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Abstract- Clustering is the process by which elements of a database are assigned for clusters of similar elements. In 

clustering algorithms, it is usually assumed that the number of clusters is known. Unfortunately, the optimal number of clusters 

is unknown for many applications. These problems are known as Automatic Clustering Problems (ACP). In this work, we 

propose a hybrid method that uses an Evolutionary Algorithm with Local Search and a linear and integer model to solve the 

ACP. Computational results on a set of instances illustrate the effectiveness and the robustness of the proposed method. 

 Keywords- Automatic Clustering, Evolutionary Algorithms, Linear and Integer Model, Hybrid Method. 

1 Introduction 

Clustering is a generic term for a process which joins similar objects in a cluster. When the number of clusters is known a 

priori, the problem is called K-Clustering Problem or Clustering Problem (CP). If not, it is called Automatic Clustering 

Problem (ACP). These problems are classified as NP-Hard (Welch, 1983), but the fact that the value of k is not known makes 

the problem much more complex, and increases substantially the number of possible solutions. The ACP is also known as 

either problem of finding the “true” number of clusters (Hardy, 1996), or problem of determination of the natural number of 

clusters (Everitt, 2001). 

There are several applications related to clustering, including: Graphs Partitioning,  Manufacturing Flexible Problem, 

Recognition of Pattern with Image Processing, Computational Biology, Market Research, Classification of Documents, Data 

Mining, among others. 

The heuristics are powerful tools able to solve large problems that use any kind of functions, linear or nonlinear. The heuristics 

can solve combinatorial problems with any function in reasonable time.  

The function used in this work, called Silhouette Index (Kaufman & Rousseeum, 1990), is a nonlinear function. We tried to 

model this function like Integer Programming, but it was not possible. We also tried to adapt the Integer Models to CP, called 

K-median Model (Vinod,1969) and another one proposed by (Rao,1971) , but it was not possible too. However, we realized 

that the integer model for the CP can be used to improve the solutions found by the ACP, using a hybrid method of heuristic 

and Integer Programming. 

This paper proposes a hybrid method that uses an Evolutionary Algorithm with Local Search and Adaptive Memory (AECBL), 

and a linear and integer model, called k-median for the ACP. In this context, the AECBL is run initially to find the clusters. 

Then, the k-median model tries to improve the clusters generated by the AECBL.  

This paper is organized as follows: In section 2, a partial literature review is presented; In section 3, the ACP is described. In 

section 3, the AECBL is described; in section 4, the hybrid method is described; in section 5 the results and analysis of 

computational tests are shown and, finally, in section 6 some conclusions are presented. 

2 Related Work 

The earliest papers on algorithms for Clustering Problems date from the 60's. However, most of the work done so far is for CP, 

where the number of clusters is known. One of the most known algorithm for CP is the k-Means (MacQueen,1967), which uses 

the centroid concepts (equation 4) to represent the clusters. 
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However, the ACP is not as exploited as the CP. The X-means (Pelleg & Moore, 2000) adapts the k-means for the ACP. The 

work of (Zalik, 2008) is more recent and also adapts the k-means to solve the ACP. 

Some heuristics uses Genetic Algorithms (Tseng & Yang,2001) (Soares et al.,2006) (Saha & Bandyopadhyay,2008) (Liu et al., 

2011) (He & Tan, 2012) (Chang et al.,2012) ) (Liu et al., 2012), Simulated Annealing (Saha & Bandyopadhyay, 2010) (Saha & 

Bandyopadhyay, 2013), Ant Colony (Chowdhury & Das, (2012) , Neural Network (Tsenga et al., 2004) (Ai-sheng & Qi,  

2011),  Particle Swarm Optimization (Das et al., 2008)  and GRASP (Nascimento et al., 2010). 

Some heuristics uses Hierarquical Algorithms (Almeida et al.,2007) (Roldan, 2008) (Zhong et al, 2012). 

The methods proposed in (Derya & Alp, 2007), (Duan et al., 2007) and (Seeman et al,20013)  consists in dividing the space 

(database) that contains the items in a number of subspaces or cells, and once there are a relatively large number of points, they 

are potential candidates to form a cluster. The result of the method depends on the size of the cells, which is usually an input 

parameter. 

