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Abstract — Vector quantization (VQ) has been widely used in many image coding systems. However, it is highly sensitive
channel errors, which may lead to very annoying blocking artifacts in the reconstructed images. In the present paper, modul
diversity (MD) is combined with index assignment (I1A) by simulated annealing for improving the transmission of vector qual
tized images over a Rayleigh fading channel: MD is used to reduce the bit error rate while IA is used as an attempt to reduce
visual impact of channel errors.

Index Terms —Modulation diversity, Rayleigh fading channel, vector quantization, index assignment, simulated annealin
image transmission.

1. INTRODUCTION

The fundamental purpose of image compression is to reduce the number of bits to represent an image (while maintaining
necessary/acceptable image quality), in order to minimize the requirements of storage and transmission.

Vector quantization (VQ) [1-4] plays an important role in many image coding systems [5—17], leading to high compressi
rates. However, when a communication system based on VQ involves transmission over a noisy channel, the performance o
may be seriously affected. Regarding VQ-based image transmission for a noisy channel, very annoying blocking artifacts |
be introduced in the reconstructed images.

In recent works, modulation diversity (MD) [18-25] has been successfully applied to improve the performance of wirele
communication systems. In the present paper, considering VQ-based image transmission over a Rayleigh fading channel
shown that MD leads to reconstructed images with better quality when compared to the ones obtained without MD. It is &
shown that an additional improvement may be obtained when an adequate codevector index assignment (1A) [26] is carried
In this paper, IA is obtained by simulated annealing [27-29].

The remaining of the paper is organized as follows. Vector quantization is briefly described in Section 2, with a focus on \
for noisy channels. Section 3 describes the application of simulated annealing for index assignment. In Section 4 the modulz
diversity is discussed. Section 5 describes the communication system considered in the present work. In Section 6, simul;
results are presented and discussed. Section 7 is devoted to the conclusion of the work.

2. VECTOR QUANTIZATION

Vector quantization [1, 2] can be defined as a mapgirfgom a vector: in K -dimensional Euclidean spad@’, into a finite
subset? of RX containingNV distinct reproduction vectors. Thus,

Q:RE W 1)

The codebookV = {w;; i = 1, 2, ..., N} is the set ofi-dimensional codevectors, also known as reconstruction vectors,
template vectors or quantization vectors. From now:omill be referred to as the index associated with codeveetprEach
indexi € {0,1}" can be represented bybait binary word. The corresponding code rate of a vector quantizer, which measure:
the number of bits per vector componentRis= % logs N = % In voice waveform codingR is expressed in bits/sample. In
image codingR is expressed in bits per pixel (bpp).
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In a signal coding system based on vector quantization, the vector quantizer may be regarded as the combination of ¢
encoder and a VQ decoder. Given an input vegtar RX from the source to be encoded, the VQ encoder determines the distor-
tion d(x, w;) between this source vector and each codevaetor = 1, 2, ..., N from the codebookl’. The optimum rule
for encoding is the nearest neighbor rule, by which the binary wasdransmitted to the decoder if codevectoy corresponds
to the minimum distortion, that is, #y; presents the greatest similaritydcamong all the codevectors in the codebook. In other
words, the VQ encoder uses the encoding @ile) = < if d(x, w;) < d(x,w;), Vj # i. The task of the decoder is very simple:
upon receiving thé-bit index, it simply looks up the codevectaw;, from a copy of the codebodl’, and outputaw; as the
reproduction (reconstruction) af. Therefore, it follows the decoding rule(i) = w;. The mapping ofc into w; is generally
expressed a&; = Q(x).

The mapping? leads to a partition dR¥ into N subspaces;,i =1, 2, ..., N, for which

N
UsSi=RNand S;nS,; =0 if i+#j (2
i=1
where each cell or regioS§i; is defined as
Si={x: Qlx)=w;} ={x: C(x) =1}. 3)
2.1. VQ for Noisy Channels

Consider the communication system presented in Figure 1. The purpose of the system is to transmit a sequence of ve
X = {z} C R¥ through a noisy channel by using VQ of the input vectors (source veatoiGpnsider the transmission of the
binary wordi € {0, 1}, with b = log, N bits, sent by the VQ encoder.

