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Abstract – A kinematic controller in cartesian coordinates is proposed in this paper for application in mobile robots with 
differential driving. Lyapunov-like analysis is employed in the control stability proof. The performance of the proposed 
kinematic controller is evaluated via simulation and in real time by using the Magellan-ISR mobile robot for the trajectory 
tracking case. Then, a Biased Wavelet Network (BWN) based controller is associated to the kinematic controller, so as to 
consider the effect of robot dynamic and bounded unknown disturbances. Lyapunov-like analysis is also used for establishing 
stable weight adaptation laws and the control system stability. Structural adaptation is used to improve the control system 
performance. Simulation results are presented and discussed for the dynamic control. 
 
Index Terms – Wavelet networks, structural adaptation, stability proof, dynamic model, kinematic controller. 
 
1.0 − INTRODUCTION  
The common approach in the literature describes the mobile robot motion by the kinematic model. This model does not 
consider the effect of robot dynamic and external perturbations, assuming the perfect velocity tracking [1]. In [1], a kinematic 
controller in cartesian coordinates was proposed for solving the trajectory tracking problem. Kinematics controllers in polar 
coordinates were proposed in [2,3] and the convergence of the posture error was proven via Barbalat’s lemma.    
 

This work deals with both kinematic and dynamic control of mobile robots, which is a more realistic approach. The 
main difficulty arises when the nonlinear features, the parameters uncertainties and bounded disturbances are considered. 
Recently, several approaches based on neural and wavelet networks have been proposed in the literature for identification and 
adaptive control of nonlinear dynamic systems. In [4], the kinematic controller proposed by [1] is complemented by employing 
a dynamic control based on an artificial neural network (ANN), which can deal with bounded unknown disturbances, 
unmodeled dynamics, and external perturbations, like surface frictions. The network parameters are adapted on-line and no 
previous knowledge about the dynamic robot is needed, since the neural controller learns the full dynamic on-line. In [2], a 
dynamic control based on a biased wavelet network (BWN) with structural adaptation is associated to a kinematic controller in 
polar coordinates and the stability proof is discussed. Simulation results for trajectory tracking and point stabilization cases are 
presented. The wavelets are generated from dilations and translations of a single function ψ, which is well localized both in the 
space and frequency domains [5,6]. Any function in L2 (Rn) can be approximated with arbitrary precision by linear 
combinations of a wavelets set. Some advantages of wavelets over neural networks can be found in [7]. 
 

In this paper, it is proposed a kinematic controller in cartesian coordinates, which is complemented by a dynamic control 
based on a biased wavelet network with structural adaptation. A key step here is the use of Yamamoto [8] dynamic model for 
the mobile robot. The main contributions of this work are: 

 
• Proposition of a kinematic control law in cartesian coordinates through the Lyapunov-like analysis, by proving the 

error convergence via  Barbalat’s lemma. 
• Performance evaluation of the proposed kinematic controller via realistic simulation and real time implementation by 

employing the Magellan-ISR mobile robot.  
• Stability proof of the control system based on a biased wavelet network with structural adaptation, associated to the 

proposed kinematic controller. 
• Performance evaluation via realistic simulations of the proposed control system employing the Magellan-ISR 

parameters, and comparison with the kinematic-robust controller in order to show the improvement obtained by using 
the BWN. 

 
This paper is structured as follows: In Section 2, a kinematic control law in cartesian coordinates is proposed and the error 

convergence proof is presented. In Section 3, the dynamic model developed by Yamamoto [8] is described and the controller 
based on a biased wavelet networks is proposed. The control system stability is proven via Lyapunov-like analysis. In Section 
4, to evaluate the performance of the proposed controllers, simulations and real time implementations results are presented for 
the kinematic control and simulation results are also presented and discussed for the dynamic control based on a biased wavelet 
network. Finally in Section 5, the main conclusions are presented. 
 