A method developed by (Yujian, 2006) uses the concept of spanning tree. And in (Semaan et al.,2010) (Mok et al., 2012) they 

uses concept of Graph Partitioning . 

In (Agraval et al., 2005), (Wang et al., 2007) and (Nosovskiy et al., 2008), density functions are used to define connectivity. 

They are based on the idea that points forming a dense region can be previously grouped in one cluster.    

3 The Automatic Clustering Problem  

The Automatic Clustering Problem (ACP) is presented as follows: given a set X of n objects X={x1, x2, x3....xn}, where each 

object xi is a tuple (xi1,xi2,..., xip), and each coordinate xij is related to an attribute of the object ( each object may be a point in 
p space.). The objective is to find a partition X={C1,C2,...Ck}  of clusters,  where k is not known, so that the similarity among 

the objects of the same cluster is maximized and, the similarity among objects of different clusters is minimized, under the 

following additional conditions: 
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Another definition needed in this paper is the concept of centroid of a cluster Ci. The replacement of a set Ci with similar t 

points (objects) by a single point vi = (vi1, vi2, ...vip) , that represent them, may be based on considering vi as the centroid of Ci , 

and is given by the equation  
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The Automatic Clustering Problem (ACP) can be considered an optimization problem, and defined as below: 
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where  C ={C1,C2,...Ck}  is a particular partition of clusters and C is a set of all possible partition of the set X, with k=2,…,n-1 

and s(xi) is a silhouette value of each point xiX. The function (equation 5), called Silhouette Index, was proposed by 
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(Kaufman & Rousseeum, 1990). It returns values within the interval [-1,1] and is not necessary to define the value of k, 

because the most appropriate value of k is achieved by maximizing this function.  

   

Let xi be a point that belongs to the cluster CwC, with   |Cw|  =  M > 1.   The distance between the points xi   e xj  is defined by 

di,j .  The average similarity of xi for all points xjCw    is given by a(xi)  where 
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When Cw has only one element, then a(xi) = 0. It is assumed CtC with t ≠ w and |Ct| = T >1. The average similarity of xi for 

all points of Ct   is  
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Let b(xi) be the lowest among all d(xi,Ct).  Thus 
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The Silhouette of the point   xi  X   is  
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and the Silhouette Index(SI) is    
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4  The Evolutionary Algorithm 

The proposed Evolutionary Algorithm with Local Search and Adaptive Memory (AECBL) consists of two phases. The first 

phase includes a pre-processing step to reduce the dimensions of the input data of the problem and a generation of good initial 

solutions. The second phase of the AECBL is a Genetic Algorithm (GA) with local search and concepts of adaptive memory.  

The presentation of the AECBL is divided in six (6) parts:  the Construction phase, the Individual Representation, the Fitness, 

The Adaptive Memory, The Local Search and Evolutionary Phase. 

4.1 The Construction Phase 

 

This phase is based on the criterion of density proposed in (Garai & Chaudhuri, 2003) and (Tseng & Yang, 2001).  The idea is 

to reduce the problem keeping together in the same cluster objects belonging to a dense region. In this work, the objects are 

points in 
p space and it is used the Euclidean metric as a measure of similarity for a distance between two points. This phase 

contains two procedures: Generate Partial Clusters (GPC) and Merge Partial Cluster (MPC). 