_X_| VQEncoder |_1_.| Channel i VQ Decoder| X

Figure 1: VQ for noisy channels.

If the channel introduces an error on the binary wérthe VQ decoder will receive a binary wogdthat differs froms,
which was sent by the VQ encoder. Accordingly, the VQ decoder will not represent the inputazest®r by the codevector
that obeys the nearest neighbor rule (veetgr corresponding to the binary woid. The VQ decoder will represent by the
codevector corresponding to the binary wgtdThus, the output will be the reconstructed vector= w;. Sinced(x,w;) >
d(x,w;), it follows that the channel damages the quality of the reconstructian of

Regarding image transmission for noisy channels, when a binary word corresponding to a codevector is corrupted by noi
block of K = K7 x K, pixels is affected. Considering the transmission of the whole sequence of vectors (blocks of pixels) whic
composes an image, each binary word incorrectly received by the decoder will compromise the quality of the reconstructiol
the vector (block of pixels) it corresponds to. As a consequence, in VQ of an image for a noisy channel, typical spurious annoy
blocking artifacts, ofl(; x K5 pixels, may be introduced in the reconstructed image.

In the present paper, two techniques are applied to improve the quality of reconstructed images considering VQ for a Rayl
fading channel. The first technique is modulation diversity (MD), addressed in Section 4. In the second one, known as rol
vector quantization (RVQ) [30, 31], a codebook, which was previously designed for a noiseless channel, is subsequently n
robust against channel errors by means of an index assignment algorithm. In the following, RVQ is briefly discussed.

Let px denote the/{-dimensional probability density function of the soutXe Let p; denote thea priori probability of
vectorw; being selected as the reconstructioreadind letp;;, i, = 1,2,..., N, denote the probability that the VQ decoder
receives the index given that index was sent. Under the assumption that the mean-squared error distortion function is adoptt
(i.e, d(z,w;) = |z — w;|?) and the centroid condition for the codevectors is satisfied, the overall distortion introduced b
transmitting the vectors from souré through a noisy channel can be expressed as [30]

N N N
D:DQ-FDC:Z/S px|T — w;|? d$+ZZPin\i|wi—wj|2~ 4)
=175

i=1 j=1

Since the quantization distortiabl does not depend on the channel (it depends only on the codebook design), making t
vector quantizer robust to channel errors is equivalent to minimizing the channel distbgtioihis can be accomplished by
minimizing [17]

N
Lis(s) = 30 3 wi —w, P, ®)
i=1 jeH' (i)

where{j : j € H'(i)} is the set of all binary wordg for which the Hamming distance toequals ones is a particular
codebook arrangement arigs(s) is called disorder index of a codebook with arrangement
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Let Iy denote the set of all one-to-one functions: {0,1}* — {0,1}*. Each one of theV! bijections® € Iy is
called an index assignment function for the quantizer [31]. A permutatianiquely maps each index< {0,1}* to another
indexi’ € {0,1}°, wherei’ = (). A permutation may be seen as a reorganization or rearrangement of the codeboo
Associated to a permutation there is a unique (specific) codebook arrangemery. As an example, consider the set of
indexess = (0,1,2,3,4,5,6,7), corresponding to the set of binary worBs= (000, 001,010,011, 100, 101,110, 111). A new
arrangement’ = 7(s) may be obtained by a permutatiansuch that the second binary digit of each codeword be inverted.
That procedure leads to a new set of binary wagds= (010,011, 000,001,110, 111,100, 101). That procedure is equivalent
to have a set of indexes = (2,3,0,1,6,7,4,5) be represented by the binary word$)0, 001,010,011, 100, 101,110, 111).

In the example presented, the codebook was originally arranged such that codengctars wo, ws, wy, ws, wg andw-

were identified by the binary words 000, 001, 010, 011, 100, 101, 110 and 111, respectively. A codebook rearrangement
ws, wo, W1, We, Wy, wy andws was then obtained. In the codebook rearrangemerat 7 (s), codevectorws is identified by

000, while in the original codebook arrangementhat codevector is identified by 010. Considering the permutatiohthe
example presented, a “new” codebook (a reorganized codebBbigas obtainediV’ presents the same codevector$iof but

in a different order (arrangement, organization, configuration).