The following notation is used in this work: 
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P  Intersection of the axis of symmetry with the driving wheel axis. 
C  Center of mass and the guidance point. 
d  Distance from the point C to the point P.  
r  Radius of wheels. 
2b  Distance between wheels. 
c   r/2b.  ≡
mc  Mobile robot mass without the motors and driving wheels. 
mw  Mass of each driving wheel plus its associated motor. 
m  Mobile robot mass (mc + 2mw).  
Ic Inertia moment of the mobile robot without the driving wheels and the motors around a vertical axis through 

P. 
Iw  Inertia moment of each driving wheel and the motor around the wheel axis (mw(d2 + b2)). 
Im  Inertia moment of each driving wheel and the motor around the wheel diameter (mw.r2). 
ϕr,ϕl  Right and left wheels angles, respectively. 
v,ω  Linear and angular velocities of the center of mass. 
xc, yc,θ  Coordinates of point C with respect to the frame {0,X0,Y0}and heading angle. 
q  Generalized coordinates, [xc  yc   θ  ϕr  ϕl]T; 
c , s  cos(θ) and sin(θ), respectively. 
diag{.}  Operator that produces a diagonal matrix from a vector. 
sign{.}  Signal function. 
abs(.)  Absolute value. 
tr{.}  Trace of a matrix. 
|| . ||  Norm of vector or matrix. 
R  Real numbers set. 

L2  Signal spaces such that L2: {f(.): ∫
∞

0

2
2 )||)((|| dttf < ∞, where || f(t)||2 = )(...)( 22

1 tftf n++ . 

 
2.0 − KINEMATIC CONTROLLER  
Consider in Figure 1 a mobile robot with differential driving, its local frame {C,Xc,Yc} and the inertial frame {0,X0,Y0}. The 
robot is moving over a plane with linear velocity v and angular velocity ω, and its position is given by the posture vector p=[xc 
yc θ]T, containing the center of mass C coordinates and the heading angle θ.  
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Figure 1: Mobile robot and coordinate systems 

 
The matrix equation that describes the kinematic model in cartesian coordinates is given by 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θ&
&

&

c

c

y

x

=                                                                                (1) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

10
)()(
)()(
θd.cosθsin
θd.sinθcos

⎥
⎦

⎤
⎢
⎣

⎡
ω
v

 

 85



                           Learning and Nonlinear Models – Revista da Sociedade Brasileira de Redes Neurais, Vol. 2, No. 2 pp. 84-98, 2004 
                                                                                                                                          © Sociedade Brasileira de Redes Neurais    

 
Consider now the Figure 2, where the robot C, described in Figure 1, should track the reference robot R, also 

described by the equation (1), moving with linear velocity vr and angular velocity ωr, with posture reference pr =[xr  yr θr]T. 
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Figure 2: Mobile robot and reference robot 

 
The posture tracking error vector ep, expressed in the basis of frame {R,Xr,Yr}, is defined as 
 

pe = R(θr)(p – pr)                                                                                                 (2) 
 

or more precisely   
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where R(θr) is the rotation matrix. The time derivative of the tracking error vector ep is defined as 
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Supposing a null velocity error, the kinematic control law, proposed in this work,  
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ensures stability and asymptotic convergence of posture error ep without taking into account the parameter d, where Aθ, ℑx e ℑθ 
 are positive constants, defined in the controller design. In order to prove this, consider the function 
 

V(ex,ey,eθ)= 2222 A
2
1)(

2
1

θθ eee yx ++                                                                                  (6) 

 
which is bounded from below by zero. By differentiating the function V, and by using the equations (4) and (5), yields  
 

2221 ))()((),,( θθθθθθ eAesineecoseeeeV yxxyx
1−− ℑ−+ℑ−=&                                                               (7) 
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which is negative semi-definite. From equations (6) and (7), we conclude that ex, ey and eθ are bounded. By differentiating the 
equation (7), we know that is also bounded. By using the Barbalat’s lemma, it follows that is 

uniformly continuous, thereby converging to zero. Then, e

),,( θeeeV yx
&& ),,( θeeeV yx

&

x and eθ converge to zero. From equation (4), we verify that ey 
converges to a constant. By applying the Barbalat’s lemma in equation (4), it follows that is bounded and this way   θe&& .0→θe&