  

1. Procedure  GPC (X, u) 

2.    FOR   i  = 1      TO     n     DO 

3.   njji|xx||=)(xd jii ,...1,,|minmin   

4.   END FOR 
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6.    r = u * dmean 

7.   FOR   i  = 1      to     n     DO 

8.       Ni = circulo (xi,r)           

9.     T = T   Ni 

10.   END FOR 

11.   Sort  T in  descending order  

12.   i = 1 

13.   WHILE ( T≠Ø) DO 

14.    Ci = next (Nj T) 

15.    T = T – {Nj }  

16.     i = i + 1  

17.   END WHILE 

18.   Let  C = { C1,C2,...Ct} , the partial clusters 

19.  END Procedure 

Figure 1: The GPC procedure 

 

The GPC procedure is presented in Figure 1. Initially, in lines 2, 3 and 4, for each point, is defined the least distance to any 

other point. Line 5 presents an average of distances, called dmean. Then, each point x   X is considered the center of a circular 

region whose radius is r = u . dmean, where u is a input parameter. In line 8, the number of points in the circle of center x and 

radius r (Ni = circle (xi,,r)) is calculated. These values are placed in a T list which is arranged in descending order. 

 

 

1.  Procedure  MPC  (X, u, v, dmean, min) 

2. C =  GPC  (X,u) 

3. dadj= v . dmean 

4. FOR    i  = 1      to     t    DO 

5.       IF  ( cardinality(Ci)<= min)  THEN  

6.             Ck = shortest_distance_centroid(Ci)    

7.            IF  )( adjsrksir d<||xx||thatsuchCxeCx  THEN 

8.                      Ck = Ck U Ci  

9.           END IF  

10.      END IF  

11.   END FOR 

12.   Let  C = {C1,C2,...Cm} the initial  clusters,  where m <= t 

13.  END Procedure 

Figure 2: The MPC procedure  
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The elements of T are considered the partial clusters C={C1,C2,..Ct}. In lines 12-17, each time a circle is selected, the points 

belonging to this circle are excluded from the other circles. With this procedure, the densest regions (within p-dimensional 

spheres) are selected. 

  

After this initial procedure, a refinement is done reducing the number of partial clusters. Figure 2 shows the MPC procedure, 

which uses clusters generated by GPC (line 2). Then, in line 3, dadj is calculated where dadj = v . dmedio (v is a input parameter).  

Then, in lines 4, 5, 6, 7, 8, 9, 10 and 11  there is an aggregation of clusters of small cardinality ( min points, where min is a 

input parameter), wich are very close to some other cluster of higher cardinality (using the shortest distance between their 

centroids, as can be seen in line 6). This is done checking if the smallest cluster is at a distance dadj  from another cluster. The 

clusters generated after GPC and MPC are called initial clusters.  

 

4.2 The Individual Representation   

Consider the initial clusters as C = {C1,...,Cm}.  Let  B= (B1,B2,...Bm)  be a binary string of m positions that represents an 

individual to the GA. There is a closed relationship between the sets B and C. Each element of B corresponds to only one 

element of C. Each Bi has value 0 or 1. If Bi = 1, the initial cluster Ci will be part of the solution as parent cluster. If Bi = 0, Ci 

will be part of the solution as a child cluster.  Each child cluster (one at a time) is joined to the parent cluster (only one) using 

the criterion of shortest distance between their centroids (equation 4). On each union, a new cluster is generated and a new 

value of the centroid is calculated. At the end, all children clusters will be linked to parent clusters to generate a solution. The 

clusters generated after this process are called final clusters C = {C1,C2,,...,Ck}, where km. The number of final clusters is the 

same than the number of elements with value 1 in the individual. 

 

4.3 The Fitness 

 The solution is evaluated using the fitness defined in equation (11).                                                                                       

4.4  Adaptive Memory 

The use of adaptive memory in metaheuristics is very promising as seen by (Glover & Kochenberger,2003), (Pailla et al., 

2010) and (Silva & Ochi, 2010). The path to become a self-adaptive heuristic algorithm may be related to the process of 

calibration of its parameters and to use relevant information from past iterations in a search process. In this work, to make a 

good use of adaptive memory, it is used information contained in a pool of the best solutions generated. Adaptive memory uses 

a set of the best solutions generated by the algorithm, which are updated throughout the iterations. In this work it is used a set 

called ES (ELITE Set), which stores the best solution for each iteration. The ES’s solutions are different. The ES is used at two 

different moments in the proposed algorithm: in the middle of the algorithm to perform the local search Path Relinking, whose 

goal is to look for the best solutions found by the algorithm and to store in the ES, and to perform local search at the end of the 

algorithm, Exchange pairs, which is an exhaustive search to try to improve the best solutions found along the iterations of the 

algorithm and stored in the ES.  

