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Departamento de Engenharia Elétrica
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Abstract – Vector quantization (VQ) has been widely used in many image coding systems. However, it is highly sensitive to
channel errors, which may lead to very annoying blocking artifacts in the reconstructed images. In the present paper, modulation
diversity (MD) is combined with index assignment (IA) by simulated annealing for improving the transmission of vector quan-
tized images over a Rayleigh fading channel: MD is used to reduce the bit error rate while IA is used as an attempt to reduce the
visual impact of channel errors.
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1. INTRODUCTION

The fundamental purpose of image compression is to reduce the number of bits to represent an image (while maintaining the
necessary/acceptable image quality), in order to minimize the requirements of storage and transmission.

Vector quantization (VQ) [1–4] plays an important role in many image coding systems [5–17], leading to high compression
rates. However, when a communication system based on VQ involves transmission over a noisy channel, the performance of VQ
may be seriously affected. Regarding VQ-based image transmission for a noisy channel, very annoying blocking artifacts may
be introduced in the reconstructed images.

In recent works, modulation diversity (MD) [18–25] has been successfully applied to improve the performance of wireless
communication systems. In the present paper, considering VQ-based image transmission over a Rayleigh fading channel, it is
shown that MD leads to reconstructed images with better quality when compared to the ones obtained without MD. It is also
shown that an additional improvement may be obtained when an adequate codevector index assignment (IA) [26] is carried out.
In this paper, IA is obtained by simulated annealing [27–29].

The remaining of the paper is organized as follows. Vector quantization is briefly described in Section 2, with a focus on VQ
for noisy channels. Section 3 describes the application of simulated annealing for index assignment. In Section 4 the modulation
diversity is discussed. Section 5 describes the communication system considered in the present work. In Section 6, simulation
results are presented and discussed. Section 7 is devoted to the conclusion of the work.

2. VECTOR QUANTIZATION

Vector quantization [1,2] can be defined as a mappingQ from a vectorx in K-dimensional Euclidean space,RK , into a finite
subsetW of RK containingN distinct reproduction vectors. Thus,

Q : RK → W. (1)

The codebookW = {wi; i = 1, 2, . . . , N} is the set ofK-dimensional codevectors, also known as reconstruction vectors,
template vectors or quantization vectors. From now on,i will be referred to as the index associated with codevectorwi. Each
indexi ∈ {0, 1}b can be represented by ab-bit binary word. The corresponding code rate of a vector quantizer, which measures
the number of bits per vector component, isR = 1

K log2 N = b
K . In voice waveform coding,R is expressed in bits/sample. In

image coding,R is expressed in bits per pixel (bpp).
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In a signal coding system based on vector quantization, the vector quantizer may be regarded as the combination of a VQ
encoder and a VQ decoder. Given an input vectorx ∈ RK from the source to be encoded, the VQ encoder determines the distor-
tion d(x,wi) between this source vector and each codevectorwi, i = 1, 2, . . . , N from the codebookW . The optimum rule
for encoding is the nearest neighbor rule, by which the binary wordi is transmitted to the decoder if codevectorwi corresponds
to the minimum distortion, that is, ifwi presents the greatest similarity tox among all the codevectors in the codebook. In other
words, the VQ encoder uses the encoding ruleC(x) = i if d(x,wi) < d(x, wj), ∀j 6= i. The task of the decoder is very simple:
upon receiving theb-bit indexi, it simply looks up the codevectorwi, from a copy of the codebookW , and outputswi as the
reproduction (reconstruction) ofx. Therefore, it follows the decoding ruleD(i) = wi. The mapping ofx into wi is generally
expressed aswi = Q(x).

The mappingQ leads to a partition ofRK into N subspacesSi, i = 1, 2, . . . , N , for which

N⋃

i=1

Si = RK and Si ∩ Sj = ∅ if i 6= j, (2)

where each cell or regionSi is defined as

Si = {x : Q(x) = wi} = {x : C(x) = i}. (3)

2.1. VQ for Noisy Channels

Consider the communication system presented in Figure 1. The purpose of the system is to transmit a sequence of vectors
X = {x} ⊂ RK through a noisy channel by using VQ of the input vectors (source vectors)x. Consider the transmission of the
binary wordi ∈ {0, 1}b, with b = log2 N bits, sent by the VQ encoder.

i jVQ Encoder Channelx x̂VQ Decoder

Figure 1: VQ for noisy channels.