By returning to equation (5) and since rωω → , we can verify that concluding the proof. Figure 3 shows the 
diagram of the kinematic controller in cartesian coordinates. 
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Figure 3: Diagram of the kinematic controller 

 
3.0 − DYNAMIC CONTROLLER  
3.1. Dynamic Model 
For modeling the dynamic features of the mobile robot, the Lagrange method is employed, as in Yamamoto [8]. The dynamic 
equation of the mobile robot can be written as  
 

M(q) q + V&& m(q,  + N  + τ)q& )(q& d = E(q)τ − AT(q)λ                                                                   (8) 
 

where M(q) ∈  is the inertia matrix, which is symmetric and positive definite, ∈  is the centripetal and 

Coriolis matrix, ∈  is the surface friction vector, τ

nxnℜ )( qq &,Vm
1nxℜ

)(q&N 1nxℜ d ∈  represents bounded unknown disturbances including 

unmodeled dynamics, E(q) ∈ is the input transformation matrix, τ ∈  is the control signal, A(q) ∈ is the 
matrix containing the movement restrictions and λ ∈ is the Lagrange multiplier (n=5 and m=3).  
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The matrices M(q), , E(q) and A(q) can be found in [8],  )( qq &,Vm
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The kinematic model in this coordinate system is described by 
 

q& = S(q)η                                                                                                     (10) 
 

where  η = [ lr ϕϕ && ]T represents the angular velocity vector, for the right and left wheels, respectively, and S(q) is given by 
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 By using equation (10), we can rewrite equation (8) as  
 

M η&  + mV η  + dτηN +)(  = τ                                                                                    (12) 
 

where M , mV , dτ,ηN )( and τ are defined in a similar way to the matrices M(q), τ),( qq &,Vm ),(q&N d and τ, respectively [4]. 
The relationship between the wheels and the mass of center velocity is given by 
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Definition  1:  Let vc be the control velocity and η the robot velocity.  Then, the velocity error in dynamic model is ec = ∑vc –η 
and the velocity error in kinematic model is eck = vc – ∑−1η. The relationship between the errors is given by 
 

ec = ∑eck                                                                                                   (14) 
 

with eck = [ev   eω]T defined as 
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The dynamic equation (12) can then be written as a ec function  [4], 
 

cMe& = − mV ec   − τ  + f(x) + dτ                                                                              (16) 
 

where dτ  represents bounded disturbances including unstructured uncertainties and f(x) = M ∑  + cv& mV ∑vc+ )(ηN is a 
nonlinear function, containing robot dynamic, trajectory information, surfaces friction and other parameters which are  
difficulty to estimate. The vector x used to estimate the function f(x) is given by composed by the 
velocity signal, control signal and its derivative. 

,]Σ1[ TT
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T
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3.2. Wavelets  
A wavelet is a function that can be shifted along the independent axis (translation) and rescaled, such that appears squashed 
and expanded along the independent axis (dilation). A wavelet set ΛΛ can be generated from dilations and translations of a 
single function ψ, defined as wavelet mother, in the following form 
 

ΛΛ  );({ 2, RL∈Δ baψ  };,), z(||(z) *2
1

, RR ∈∈
−

=
−

ba
a

bψaψ ba                                        (17) 

 
where a corresponds to the dilation parameter, b is the translation parameter and z represents a real variable. The wavelet ψ is 
an oscillatory function with zero mean, such that ψ ∈ L2(R). Combinations of wavelets can be used to generate a domain over 
which data is to be modeled, similar to the way that radial basis functions (RBF) are used in the neural networks. Unlike neural 
networks, wavelets should satisfy certain admissibility condition, which forces the zero mean restriction, implying that 
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where )(ϖψ( is the Fourier transform of the wavelet ψ and R∈ϖ . The continuous wavelet transform of a function f is given 
by 
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and the inverse wavelet transform can be obtained by 
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A key property of wavelets in the control and estimation analysis is that they have high resolution in both space and 

spatial frequency domains, providing a framework for resolving data at varying levels of detail, which is defined as multi-
resolution analysis. In this work, tuning rules are developed for adjust the dilations, translations and output parameters on-line 
as well as the wavelons number that are used in the algorithms. 