4.5 The Local Search 

The purpose of employing local search combined with the GA is to refine the individuals obtained by the GA. In empirical 

tests performed, it was observed that local searches can greatly improve the individuals found by the GA. 

The first local search used in this work, called Single Inversion, tries to find individuals closed to that generated by the AG, 

exchanging each element of the individual. The second local search is called Path Relinking, which tries to find better 

individuals between two individuals of good quality. It was observed, empirically, with these two local searches within the 

genetic algorithm, the quality of the individual is greatly improved, and the number of iterations required for convergence is 

reduced. The best solutions generated by the AECBL are stored in the ES, which can be improved through an exhaustive 

search, called Exchange Pair. These local searches are described below. 

4.5.1 The Local Search Single Inversion  
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The basic idea of this first local search, called Single Inversion, is to improve the individual by analyzing individuals close to 

it. For that, this search exchanges value of each element of the individual (1 to 0, or 0 to 1), one at a time, generates a new 

individual and calculates the new value of Silhouette Index. But, the algorithm only accepts the change of the individual,  if the 

new value is better than the previous one. This procedure is shown in Figure 3.  

 

 

Procedure Single Inversion (C,B
0
) 

1. Let  C= {C1,C2,...,Cm}  a  set of m initial clusters 

2. Let B
0
= (B1,B2,...Bm) an individual of m positions 

3. s0 = Generated_solution(C,B
0
) 

4. f
*
= Calculate_Silhouette_Index(s0) 

5.    FOR i = 1 to  m  DO 

6.   B
1
= Exchange_Value(i,B

0
) 

7.  s1 = Generated_solution(C,B
1
) 

5.   f
1
= Calculate_Silhouette_Index(s1) 

6.   IF (f
1
>f

*
) THEN 

7.    B
0
=B

1 

8.   f
*
=f

1
 

9.  END IF 

10.  END FOR 

11.   Return  B
0 

12. END procedure 

  Figure 3: The local search Single Inversion 

For example, imagine that the individual is (0101101). Initially, the first element is exchanged. Then the new individual is 

(1101101).  So, the Silhouette Index of the new individual is calculated. If this solution has the Silhouette Index value higher 

than the previous, then it will be the new current individual. So, the second element is exchanged. The new individual is now 

(1001101). If this individual has a Silhouette Index value higher than the previous one, then change is accepted. Otherwise, the 

previous individual  is maintained. The search ends when all elements of the individual are tested. 

The local search Single Inversion is justified, once the optimal number of clusters is one of the objectives of the ACP problem, 

and the inclusion or removal of an element with value 1 in the individual can improve the new solution. 

4.5.2   The Path Relinking 

The second local search proposed, called Path Relinking (PR), was first proposed by (Glover & Kochenberger, 2003) for the 

metaheuristic Tabu Search and Scatter Search. The basic principle of the PR is that between two solutions of good quality, 

there may be a third better than the others. The PR consists of tracing the path between a base solution (SB) and a target 

solution (SA), that have good quality and evaluate the intermediate solutions obtained along the path. The objective of this 

search is to find better solutions than the SB and SA.  

In this work, a Path Relinking uses a path from the individual of better quality (B
0
) for lower quality (B

1
). The goal of the PR is 

to insert, at each iteration, an element of a target solution (B
1
) in the base solution (B

0
). In this context, the first intermediate 

solution is obtained as follows: take the elements until the i-th element of the B
1
 and exchange by the elements of the B

0
, if 

they are distinct, and repeat this procedure for all the elements that make a solution. With each permutation, a new intermediate 

solution is generated. Each intermediate solution is evaluated, and the best (which returns the best value of Silhouette Index) is 

chosen. The process is repeated until the B
0
 is equal to the B

1
. This procedure is shown in Figure 4.  

