41 7.83 32.1

Friday 9.54 7.33 6.29 7.18 6.39 34.1
Saturday 7.38 9.57 7.38 8.17 5.24 45.3
Sunday 7.02 8.19 6.91 7.42 5.00 38.9

ARX Gain Scaling Performance 
Gain

Without 
regularizer

Bayesian 
training SVM

 
 

7 Conclusion 
This paper has compared three techniques to control the complexity of neural network models for short-term load forecasting. 
All tested techniques have shown better results than the ones provided by the non-regularized neural networks (Table II). 
 

Table III – Comparison Among Different Models (Maximum Error Percentage) 
 

Segunda 59.08 57.36 42.54 53.95 43.11 28.00
Terça 66.58 37.44 70.24 34.38 36.62 51.05
Quarta 87.13 164.04 171.62 53.74 30.97 81.95
Quinta 60.15 95.05 57.09 80.28 16.01 83.16
Sexta 131.26 89.71 101.08 64.13 15.31 88.34

Sábado 47.79 92.99 55.83 57.66 32.34 65.22
Domingo 68.65 287.78 101.94 94.44 19.39 93.26

Média 74.38 117.77 85.76 62.65 27.68 76.50

SVM Ganho de 
DesempenhoARX Sem 

Regularizador Bayesiano Escalonamento

 
 

It is worth mentioning the superior performance of the Support Vector Machines, which have presented lower errors for all 
days of the week, except Thursdays and Fridays. Despites this superior performance, it is expected that the SVM forecasting 
errors would be even lower if a better search for the optimal parameters that define the SVM, i.e., the width σkernel of the 
Gaussian kernel ( ), iK x x ,  and C ε , were conducted. 
 

The activation function gain scaling procedure, although behind SVM and Bayesian training in the competition, is by far the 
simplest and most computationally efficient technique. It is the only one capable of improving a trained neural network 
without restarting from scratch. On the other hand, in the Bayesian training, the regularization parameter λ  estimation is part 
of the method, allowing full use of the dataset and less intervention from the user. Although not exploited in this work, the 
Bayesian training is also capable of selecting significant input variables (possibly better than the ones selected by linear 
correlograms) and estimating confidence intervals. 
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