If the channel introduces an error on the binary wordi, the VQ decoder will receive a binary wordj that differs fromi,
which was sent by the VQ encoder. Accordingly, the VQ decoder will not represent the input vectorx ∈ RK by the codevector
that obeys the nearest neighbor rule (vectorwi, corresponding to the binary wordi). The VQ decoder will representx by the
codevector corresponding to the binary wordj. Thus, the output will be the reconstructed vectorx̂ = wj . Sinced(x,wj) >
d(x,wi), it follows that the channel damages the quality of the reconstruction ofx.

Regarding image transmission for noisy channels, when a binary word corresponding to a codevector is corrupted by noise, a
block ofK = K1×K2 pixels is affected. Considering the transmission of the whole sequence of vectors (blocks of pixels) which
composes an image, each binary word incorrectly received by the decoder will compromise the quality of the reconstruction of
the vector (block of pixels) it corresponds to. As a consequence, in VQ of an image for a noisy channel, typical spurious annoying
blocking artifacts, ofK1 ×K2 pixels, may be introduced in the reconstructed image.

In the present paper, two techniques are applied to improve the quality of reconstructed images considering VQ for a Rayleigh
fading channel. The first technique is modulation diversity (MD), addressed in Section 4. In the second one, known as robust
vector quantization (RVQ) [30, 31], a codebook, which was previously designed for a noiseless channel, is subsequently made
robust against channel errors by means of an index assignment algorithm. In the following, RVQ is briefly discussed.

Let pX denote theK-dimensional probability density function of the sourceX. Let pi denote thea priori probability of
vectorwi being selected as the reconstruction ofx and letpj|i, i, j = 1, 2, . . . , N , denote the probability that the VQ decoder
receives the indexj given that indexi was sent. Under the assumption that the mean-squared error distortion function is adopted
(i.e., d(x, wi) = |x − wi|2) and the centroid condition for the codevectors is satisfied, the overall distortion introduced by
transmitting the vectors from sourceX through a noisy channel can be expressed as [30]

D = DQ + DC =
N∑

i=1

∫

Si

pX |x−wi|2 dx +
N∑

i=1

N∑

j=1

pi pj|i|wi −wj |2. (4)

Since the quantization distortionDQ does not depend on the channel (it depends only on the codebook design), making the
vector quantizer robust to channel errors is equivalent to minimizing the channel distortionDC . This can be accomplished by
minimizing [17]

Idis(s) =
N∑

i=1

∑

j∈H1(i)

|wi −wj |2, (5)

where{j : j ∈ H1(i)} is the set of all binary wordsj for which the Hamming distance toi equals one,s is a particular
codebook arrangement andIdis(s) is called disorder index of a codebook with arrangements.
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Let ΠN denote the set of all one-to-one functionsπ : {0, 1}b → {0, 1}b. Each one of theN ! bijectionsπ ∈ ΠN is
called an index assignment function for the quantizer [31]. A permutationπ uniquely maps each indexi ∈ {0, 1}b to another
index i′ ∈ {0, 1}b, wherei′ = π(i). A permutation may be seen as a reorganization or rearrangement of the codebook.
Associated to a permutationπ there is a unique (specific) codebook arrangementπ(s). As an example, consider the set of
indexess = (0, 1, 2, 3, 4, 5, 6, 7), corresponding to the set of binary wordsB = (000, 001, 010, 011, 100, 101, 110, 111). A new
arrangements′ = π(s) may be obtained by a permutationπ such that the second binary digit of each codeword be inverted.
That procedure leads to a new set of binary wordsB′ = (010, 011, 000, 001, 110, 111, 100, 101). That procedure is equivalent
to have a set of indexess′ = (2, 3, 0, 1, 6, 7, 4, 5) be represented by the binary words(000, 001, 010, 011, 100, 101, 110, 111).
In the example presented, the codebook was originally arranged such that codevectorsw0, w1, w2, w3, w4, w5, w6 andw7

were identified by the binary words 000, 001, 010, 011, 100, 101, 110 and 111, respectively. A codebook rearrangementw2,
w3, w0, w1, w6, w7, w4 andw5 was then obtained. In the codebook rearrangements′ = π(s), codevectorw2 is identified by
000, while in the original codebook arrangements, that codevector is identified by 010. Considering the permutationπ of the
example presented, a “new” codebook (a reorganized codebook)W ′ was obtained:W ′ presents the same codevectors ofW , but
in a different order (arrangement, organization, configuration).