 

Procedure Path Relinking (C,B
0
,B

1
) 

1. Let  C= {C1,C2,...,Cm}  a  set of m initial clusters 

2. Let B
0
 = (B

0
1,B

0
2,…,B

0
m ) an individual  of m positions 
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3. Let B
1
 = (B

1
1,B

1
2,…,B

1
m ) an individual  of m positions 

4. s0 = Generated_solution(C,B
0
) 

5. s1 = Generated_solution(C,B
1
) 

6. f0= Calculate_Silhouette_Index(s0) 

7. f1= Calculate_Silhouette_Index(s1) 

8. f* = f0 

9.    FOR i = 1 to  m  DO 

10.  B
2 
= Exchange_Value(i,B

0
,B

1
) 

11.             s2 = Generated_solution(C,B
2
) 

12   f2 = Calculate_Silhouette_Index(s2) 

13   IF (f2>f
*
) THEN 

14.   B
0
=B

2 

15.   f
*
=f

2
 

16.  END IF 

17.  END FOR 

18.   Return  B
0 

19. END procedure 

Figure 4 : The local search Path Relinking 

Additionally, another justification for the use of PR in the ACP is that finding the optimal number of clusters is an objective of 

the problem, and to analyze two individuals with different numbers of clusters allows to obtain intermediate individuals with 

different number of clusters. 

4.5.3  The Local Search Exchange Pair 

The third local search proposed, called Exchange Pair, is an intensive search, that changes the elements with two different 

values of an individual. For example, suppose that the individual is B = (10111010). Firstly, the first and the second element of 

the individual are exchanged. So, the new individual is (01111010). If the new individual improves the value of the Silhouette 

Index from the old, then, it will be accepted and the process continues. The next exchange is made between the first and third 

element of B. The local search ends when all changes between two elements of B with different values are tested. This 

procedure is shown in Figure 5. 

 

1.  Procedure Exchange Pair (C,B
0
) 

2.  Let  C= {C1,C2,...,Cm}  a  set of m initial clusters 

3. Let B
0
 = (B1,B2,…,Bm) an individual of m positions 

4. s0 = Generated_solution(C,B
0
) 

5. f
*
= Calculate_Silhouette_Index(s0) 

6.    FOR i = 1 to  m-1  DO 

7.    FOR j =i+1 to  m  DO 

8.    B
1
= Exchange_position(i,j,B

0
) 

9.     s1 = Generated_solution(C,B
1
)                                    

6.    f
1
= Calculate_Silhouette_Index(s1) 

7.    IF (f
1
>f

*
) THEN 

8.     B
0
=B

1 

9.    f
*
=f

1
 

10.   END IF 

11.  END FOR 

12.  END FOR 

13.   Return  B
0 

14. END procedure 

Figure 5: The local search Exchange Pair 
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This local search tries to find different individuals without changing the number of elements with value 1 in each individual. 

Due to high computational time required, this search is done only at the end of heuristic in the best individuals of ES. 

4.6  The Evolutionary Phase  

This phase consists of a traditional Genetic Algorithm (GA) including Adaptive Memory and three local searches.  

The traditional GA has not always worked successfully, especially in combinatorial optimization problems where there are 

already very efficient heuristics. This work proposes the use of local search Inversion Individual, Path Relinking and Exchange 

Pair. 

The initial population is constructed from the initial clusters generated during the construction phase. To build the initial 

population of size n, the algorithm generates randomly a greater number of individuals (10n) and chooses those with the 

highest fitness. This allows the AG to start with better quality population. The reason of using GA`s is generate any number of 

values 1 in the individual. As the ideal number of Clusters is one of the goals of the problem, the GA can generate different 

numbers of clusters. 

For selection of individuals for crossover, two operators are used alternately. The first operator selects randomly two 

individuals among the 60% from the population with the highest fitness. The second operator selects randomly an individual 

among the 60% from the population with the highest fitness and the other from the remaining 40%. The operator of crossover 

works as follows: pairs of positions are obtained randomly and the elements between these positions are changed. Individuals 

are subject to crossover with probability pc. The mutation operator performs random exchange of some values of individuals 

with probability pm, to find new areas of research, from selected individuals in the crossover. After applying the crossover and 

mutation operators, the descendants who obtain the fitness values better than the values of the current population are inserted 

into the new population. 