 
3.3. Biased Wavelet Network 
Consider a feedforward wavelet networks with two layers, n inputs, m outputs, wavelet and radial activation functions in the 
hidden layer and linear activation function in the output layer, described by 
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where Nh represents the number of wavelons in the hidden layer, xk a component of the input vector network, ψ(.) the wavelet 
activation function, ς(.) the bias activation function, dj the translation parameter, vjk, the dilation parameter, ωij, the wavelets 
parameters in the output layer, uij,  the bias parameters in the output layer. The terms θvj ,θwi and θui, correspond to the offsets of 
hidden and outputs layers respectively (wavelet and bias). 
 

The matrix notation of equation (22) is given by 
 

Y = )()( DVxUςDVxWψ −+−                                                                            (23) 
 

which is different from conventional parameterization due to the second term. The bias term is able to represent more precisely 
the low frequency features of the function and it also enables estimation of functions with nonzero mean. Basically, it has a 
more flexible structure than the conventional parameterization. 
 

The wavelets are well localized both in space and frequency domains and can approximate any function f(x) ∈ L2(Rn) 
with arbitrary precision. Then, a nonlinear function f(x) ∈ L2(Rn) can be written as 

 
f(x) = )()( DVxUςDVxWψ −+−                                                                     (24) 

 
and an estimate of f(x) can be obtained by 
 

)ˆˆ(ˆ)ˆˆ(ˆ)(ˆ DxVςUDxVψWxf −+−=                                                                        (25) 
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where is the BWN output, and )(ˆ xf UVW ˆ,ˆ,ˆ D̂  are the estimate of the matrixes W, V, U and D, respectively, representing the 
ideal weights of the networks. Therefore, there is a reconstruction error 

)(ˆ)( xfxf −=ε                                                                                         (26) 
 

Unlike the wavelets ψ(.), the bias term should be a nonzero mean function in order to reproduce low-frequency 
features more easily and at the same time work as a scaling function, reducing the number of multi-resolution levels required in 
the approximation process. Good results were obtained in [9] for data compression, by using the biased wavelet network, 
which motivates its application in other domains. 
 

According to [9], a prospective bias function should satisfy the following conditions: 
 
• ς ∈ L2(R); 
• ;0)0( ≠ς(  
• |ς(z)| rapidly decreases to zero when |z| → + ∞; 
• |)(| ϖς( rapidly decreases to zero when |ϖ|→ + ∞; 
•  

Definition   2: Consider as a weight matrix of the BWN, given by }ˆˆˆˆ{ˆ D,V,U,WdiagZ TT=
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The matrices ,ˆ~ VVV −= ,ˆ~ WWW −=  UUU ˆ~

−=  and DDD ˆ~
−= are defined as the estimation error of weight matrices V, W, U 

and D, respectively. In this work, the employed mother wavelet is ψ(z)= )
2

().5.1(
2zexpzsin −  where corresponds to 

the hidden layer input vector. The bias function was chosen as ς(z)=

D xVz ˆˆ  −=

),
2

(
2zexp − which provides the best trade-off between 

space and frequency resolution [9]. Figure 4 illustrates the connections in the hidden layer. 
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Figure 4: Wavelon connections in the hidden layer 

 
3.4. Structural Adaptation 
A structural adaptation algorithm for wavelet networks was proposed in [10], which was used to control a robotic manipulator. 
However, in [10] only the parameters in the output layer are allowed to adapt. In this work, the dilations and translations 
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parameters will also adapted on-line as well as the wavelet structure. The structural adaptation adjusts the number of nodes in 
the hidden layer in real time, discharging the wavelons that are redundant in the estimation process and introducing new 
wavelons in the structure, when the network is not able to estimate the function appropriately. 
 