Regarding VQ for noisy channels, the target is to obtain an arrangements′ = π(s) such thatIdis(s′) < Idis(s). This
corresponds to obtaining a codebook with arrangements′ that is more robust (less sensitive) to channel errors when compared to
the original (initial) codebook with arrangements.

Techniques for index assignment attempt to arrange the codebook such that the channel errors (which lead to the incorrect
reception of the binary words sent by the VQ encoder) cause the incorrectly received codevectors (corresponding to binary words
incorrectly received) to be close, on the average, to the intended codevectors. The search for the optimal codebook arrangement
(corresponding to the optimal assignment of binary words to the codevectors), which leads to the best performance, involves a
high computational complexity, since there areN ! possible configurations to be considered. As an example, a codebook with
N = 64 reconstruction vectors has approximately1089 different configurations to be investigated. In this sense, the index
assignment problem for robust VQ may be classified as belonging to the class of NP-complete problems. Therefore, suboptimal
optimization techniques must be searched.

3. SIMULATED ANNEALING

The simulated annealing (SA) algorithm, which was introduced by Kirkpatricket al. [26–29], has been successfully applied
to many combinatorial optimization problems. In essence, SA may be viewed as a simulation of the physical annealing process
found in nature, e. g., in growing crystals.

A typical combinatorial optimization problem seeks the minimum of a given nonnegative real-valued function. Generally,
it consists of a setS of configurations or solutions and a cost functionC(·) which determines for each configurations the cost
C(s). For performing a search, one has to know the neighborss′ of each solutions, i. e., one has to define a neighbor structure
N onS, such thatN (s) determines for each solutions a set of possible transitions which can be proposed tos.

The fundamental idea behind SA is to add randomness to the search for the global minimum of the cost function, allowing
the algorithm to occasionally avoid being trapped into local minima. A perturbation function,π, maps a system state (solution,
configuration)s to another states′ = π(s) according to some probability law. More precisely, in each step of SA, a new state
is proposed and the resulting change in the cost function,∆C = C(s′) − C(s), is computed. If∆C < 0, the system moves to
the new states′ ∈ N (s); however, when∆C > 0, the proposed states′ is accepted with probabilityp = exp(−∆C/tm), and
rejected with probability1− p, wheretm denotes the temperature at them-th algorithm step, with0 < m < f . The temperature
is a nonnegative decreasing parameter of the SA algorithm. There are two ways to lowering the temperaturet:

a) if the number of the cost drops exceeds a prescribed number or

b) if too many unsuccessful perturbations (which do not result in cost drops) occur.

In the second case, the system reached athermal equilibrium state. The rate at whicht is reduced is called the temperature
schedule of the annealing. In the present work, the exponential cooling schedule [27] was adopted. It is given by

tm = t0 · αm, (6)

whereα is a positive constant less than unity.
The SA Algorithm can be summarized as follows:

Step 1) Initialization: Choose, randomly, the initial system states and sett = t0 as a sufficiently high temperature;

Step 2) Chooses′ as a random perturbation ofs ;

Step 3) If {C(s′) < C(s)} thens ← s′, else

if {e−(C(s′)−C(s))/tm > random[0, 1]} thens ← s′;

Step 4) If the number of cost drops exceeds a prescribed maximum number or if the number of unsuccessful perturbations is
reached (thermal equilibrium), lower the temperature;
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Step 5) If the temperaturet is below the previously specified final temperturetf or if the maximum number of iterations is
achieved, stop. Otherwise, go to Step 2).

3.1. Application

The SA algorithm is applied for RVQ as follows:

• The configuration spaceS is defined as the set of all possible index arrangements, that is, it is the set of all possible orders
in which the codevectors (reconstruction vectors) appear in the codebook. As an example,s1 = (0, 1, 2, 3, 4, 5, 6, 7) and
s2 = (0, 1, 2, 3, 7, 6, 5, 4) are two possible configurations for a codebook with 8 codevectors;

• The cost functionC(s) is evaluated as the disorder indexIdis(s) described by Equation 5;

• In the present work, the neighborhoodN (s) of a specific configuration or states is the set of all possible configurationss′

obtained froms by randomly interchanging two indexes. As an example,s′ = (1, 0, 2, 3, 7, 6, 5, 4) can be produced by a
perturbation in the states = (1, 0, 6, 3, 7, 2, 5, 4).