Regarding VQ for noisy channels, the target is to obtain an arrangeshent 7(s) such thatlyis(s’) < Igis(s). This
corresponds to obtaining a codebook with arrangensdiiat is more robust (less sensitive) to channel errors when compared to
the original (initial) codebook with arrangement

Techniques for index assignment attempt to arrange the codebook such that the channel errors (which lead to the incc
reception of the binary words sent by the VQ encoder) cause the incorrectly received codevectors (corresponding to binary w
incorrectly received) to be close, on the average, to the intended codevectors. The search for the optimal codebook arrange
(corresponding to the optimal assignment of binary words to the codevectors), which leads to the best performance, involv
high computational complexity, since there aé possible configurations to be considered. As an example, a codebook with
N = 64 reconstruction vectors has approximatéi?® different configurations to be investigated. In this sense, the index
assignment problem for robust VQ may be classified as belonging to the class of NP-complete problems. Therefore, subopt
optimization techniques must be searched.

3. SIMULATED ANNEALING

The simulated annealing (SA) algorithm, which was introduced by Kirkpa&icK. [26—29], has been successfully applied
to many combinatorial optimization problems. In essence, SA may be viewed as a simulation of the physical annealing pro
found in nature, e. g., in growing crystals.

A typical combinatorial optimization problem seeks the minimum of a given nonnegative real-valued function. General
it consists of a se$ of configurations or solutions and a cost functi@t) which determines for each configuratierthe cost
C(s). For performing a search, one has to know the neighlfan§ each solutiors, i. e., one has to define a neighbor structure
N on S, such that\V(s) determines for each solutiona set of possible transitions which can be proposed to

The fundamental idea behind SA is to add randomness to the search for the global minimum of the cost function, allow
the algorithm to occasionally avoid being trapped into local minima. A perturbation funetionaps a system state (solution,
configuration)s to another state’ = x(s) according to some probability law. More precisely, in each step of SA, a new state
is proposed and the resulting change in the cost functiai,= C(s’) — C(s), is computed. IfAC < 0, the system moves to
the new stata’ € N (s); however, whemAC' > 0, the proposed staté is accepted with probability = exp(—AC/t,,), and
rejected with probability — p, wheret,,, denotes the temperature at theth algorithm step, witlh < m < f. The temperature
is a honnegative decreasing parameter of the SA algorithm. There are two ways to lowering the temperature

a) if the number of the cost drops exceeds a prescribed number or
b) if too many unsuccessful perturbations (which do not result in cost drops) occur.

In the second case, the system reachdideamal equilibrium state The rate at which is reduced is called the temperature
schedule of the annealing. In the present work, the exponential cooling schedule [27] was adopted. It is given by

tm =10 - am7 (6)

whereq is a positive constant less than unity.
The SA Algorithm can be summarized as follows:

Step 1) Initialization: Choose, randomly, the initial system statnd set = ¢, as a sufficiently high temperature;
Step 2) Chooses’ as a random perturbation ef,
Step 3)If {C(s') < C(s)} thens — ¢/, else

if {e~(C()=C)/tm > randonfo, 1]} thens «— s';

Step 4) If the number of cost drops exceeds a prescribed maximum number or if the number of unsuccessful perturbation
reached (thermal equilibrium), lower the temperature;
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Step 5) If the temperature is below the previously specified final tempertayeor if the maximum number of iterations is
achieved, stop. Otherwise, go to Step 2).

3.1. Application

The SA algorithm is applied for RvQ as follows:

e The configuration spacg is defined as the set of all possible index arrangements, that is, it is the set of all possible orde
in which the codevectors (reconstruction vectors) appear in the codebook. As an exampl€), 1,2,3,4,5,6,7) and
s2 =(0,1,2,3,7,6,5,4) are two possible configurations for a codebook with 8 codevectors;

e The cost functiorC'(s) is evaluated as the disorder ind&x(s) described by Equation 5;

¢ In the present work, the neighborhoad s) of a specific configuration or statds the set of all possible configuratioss
obtained froms by randomly interchanging two indexes. As an examgles (1,0,2,3,7,6,5,4) can be produced by a
perturbation in the state= (1,0,6,3,7,2,5,4).