At each w iterations (w is an input parameter) and q iterations (q is an input parameter),  the local search Single Inversion are 

applied in the best individuals of the population and  the local search Path Relinking are applied with the best element of the 

ES and the best element of population. At each generation, the best solution is stored in the ES and in the end, the local search 

Exchange Pair will be used in ES, whose goal is to investigate different possible solutions with the same number of parent 

clusters. This AECBL  procedure is shown in Figure 6. 

 

1. Procedure  AECBL (X,Tpop, Gmax , Pc , Pm, ES,u,v,w,q) 

2. G = Procedure GPC(X,u) 

3. G´ = Procedure   MPC  (X, u, v, dmean, min) 

4.  P = Generate_Initial_Population (G´, Tpop) 

5. FOR   k  = 1      to     Gmax     DO 

6. i = 1 

7.        WHILE  i <  40% Tpop  DO  

8.             Select  (p1, p2)  

9.             q = random (100) 

10.             IF  ( q  >=  Pc * 100)   THEN  

11.               i =  i  +  1 

12.                    IF     Crossover (p1,p2,f1,f2)       THEN  

13.                                               Mutation ( p1,p2,Pm) 

14.                    END IF  

15.                    IF    (Evaluate_Solution (f1,f2) )        THEN  

16.                                              Update_population (p1, p2, P) 

17.                    END IF 

18.             END IF 

19.      END WHILE 

20.  IF     ( i mod w  = 0 )      THEN   

21.                                         Single Inversion  (P) 

22.   END IF  

23. IF     ( i mod q = 0 )      THEN   

24.                                         Path Relinking (P) 
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25.   END IF 

26.  Update_Elite Set(ES) 

27. END FOR 

28. Exchange Pair (ES) 

29. Return (Best_solution) 

30. END AECBL 

Figure 6: The AECBL procedure 

 

5  A Hybrid Method Using AECBL and the K-Median Model (AECBL+KM)  

In the description of the k-median is necessary to define the cluster median, as one object which belongs to the cluster and is 

closed to all other objects in the cluster.  

The goal of this model is to select k cluster median from the set X, a cluster median for each cluster, where the sum of the 

distances of the other objects of the cluster to the cluster median is minimal. Each object can belong to only one cluster and the 

number of clusters k is given.  

The K-median model is showed below. The restriction (13) ensures that each object i will be associated with only one cluster 

median j. Restriction (14) ensures that exactly k points are chosen as cluster median and, finally, the restriction (15) ensures 

that the object i is associated with object j only if the object j is a cluster median.  
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The goal of the method AECBL+KM  is to improve the solutions found by the AECBL with a linear integer model k-median. 

The hybrid method works as follows: firstly the heuristic is executed using the silhouette index and find a value k for the 

number of clusters. Then, the Integer model is executed using the k previously generated and some information about the 

clusters found, and a new solution is found. Then, the silhouette index is calculated to this new solution. This procedure is 

shown in Figure 7. 
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Procedure AECBL+KM 

1. Run AECBL procedure 

2. Let k the number of clusters found in AECBL 

3. so = K-median (k)  

4. Calculate_Silhouette_Index(s0) 

12. END procedure 

Figure 7: The AECBL+KM procedure 

 

There is a relationship between the functions k-median and index silhouette. They are different, but with a common part of the 

criterion of evaluation. This common part is the sum of distances within the cluster. The k-median is defined as the sum of all 

objects of each cluster to an object near to the center of that cluster, called cluster median. Therefore, if the clusters are 

cohesive and separated, this sum is smallest. The silhouette Index uses two criteria to evaluate the quality of the solution. It 

tries to maximize the distance between different clusters and minimizes the sum of distances within the cluster. That is, if the 

clusters are more cohesive and separated, the sum of distances within the cluster is the least, and so it is better to the silhouette 

index.  