4. MODULATION DIVERSITY

Fading caused by multipath in wireless communication channels can significantly degrade the performance of digital com-
munication systems. Many techniques have been proposed to improve the performance of those systems. Among them, one can
mention: diversity techniques [25,32] and coded modulation schemes [33–36].

The diversity techniques consist, basically, on providing replicas (redundancy) of the transmitted signals to the receiver.
Typical examples of diversity techniques are: time diversity, frequency diversity and spatial diversity [32, 37–41]. Another type
of diversity has been recently proposed and is based on the introduction of redundancy by the combination of a suitable choice
of the reference angle of anM -ary phase shift keying (MPSK) constellation with the independent interleaving of the symbol
components before transmission [18,20,37]. In this work, this technique is calledmodulation diversity.

Figure 2 shows how the performance of a system should be affected by the choice of the reference angle of a QPSK constella-
tion when the communication channel is subject to fading. In this figure, the black circles represent the transmitted constellation,
while the empty circles represent the received constellation. In this specific situation, a deep fade hits only the quadrature compo-
nents of the transmitted symbols. One can see that the “compressed constellation” in Figure 2(b) offers more protection against
the effects of noise since two symbols can not collapse to the same point as would happen in Figure 2(a). This occurs because
two different symbols have distinct projections on the in-phase (I) and quadrature (Q) axes [37].

π/4

I

Q

(a)

Q

Iθ+π/4

(b)

Figure 2: Effect of fading on a QPSK constellation: transmitted symbols (•) and received symbols (◦).

Actually, fading corrupts randomly the in-phase and quadrature components of the transmitted signals and the situation de-
scribed in Figure 2 is only for explanation purposes. However, the joint probability of ocurrence of two deep fades in independent
channels is practically zero [42]. Therefore, if it is assumed that the components (in-phase and quadrature) are independently
affected by the fading, one can verify that the constellation with diversity is more suitable for transmission over fading channels.

Consider the quadrature phase shift keying (QPSK) scheme, which can be seen as two binary PSK modulation schemes in
paralell: one in phase and another in quadrature [43]. The transmitted signal is given by [18]

s(t) = A

+∞∑
n=−∞

anp(t− nTS) cos(ωct) + A

+∞∑
n=−∞

bnp(t− nTS) sin(ωct), (7)

where
an, bn = ±1 with the same probability,

p(t) =
{

1, 0 ≤ t ≤ TS

0, otherwise,
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ωc is the carrier frequency,A is the carrier amplitude andTs is the signaling interval.
It can be seen from Equation 7 that the information transmitted in phase (cos(ωct)) is independent of the information trans-

mitted in quadrature (sin(ωct)). In the modulation diversity technique the introduction of redundancy in a QPSK scheme can be
obtained by combining the judicious choice of the reference angleθ of the signal constellation, as shown in Figure 3, with the
independent interleaving of the symbol components [18,20]. Considering this rotated constellation, the transmitted signal can be
rewritten as

s(t) = A

+∞∑
n=−∞

xnp(t− nTS) cos(ωct) + A

+∞∑
n=−∞

yn−kp(t− nTS) sin(ωct), (8)

wherek is an integer which represents the time delay (expressed in number of symbols) introduced by the interleaving between
the in-phase (I) and quadrature (Q) components. Moreover,

xn = an cos θ − bn sin θ and yn = an sin θ + bn cos θ (9)

are the new QPSK symbols. The block diagram of the transmitter that implements this task is presented in Figure 4.

Q

θ

I

Figure 3: QPSK constellation: without rotation (◦); with rotation (•).

An interesting feature of modulation diversity is that the rotated constellation presents the same performance of a non-rotated
one, when the signals are affected only by white Gaussian noise, because the Euclidean distance between the symbols does
not depend onθ. Moreover, the spectral efficiency is not altered since two bits are transmitted for each signaling interval
independently ofθ.