4. MODULATION DIVERSITY

Fading caused by multipath in wireless communication channels can significantly degrade the performance of digital c
munication systems. Many techniques have been proposed to improve the performance of those systems. Among them, or
mention: diversity techniques [25, 32] and coded modulation schemes [33-36].

The diversity techniques consist, basically, on providing replicas (redundancy) of the transmitted signals to the recei
Typical examples of diversity techniques are: time diversity, frequency diversity and spatial diversity [32,37—41]. Another ty
of diversity has been recently proposed and is based on the introduction of redundancy by the combination of a suitable ch
of the reference angle of aly-ary phase shift keying (MPSK) constellation with the independent interleaving of the symbol
components before transmission [18, 20, 37]. In this work, this technique is cadlddlation diversity

Figure 2 shows how the performance of a system should be affected by the choice of the reference angle of a QPSK cons
tion when the communication channel is subject to fading. In this figure, the black circles represent the transmitted constellat
while the empty circles represent the received constellation. In this specific situation, a deep fade hits only the quadrature cor
nents of the transmitted symbols. One can see that the “compressed constellation” in Figure 2(b) offers more protection ag.
the effects of noise since two symbols can not collapse to the same point as would happen in Figure 2(a). This occurs bec
two different symbols have distinct projections on the in-phd¥eaifd quadraturelf) axes [37].

Q

/§n/4

@ (b)

Figure 2: Effect of fading on a QPSK constellation: transmitted symbdlar(d received symbols).

Actually, fading corrupts randomly the in-phase and quadrature components of the transmitted signals and the situatior
scribed in Figure 2 is only for explanation purposes. However, the joint probability of ocurrence of two deep fades in independ
channels is practically zero [42]. Therefore, if it is assumed that the components (in-phase and quadrature) are independ
affected by the fading, one can verify that the constellation with diversity is more suitable for transmission over fading chann

Consider the quadrature phase shift keying (QPSK) scheme, which can be seen as two binary PSK modulation schem
paralell: one in phase and another in quadrature [43]. The transmitted signal is given by [18]

+oo too
s(t)=A Y anp(t —nTs)cos(wet) + A Y bup(t — nTs) sin(wet), (7)

where
an,b, = £1  with the same probability,
[ 1, 0<t<Ts
p(t) = { 0, otherwise,
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w, is the carrier frequencwy is the carrier amplitude arifi, is the signaling interval.

It can be seen from Equation 7 that the information transmitted in phase.(¢)) is independent of the information trans-
mitted in quadratures{n(w,t)). In the modulation diversity technique the introduction of redundancy in a QPSK scheme can b
obtained by combining the judicious choice of the reference ahglethe signal constellation, as shown in Figure 3, with the
independent interleaving of the symbol components [18, 20]. Considering this rotated constellation, the transmitted signal ca
rewritten as

“+o0 “+o0
s(t)y=A Z Zpp(t — nTs) cos(wet) + A Z Yn—kp(t — nTs) sin(w,t), (8)

wherek is an integer which represents the time delay (expressed in number of symbols) introduced by the interleaving betw
the in-phasel) and quadrature(f) components. Moreover,

Ty = ay cos6 — b, sind and y,, = a, sin 6 + b, cos 9)

are the new QPSK symbols. The block diagram of the transmitter that implements this task is presented in Figure 4.

Q
o LB,
// /, // \\
! 4 \
¢ DZe
|
T
! I
\\ . |
\ /
Q [¢]

Figure 3: QPSK constellation: without rotatios) (with rotation ).

An interesting feature of modulation diversity is that the rotated constellation presents the same performance of a non-rot
one, when the signals are affected only by white Gaussian noise, because the Euclidean distance between the symbols
not depend org. Moreover, the spectral efficiency is not altered since two bits are transmitted for each signaling interv
independently of.