The wavelons in the hidden layer can be classified into three sets, according to the output layer coefficients. At time t, 
if exists at least one node in the L+set, then a new wavelon should be introduce into the network. The nodes that belong to the 
L− set should be eliminated from the network and the nodes that belong to the L0 set do not affect the adaptation process, 
remaining into the structure. The algorithm only introduces or excludes one node to the network by iteration. The sets are 
defined according to the following rules 

 
L+: ∀j  if  ||Wj||t − ||Wj||t−Δt > μ1  
L0: ∀j   if   −μ2 ≤ ||Wj||t − ||Wj||t−Δt ≤ μ1   
L−: ∀j   if   ||Wj||t − ||Wj||t−Δt < −μ2    
 
where ||Wj||t is the weight norm associated to the wavelon j in the instant t, Δt corresponds to the sampling time, μ1 and μ2 are 
positive constants, adjusted according to the dynamic system providing better controller performance. 
The structural adaptation process is defined according to the following rules: 
 

• Select a node in the L− set to be removed for an each instant t. 
• If N(L+) ≠ 0, introduce a node in the structure, where N(.) is the number of elements set. 
• The number of nodes Nh has a lower bound equal to one and a upper bound equal to Nhmax. 
 

3.5. Dynamic Control via BWN 
Considering the robot dynamic, uncertainties in modeling and external perturbations, such as surface friction, a dynamic 
control law based on [4] is used,  
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Figure 5: Dynamic control via BWN 

 
τ = +  k(x)f̂ 4Iec − γ                                                                          (28) 

 
where k4 is a positive constant, the BWN output and γ  the robust term, given by (x)f̂
 

cMFz ZZk ee   −+−= c)||ˆ(||  γ                                                                         (29) 
 

which kz is a positive constant,  is the Frobenius norm of FZ ||ˆ|| Ẑ  and ZM  is the Frobenius norm upper bound of matrix Z. By 
replacing equation (28) into equation (16) and by using the Taylor series expansion, like in [4] we get 
 

δγ ++−−+−+−−+−− ))ˆˆ(ˆˆ(~ )~~(ˆˆ))ˆˆ(ˆˆ(~ )~~(ˆˆ+) +(= 4 DxV.Φς.UDxV.ΦUDxV.ΨψWDxV.ΨWVIkM cmc ee&         (30) 
 

where the disturbance term δ is defined as 
 

δ = (ε + dτ ) + )(ˆ~ DVx.ΨW − + )~~(1 DxVWO − + )(ˆ~ DVx.ΦU − + )~~(2 DxVUO −                            (31) 
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with )~~( DxVO1 −  and )~~(2 DxVO −  corresponding to higher-order terms, Ψ̂ and  stand for the derivatives of the wavelet and 
bias activation functions, respectively. The δ norm is bounded by 

Φ̂

 

||||||~|| ||~|||||| 210 cFF ZCZCC e++≤δ                                                              (32) 
 

where Ci , i=0,1,2 are positive constants.  
 
Theorem : Consider the control system represented in figure 5, described by equations (10) and (16), and the following 
assumptions:  
 

• The kinematic and dynamic controllers given by (5) and (28), respectively. 
• The BWN adaptation law, given by the tuning rules, 
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where F,G, J and H are positive definite matrices and  k, a positive constant defined in the design.  
 

Then, the posture error ep, the velocity error ec, the BWN weight estimation error )~(Z  are uniformly ultimately 
bounded (UUB). 

 
Proof : Consider the function V 
 

V(ep,ec, Z~ )= 1
2222

2
1)(

2
1 VeAee yx +++ θθ                                                                     (35) 

 
Where 
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1 11

1 VGVtrWFWtrMV TT
c

T
c ee ]}~~{}~~{ 11 DHDtrUJUtr TT −− +                             (36) 

 
Differentiating V(ep,ec, Z~ ), we get 
 

1
2 )())()(.() ,,( VeAveesineecoseveeeV rrxyxyx

&& +−+−+= ωωθθθθθ                                       (37) 
 

By using the equations (5), (14), (15), (30), (33), (34) and the skew symmetry property of mVM 2−& [4], yields  
 

 92



                           Learning and Nonlinear Models – Revista da Sociedade Brasileira de Redes Neurais, Vol. 2, No. 2 pp. 84-98, 2004 
                                                                                                                                          © Sociedade Brasileira de Redes Neurais    

 

2212
2

2
21

2
)