6  Computational Results 

To analyze the performance of the hybrid method AECBL+KM   proposed here, tests were carried out on computer. The 

AECBL+KM    was compared with two  algorithms from the literature, known as CLUES (Wang et al., 2007) and 

MRDBSCAN (Seeman et al,20013).  The CLUES was implemented using the statistical software R and its source code was 

available and used to perform the proposed instances.  The source code of CLUES was executed without any changes. 

The AECBL+KM   was  implemented in C++ compiler using Ubuntu Linux 7.5 environment. To execute the k-median model 

was used the library from the software XPRESS. It was used a computer with processor Intel Xeon Quad-core 3.0 Ghz with 

16G of RAM to count the processing time.  

The algorithms were tested with some instances. Five of them are known in the literature as RuspiniDataSet (Ruspinil, 2006), 

Iris Plants Database (Fisher, 1936), MaronnaDataSet (Maronna & Jacovkis, 1974),  200DATA  (Fisher, 1936) and 

VowelDataSet (Hastie et al., 2001). 

Other instances were built using a graphical tool called Dots, developed by (Soares et al.,2006) and presented in (Cruz,2010). 

The main feature of this tool is to generate instances where the optimal solution can be viewed. Each instance has a number of 

points and the ideal number of clusters (the ideal number of clusters is not send to the algorithms, since one of its objectives is 

to find this value). For example, the instance 100p5c has 100 points and 5 clusters. All instances are in space R
2
. The method 

was tested with two kinds of instance: the well-defined, where the clusters are well defined and separated, and not defined, 

where there is a lot of points among the clusters and in some cases, the optimal number of clusters is not well defined.. The 

instances not defined are characterized by a number “1” in the end of the name, as in 300p4c1, and the well defined by a “c” in 

the end of their names, as in 300p4c. Some  instances can be viewed in (Cruz,2010). To access the instances, just contact us. 

The parameters used in AECBL were defined from preliminary tests. The value of u was used between 1.5 and 4.5 and the 

value of v was equal to 2 (only for instances with more than 200 points. Otherwise, the value of v is 0). The value of parameter 

min was 4. The crossover rate of each generation was set at 80% of population size and the mutation rate was set at 10% of the 

population size. Therefore, the probability of crossover Pc and mutation Pm were fixed at 0.20 and 0.90. The population size 

chosen was 1/3 of the size of the individual with a maximum of 20 (twenty) individuals. The size of the Elite Set (ES) was set 

to 5 (five) elements. The stopping criterion of the algorithm was the maximum number of iterations set to 50. The value of t, 

which indicates the frequency of local search Inversion Individual iterations was set at 5. This search was performed only in 

the three best elements of the population. The Local search Path Relinking was performed 4 times in iterations 18, 28, 38 and 

48. The AECBL+KM uses the same parameters than AECBL.  
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Table1: Comparison between AECBL and AECBL+KM  

 

 