5. THE COMMUNICATION SYSTEM

Consider the communication system depicted in Figure 4. Assuming that the communication channel is characterized by
flat fading [43], the received signal, denotedlfy), is given by

r(t) = a(t)e W s(t) + n(t), (10)

wheren(t) represents the additive noise, modeled as a complex white Gaussian process, with zero mean andVyggidoyce
dimension, and(t) denotes the phase shift due to the channel, modeled as a random variable (r.v.) uniformly distributed in 1
interval [0, 27). Moreover, the multiplicative factor (fading amplitude{t) is modeled as a Rayleigh r.v.
At the receiver (Figure 4);(t) is baseband converted. The obtained signét) (low-pass equivalent) in the-th signaling
interval is
Fn(t) = an(t)e 19 Ws (t) +n(t), nTy <t < (n+ 1Tk, (11)

wheres,, (t) denotes the low-pass equivalent of the transmitted sigmabndT is the signaling interval.
After the phase compensation (multiplicationrgft) by e/¢»(*)), the received signal in the-th signaling interval, denoted
by r,,, can be expressed as
Tn = QnSp + M, (12)

wheres,, is the complex representation of the transmitted signal in the signaling intéfyagiven by
Sn = Tp + JYn_k. (13)

The elements of the complex signgl are independent and identically distributed (i.i.d.) Gaussian random variables with zer
mean and varianch /2.
At the receiver, after deinterleaving (Figure 4) the received signal becomes

T = [anry, + Re[N, } + jlonryn + Im{nn+k}]7 (14)
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Figure 4: Block diagram of the communication system.

which is then processed using a symbol by symbol detection. In the previous Equat{ep, }Rend Im{n,, ., } represent the
real and imaginary parts of the noigen signaling interval.Ts and(n + k)T, respectively.

Assuming the transmission of equiprobable symbols, the optimum detector, based on the estimatesoaiputes the
Euclidean distance between the received signal and each constellation symbol (multiplied by estiraatks, ., ) and chooses
the closest one tp,, as the received symbol.

Considering that the receiver is able to estimate without error the actual valu¢s) @nd¢(¢) and that fading samples,
anda,, 4+ are uncorrelated, it was shown in [19, 20] that the system bit error rate is minimizéd<f@7°. The interested reader
may find in [20] a performance analysis of modulation diversity taking into account the effects of channel estimation errors.

6. RESULTS

This section presents simulation results concerning the transmission of the image2héna 256 pixels), presented in
Figure 5, through a Rayleigh fading channel. Vector quantization with dimersien 16 (corresponding to image blocks of
4 x 4 pixels) and codebook size (hnumber of codevectdfsy 256 was considered. Hence, the corresponding code rate was
R = 0.5 bpp. The codebook was designed by the algorithm LBG (Linde-Buzo-Gray) [4], using a tranining set consisting
four images 256 x 256 pixels) shown in Figure 6: Peppers, Gull, Frog and Boat. The quality of the reconstructed images wi:
evaluated using the peak signal-to-noise ratio (PSNR), which is defined (for an original image quantized at 8.0 bpp) as

PSNR (dB) = 10log;, [(21\45855] : (15)

where MSE denotes the mean squared error between the original and reconstructed images, defined as

256 256

MSE = F16222[1:(1,@ — F(l,0))?, (16)

=1 c=1

whereF'(l, ¢) andﬁ(l, c¢) denotes, respectively, the pixels values of the original and reconstructed irhdgastes thé-th row
andc denotes the-th column of a digital image (matriX56 x 256 pixels.
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Figure 5: Original Lena image (8.0 bpp).

-y

(a) Peppers.

(c) Frog. () Boat.

Figure 6: Images used as the training set.
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The simulations involving modulation diversity consisted on using a QPSK scheme with a constellation tbtatidre,
which is the optimun QPSK rotation angle according to [19, 20]. The transmission system used an interleavikgofi&dth
symbols. Considering the optimum phase rotation, Figure 7 compares the performance of the original QPSKésehéine (
and its version with MD fotE,, /Ny varying from zero to 20 dB. It can be noted that a considerable performance improvement i
obtained compared to the conventional QPSK scheme, which can reach 6 dB at a bit errot@ate of

10° T . '
6=0° --u--
0=27° .
b~
10_1 L "‘-~..'_‘_"i:.‘\\\ N
e TRl
.. T =
@ » R S ,
¢ . T
—_ _ TR
S 1072 ¢ e T, 3
] T \"'\.\_1
= ‘e, e
m ) \'\‘1.‘_
\‘\ =
10 | e 1
.,
..
10_4 1 1 1 1
0 4 8 12 16 20
E,/N, (dB)

Figure 7: Bit error rate as a function of the channel signal-to-noise rBtioNj).