5. THE COMMUNICATION SYSTEM

Consider the communication system depicted in Figure 4. Assuming that the communication channel is characterized by fast
flat fading [43], the received signal, denoted byr(t), is given by

r(t) = α(t)e−jφ(t)s(t) + η(t), (10)

whereη(t) represents the additive noise, modeled as a complex white Gaussian process, with zero mean and varianceN0/2 by
dimension, andφ(t) denotes the phase shift due to the channel, modeled as a random variable (r.v.) uniformly distributed in the
interval[0, 2π). Moreover, the multiplicative factor (fading amplitude)α(t) is modeled as a Rayleigh r.v.

At the receiver (Figure 4),r(t) is baseband converted. The obtained signalrn(t) (low-pass equivalent) in then-th signaling
interval is

rn(t) = αn(t)e−jφn(t)sn(t) + η(t), nTs ≤ t ≤ (n + 1)Ts, (11)

wheresn(t) denotes the low-pass equivalent of the transmitted signals(t) andTs is the signaling interval.
After the phase compensation (multiplication ofrn(t) by ejφn(t)), the received signal in then-th signaling interval, denoted

by r̃n, can be expressed as
r̃n = αnsn + ηn, (12)

wheresn is the complex representation of the transmitted signal in the signaling intervalnTs, given by

sn = xn + jyn−k. (13)

The elements of the complex signalηn are independent and identically distributed (i.i.d.) Gaussian random variables with zero
mean and varianceN0/2.

At the receiver, after deinterleaving (Figure 4) the received signal becomes

rn = [αnxn + Re{ηn}] + j[αn+kyn + Im{ηn+k}], (14)
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Figure 4: Block diagram of the communication system.

which is then processed using a symbol by symbol detection. In the previous Equation, Re{ηn} and Im{ηn+k} represent the
real and imaginary parts of the noiseη in signaling intervalsnTs and(n + k)Ts, respectively.

Assuming the transmission of equiprobable symbols, the optimum detector, based on the estimates ofαn, computes the
Euclidean distance between the received signal and each constellation symbol (multiplied by estimatesαn andαn+k) and chooses
the closest one torn as the received symbol.

Considering that the receiver is able to estimate without error the actual values ofα(t) andφ(t) and that fading samplesαn

andαn+k are uncorrelated, it was shown in [19,20] that the system bit error rate is minimized forθ = 27◦. The interested reader
may find in [20] a performance analysis of modulation diversity taking into account the effects of channel estimation errors.

6. RESULTS

This section presents simulation results concerning the transmission of the image Lena (256 × 256 pixels), presented in
Figure 5, through a Rayleigh fading channel. Vector quantization with dimensionK = 16 (corresponding to image blocks of
4 × 4 pixels) and codebook size (number of codevectors)N = 256 was considered. Hence, the corresponding code rate was
R = 0.5 bpp. The codebook was designed by the algorithm LBG (Linde-Buzo-Gray) [4], using a tranining set consisting of
four images (256 × 256 pixels) shown in Figure 6: Peppers, Gull, Frog and Boat. The quality of the reconstructed images was
evaluated using the peak signal-to-noise ratio (PSNR), which is defined (for an original image quantized at 8.0 bpp) as

PSNR (dB) = 10 log10

[
(255)2

MSE

]
, (15)

where MSE denotes the mean squared error between the original and reconstructed images, defined as

MSE =
1

2562

256∑

l=1

256∑
c=1

[F (l, c)− F̂ (l, c)]2, (16)

whereF (l, c) andF̂ (l, c) denotes, respectively, the pixels values of the original and reconstructed images,l denotes thel-th row
andc denotes thec-th column of a digital image (matrix)256× 256 pixels.
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Figure 5: Original Lena image (8.0 bpp).

(a) Peppers. (b) Gull.

(c) Frog. (d) Boat.

Figure 6: Images used as the training set.
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The simulations involving modulation diversity consisted on using a QPSK scheme with a constellation rotationθ = 27◦,
which is the optimun QPSK rotation angle according to [19, 20]. The transmission system used an interleaving depthk of 50
symbols. Considering the optimum phase rotation, Figure 7 compares the performance of the original QPSK scheme (θ = 0)
and its version with MD forEb/N0 varying from zero to 20 dB. It can be noted that a considerable performance improvement is
obtained compared to the conventional QPSK scheme, which can reach 6 dB at a bit error rate of10−2.
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Figure 7: Bit error rate as a function of the channel signal-to-noise ratio (Eb/N0).