8
())()()(

8
( θθθθθθ eAA

R
resineecoserV yxx

−− ℑ−++ℑ−≤&
2))()((

22
2( θθ ecoseesinere

r xyv ++−

22 ))(
22

2( θθω eA
R

reR
r

+− c
T
c k ee 4−

+∈+∈ ++ L,0LL,0L }ˆ~{||||}ˆ~{|||| j
T

cj
T

c VVtrkWWtrk ee  

+∈+∈ ++ L,0LL,0L }ˆ~{||||}ˆ~{|||| j
T

cj
T

c UUtrkDDtrk ee )(}
)(L

)ˆ(~
{ cL γδWsignWtr T

j

T
+++ −∈−

e
N

                   (38) 

 
To make the first and the second terms negative, the following inequalities should hold, 
 

2
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By using a procedure similar to [7], it follows that )ˆ(~ TWsignW = )~(~ T

jWWsignW − = )~(~ T
jWsignW − = ),~( jWabs− because W=0 

for j∈ L−. By replacing equations (29) and (32) into (38), considering  kz>C2  and knowing that 
 

22 ||~||||||||~||||~||~)}~(~{ FFFFF
T ZZZZZ,ZZZZtr −≤−=−                                                         (40) 

 

Defining now ).(
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To make the expression between brackets positive, we need 
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Figure 6 shows the convergence region. 
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Figure 6: Convergence region 
 

Hence, is negative outside a compact set and this demonstrates that  ||eV& c|| and ||~|| Z  are UUB, as required by the 

theorem. Equation (42) represents the worst case we can have since V can be also negative inside the indicated compact set. 
The weights associated to the L

&
− set are bounded by definition, thence do not affect the stability proof. It should be stressed 

that the stability proof is semi-global, in the sense that the state vector x required in the wavelet network to estimate the 
function f(x) should belong to a compact set, according to the universal approximation theorem [11]. 
 
4.0 − SIMULATION RESULTS AND REAL TIME IMPLEMENTATIONS  
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To illustrate the theoretical results presented in Sections 2 and 3, the proposed kinematic controller performance is evaluated 
via simulation and in real time by using the Magellan-ISR mobile robot for the trajectory tracking case. The performance of the 
proposed dynamic control is also evaluated by simulation. The simulations were performed in MATLAB software, version 5.3, 
and the real time applications were implemented in MOBILITY software, version 1.0 [12]. The distance between the guidance 
point and symmetry point was calculated experimentally and results in d = 0.02 m. The Magellan-ISR robot includes two 
independents driver motors at each conventional fixed wheels, placed on the same axis, and one conventional off-centered free 
wheel [12].  Figure 7 shows the Magellan-ISR mobile robot. 
 

 
Figure 7: Magellan-ISR mobile robot 

 
 
For the kinematic controller, the same conditions were considered in simulation and real time application, to establish 

a coherent comparison. The Euler method was employed for equation integration with time step T=0.1 s. Several integration 
methods were tested including Runge-Kutta, but with only marginal improvement. The norms of both linear and angular 
velocity control signals were limited respectively in |vc| ≤ 1.0 m/s and |ωc| ≤ 2.0 rad/s. To avoid prohibitive control effort in 
transient period, saturation in control signals was used with time derivative equal to 0.3 m/s2 for vc and 0.5 rad/s2 for ωc. In 
simulation algorithm, a white noise (τv) modeled by a gaussian distribution with zero mean and a variance (N(0;σ2)) was 
introduced in velocity signal (v and ω) to reproduce the conditions of the real time case and verify the robustness of the control 
law.  
 

For the trajectory tracking case, a circular reference trajectory was considered, with vr = 0.4 m/s, ωr= 0.4 rad/s.  A 
velocity noise τv was defined with a variance equal to 2.5x10-5 and the following kinematic controller gains: Aθ=0.4, ℑx=1.0 
and ℑθ=1.0. The initial reference trajectory posture is given by pr=(1.0,0,π/2) and the robot starts with initial condition p=(0, 0, 
0). The results obtained for the simulation case are shown in figures 8−11. 
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From figures 8 and 9, we conclude that the kinematic controller provided the asymptotic convergence of the posture 

error, as expected, and it was sufficiently robust to compensate the velocity error, which is considered null in the stability 
proof.  
 