Figure 8 presents the PSNR (more precisely the mean value of PSNR resulting from 200 image transmissions for each che
signal-to-noise ratid;, /N, considered) of the reconstructed Lena image. The following notation was adopted:

e ORI: PSNR values obtained by using the original codebook arrangement (codebook without index assignment by simulz
annealing) and considering a transmission system without modulation divérsity){);

e SA: PSNR values obtained by using the rearranged codebook (rearrangement provided by the simulated annealing i
assignment) and considering a transmission system without modulation divérsit§<();

e ORI+MD: PSNR values obtained by using the original codebook arrangement and considering a transmission system \
modulation diversity{ = 27°);

e SA+MD: PSNR values obtained by using the rearranged codebook (simulated annealing index assignment) and considé
a transmission system with modulation diversity=£ 27°).

Figure 8 shows that the substitution of the conventional scheme (ORI) by the modulation diversity scheme (ORI+MD) lead:
a performance improvement in terms of PSNR of the reconstructed images, for all valigd\gfconsidered. As an example, it
is observed that this substitution leads to a PSNR gain of 4 dBfpN, =16 dB. Figure 8 also shows that the index assignment
technique, obtained by simulated annealing (curve SA), outperforms ORI+MBfG¥, up to 12 dB. It is important to note
that the best results in terms of PSNR are obtained when the transmission is carried out by combining modulation diversity
simulated annealing index assignment (SA+MD).

The quality gain in terms of PSNR of the reconstructed images obtained by using modulation diversity is due to the fact t
modulation diversity leads to a decrease in the bit error rate of the communication system. Thus, modulation diversity leads
reduction in the number of occurrences of errors between the binary words transmitted by the VQ encoder and the binary w
received by the VQ decoder. This may be observed in Figures 9(a) and 9(b): it is observed that modulation diversity reduce:s
number of blocking artifacts in the reconstructed image. This is also observed by comparing Figures 10(a) and 10(b): the irr
corresponding to ORI+MD has a smaller number of spurious blocking when compared to image corresponding to ORI.

The PSNR gains obtained by substituting the original codebook by the codebook whose codevectors index assignment
obtained by simulated annealing comes from the following reason: when channel errors occur, the corresponding blocl
artifacts introduced in the reconstructed image by using a rearranged codebood (SA index assignment) are less annoying
compared to the blocking artifacts by using the original (not submitted to SA index assignment) codebook. In other words,
comes from the fact that IA attempts to arrange the index of the codevectors such that the channel errors cause incorrectly rec
codevectors to be close, on the average, to the intended codevectors. Figures 9(a) and 9(c) (as well as Figures 10(a) and
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Figure 8: PSNR of the reconstructed Lena image as a function of the channel signal-to-nois&yatig)( considering a
codebook with 256 codevectors.

show that the blocking artifacts of the reconstructed image obtained by using the rearranged codebook (SA) are less annc
than the blocking artifacts of the reconstructed image obtained by using the original codebook (ORI).

Figures 9 and 10 show that the best image quality is obtained by SA+MD: MD reduces the number of blocking artifacts a
when blocking artifacts occur, index assignment by simulated annealing (SA) makes the corresponding visual impact be
perceptible.

7. CONCLUSION

A serious problem regarding the transmission of images on a VQ-based communication system is that VQ is highly sensi
to channel errors, which may lead to annoying blocking artifacts in the reconstructed images.

In this work, modulation diversity was used to reduce the bit error rate of the communication system, leading to a reductiol
the number of blocking artifacts introduced in the reconstructed images. It was shown that an additional performance imprc
ment is obtained if the image transmission is performed by using a rearranged VQ codebook, that is, a codebook submitted
index assignment technique, which is used to reduce the visual impact of channel errors.

Modulation diversity consisted on introducing a rotatior2@f in the QPSK constellation used in the transmission system.
Index assignment was performed by the simulated annealing algorithm. A Rayleigh fading channel was considered.

Visual inspections of the reconstructed images revealed the benefits of combining modulation diversity and index assignn
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