Figure 8 presents the PSNR (more precisely the mean value of PSNR resulting from 200 image transmissions for each channel
signal-to-noise ratioEb/N0 considered) of the reconstructed Lena image. The following notation was adopted:

• ORI: PSNR values obtained by using the original codebook arrangement (codebook without index assignment by simulated
annealing) and considering a transmission system without modulation diversity (θ = 0◦);

• SA: PSNR values obtained by using the rearranged codebook (rearrangement provided by the simulated annealing index
assignment) and considering a transmission system without modulation diversity (θ = 0◦);

• ORI+MD: PSNR values obtained by using the original codebook arrangement and considering a transmission system with
modulation diversity (θ = 27◦);

• SA+MD: PSNR values obtained by using the rearranged codebook (simulated annealing index assignment) and considering
a transmission system with modulation diversity (θ = 27◦).

Figure 8 shows that the substitution of the conventional scheme (ORI) by the modulation diversity scheme (ORI+MD) leads to
a performance improvement in terms of PSNR of the reconstructed images, for all values ofEb/N0 considered. As an example, it
is observed that this substitution leads to a PSNR gain of 4 dB forEb/N0 =16 dB. Figure 8 also shows that the index assignment
technique, obtained by simulated annealing (curve SA), outperforms ORI+MD forEb/N0 up to 12 dB. It is important to note
that the best results in terms of PSNR are obtained when the transmission is carried out by combining modulation diversity and
simulated annealing index assignment (SA+MD).

The quality gain in terms of PSNR of the reconstructed images obtained by using modulation diversity is due to the fact that
modulation diversity leads to a decrease in the bit error rate of the communication system. Thus, modulation diversity leads to a
reduction in the number of occurrences of errors between the binary words transmitted by the VQ encoder and the binary words
received by the VQ decoder. This may be observed in Figures 9(a) and 9(b): it is observed that modulation diversity reduces the
number of blocking artifacts in the reconstructed image. This is also observed by comparing Figures 10(a) and 10(b): the image
corresponding to ORI+MD has a smaller number of spurious blocking when compared to image corresponding to ORI.

The PSNR gains obtained by substituting the original codebook by the codebook whose codevectors index assignment was
obtained by simulated annealing comes from the following reason: when channel errors occur, the corresponding blocking
artifacts introduced in the reconstructed image by using a rearranged codebood (SA index assignment) are less annoying when
compared to the blocking artifacts by using the original (not submitted to SA index assignment) codebook. In other words, this
comes from the fact that IA attempts to arrange the index of the codevectors such that the channel errors cause incorrectly received
codevectors to be close, on the average, to the intended codevectors. Figures 9(a) and 9(c) (as well as Figures 10(a) and 10(c))
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Figure 8: PSNR of the reconstructed Lena image as a function of the channel signal-to-noise ratio (Eb/N0), considering a
codebook with 256 codevectors.

show that the blocking artifacts of the reconstructed image obtained by using the rearranged codebook (SA) are less annoying
than the blocking artifacts of the reconstructed image obtained by using the original codebook (ORI).

Figures 9 and 10 show that the best image quality is obtained by SA+MD: MD reduces the number of blocking artifacts and,
when blocking artifacts occur, index assignment by simulated annealing (SA) makes the corresponding visual impact be less
perceptible.

7. CONCLUSION

A serious problem regarding the transmission of images on a VQ-based communication system is that VQ is highly sensitive
to channel errors, which may lead to annoying blocking artifacts in the reconstructed images.

In this work, modulation diversity was used to reduce the bit error rate of the communication system, leading to a reduction in
the number of blocking artifacts introduced in the reconstructed images. It was shown that an additional performance improve-
ment is obtained if the image transmission is performed by using a rearranged VQ codebook, that is, a codebook submitted to an
index assignment technique, which is used to reduce the visual impact of channel errors.

Modulation diversity consisted on introducing a rotation of27◦ in the QPSK constellation used in the transmission system.
Index assignment was performed by the simulated annealing algorithm. A Rayleigh fading channel was considered.

Visual inspections of the reconstructed images revealed the benefits of combining modulation diversity and index assignment.
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