We now consider the experimental case. The kinematic controller gains was selected as: Aθ=0.4, ℑx=1.0 and ℑθ=1.0. 
The robot velocities are calculated by differentiating the position information provided by odometer. The results are presented 
in figures 12−15. 
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From figures 8−15 we conclude that the experimental results were compatible with those obtained via simulation. The 
kinematic controller was able to ensure the posture error convergence, presenting at the same time sufficient robustness to 
compensate the velocity error, which kept bounded and sufficiently small during the real time application, thereby not affecting 
the controller performance.  
 

Consider now the dynamic controller based on a biased wavelet network, described in Section 3, associated to the 
kinematic controller. The Magellan-ISR mobile robot parameters and disturbances are:  

 
• mc = 22.9644 kg, mw = 0.5678 kg, Ic = 0.4732 kg.m2, Iw=0.0198 kg.m2, Im= 0.0018 kg.m2, d=0.02m, r=0.057m, 

b=0.18m, ||)(|| ηN  ≤ 4.0 N and ).5.0;0(Nτd = a 
 
The kinematic and dynamic controllers gains were chosen as: 

 
• Aθ=0.5, ℑx=0.5, ℑθ=0.5, k4 = 0.01, kz = 10-4, ZM=10, F=G=H=J=0.2INhxNh and k=1.7. 

 
The networks parameters for structural adaptation are selected as: 
• μ1=0.009, μ2=0.01 and Nhmax=25. 

 
The sampling time T= 0.01 s was used in the simulations. The kinematics control signals were bounded by |vc| ≤ 2.5 m/s 

and |ωc| ≤ 3π/2 rad/s, which are the actuator saturation limits. In order to evaluate the structural adaptation algorithm, the 
following reference trajectory with high degree of maneuverability is considered: 
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The reference trajectory initial posture is pr=(1.3,0,π/2) and the mobile robot initial posture is p=(1.15,0,π/3). The network 

weights are initialized randomly, with zero mean and standard deviation equal to 0.01. When a node is included into the 
structure, its weights are initialized in the same way. For performance comparison, two controllers are considered: 

 
• Robust dynamic controller associated with the kinematic control − RK controller. 
• Biased wavelet controller associated with the kinematic control  – WK controller. 

 

                                      
a dτ is generated randomly, using a normal distribution with zero mean and standard deviation σ, i.e., N(0;σ). 
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The results are presented in figures 16−20. 
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Figure 16: Robot and reference trajectory (RK controller) Figure 17: Robot and reference trajectory (WK controller) 
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Figure 18: Posture error signals Figure 19: Torque in the right and left motors 
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Figure 20: Evolution of wavelons number 

 
Figures 16−18 show the performance improvement obtained by using the wavelet network in the dynamic controller, 

compensating the effect of surface friction and other disturbances. As we can see from figure 20, the BWN introduces new 
wavelons in the structure where the trajectory is fast changing, in order to improve the controller performance, as expected. 
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5.0 − CONCLUSIONS 
In this work, a kinematic control law for mobile robots was proposed in cartesian coordinates, by using the frame system 
employed in [13]. The stability proof was based on a Lyapunov-like analysis. The proposed kinematic controller performance  
was evaluated via simulation and in real time by using the Magellan-ISR mobile robot. The results in real time were coherent 
with that obtained in simulation. The controller gains were adjusted experimentally, so as to provide smooth and fast transient 
response. The results obtained by the proposed kinematic controller can be considered satisfactory since the external 
perturbations and disturbances were not significant in real time implementation due to the fact that the robot trajectory was 
very smooth, such that the influence of the dynamic features in the controller performance could be neglected.   
 

In order to improve the controller performance in the cases that the dynamic is significant, the proposed kinematic 
controller was augmented by a dynamic controller based on a biased wavelet network with structural adaptation. This aims at 
considering the dynamic effects and also the unmodeled dynamic, bounded disturbances and surface friction, which were all 
neglected in the kinematic model, described in Section 2. The simulations indicated the improvement obtained in dynamic 
controller performance by employing the wavelet network. 
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