  AECBL AECBL+KM 

Instance IS t(s) NC IS t(s) NC  % 

RuspiniDataSet 0,738 0,8 4 0,738 3,3 4 0,00 

Iris Plants Database 0,686 2,7 3 0,686 6,1 3 0,00 

MaronnaDataSet 0,575 2,8 4 0,575 9,5 4 0,00 

200DATA 0,823 4,3 3 0,823 9,8 3 0,00 

VowelDataset 0,425 15,4 3 0,425 82,6 3 0,00 

100p3c 0,786 2,2 3 0,786 5,6 3 0,00 

100p3c1 0,58 2,4 3 0,58 5,8 3 0,00 

100p5c1 0,696 1,6 7 0,696 4,3 6 0,00 

100p7c 0,834 1,8 7 0,834 4,7 7 0,00 

100p7c1 0,491 1,9 7 0,495 4,9 7 0,81 

100p10c 0,834 1,8 10 0,834 6,3 10 0,00 

200p2c1 0,764 2,3 2 0,764 7,1 2 0,00 

200p3c1 0,680 3,1 3 0,68 8,7 3 0,00 

200p4c 0,773 3,1 4 0,773 8,5 4 0,00 

200p4c1 0,745 3,2 4 0,745 7,7 4 0,00 

200p7c1 0,576 2,7 13 0,578 7,2 13 0,35 

200p12c1 0,575 2,8 13 0,575 10,5 12 0,00 

300p2c1 0,776 5,1 2 0,777 18,3 2 0,13 

300p3c 0,766 7,2 3 0,766 19,2 3 0,00 

300p3c1 0,667 6,4 3 0,677 23,4 2 1,48 

300p4c1 0,591 5,7 2 0,591 21,8 6 0,00 

300p6c1 0,664 5,4 8 0,664 20,1 8 0,00 

400p3c 0,799 9,1 3 0,799 31,2 3 0,00 

400p4c1 0,599 6,2 4 0,607 32,3 4 1,32 

400p17c1 0,514 10,6 2 0,514 42,4 2 0,00 

500p3c 0,825 9,5 3 0,825 63,7 3 0,00 

500p4c1 0,658 8,1 5 0,659 62,2 4 0,15 

500p6c1 0,629 8,5 6 0,632 67,3 6 0,47 

600p3c1 0,721 18,3 3 0,721 100,2 3 0,00 

600p15c 0,781 32,7 15 0,781 87,9 15 0,00 

700p4c 0,797 31,5 4 0,797 186,5 4 0,00 

700p15c1 0,68 23,4 15 0,692 145,3 15 1,73 

800p4c1 0,702 38,6 4 0,705 266,3 4 0,43 

800p10c1 0,468 34,7 2 0,478 246,8 10 2,09 

800p18c1 0,691 24,9 19 0,691 210,2 19 0,00 

800p23c 0,787 55,4 23 0,787 230,7 23 0,00 

900p5c 0,716 71,2 5 0,716 353,3 5 0,00 



Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Computational Intelligence Society, Vol. 13, Iss. 2, pp. 73-91, 2015 

© Brazilian Computational Intelligence Society (SBIC) 

 

84 

 

900p12c 0,841 70,8 12 0,841 317,8 12 0,00 

1000p5c1 0,639 71,5 5 0,643 522,6 5 0,62 

1000p6c 0,736 76,7 6 0,736 445,5 6 0,00 

1000p14c 0,831 84,7 14 0,831 440,3 14 0,00 

1000p27c1 0,516 112,3 25 0,516 495,7 25 0,00 

 
 

 

  Firstly, the algorithms AECBL e AECBL+KM was compared to verify the efficiency of application of the exact method k-

median in the algorithm AECBL. The results are shown in Table 1. The algorithms were run 5 (five) times for each instance. In 

this Table, the column Instance shows the name of the instance. The column IS show the average value of Silhouette Index 

found by each algorithm. The Columns t(s) and NC shows the average time in seconds and the number of clusters of the best 

solution found by each algorithm. The column % contains the deviation of the best solution, according to the following 

definition: deviation = (Best - IS) / 100 * Best. The best results are highlighted in bold.  

It was observed that in 17 instances well-defined (RuspiniDataSet, MaronnaDataSet, 200DATA, 100p3c, 100p7c, 100p10c, 

200p4c, 300p3c, 400p3c, 500p3c, 600p15c, 700p4c, 800p23c, 900p5c, 900p12c, 1000p6c, 1000p14c) the solutions found by 

the algorithms AECBL and AECBL+KM are the same and have the same Silhouette Index value. And, with the instances not-

defined, the AECBL+KM improves the solutions found by the AECBL  in 11 instances. But, the runtime of the AECBL+KM is 

much greater than the AECBL because the exact model is very slow.  

It was realized that in instances that have well-defined clusters and no objects between them, the solutions found by the 

AECBL and the hybrid method have the same value for the silhouette index. Given the number of clusters k, and suppose this 

number is the best possible value for the silhouette Index. So, if the objects of each cluster are in their best places, this implies 

that the function of k-median achieves the lowest possible value and silhouette index achieves the greatest possible value. 

Thus, the sum of distances among objects within the clusters is the minimum and the distance among different clusters is the 

maximum. That is, there is a relationship between the function of k-median and silhouette index.  

Since the solutions have the same values for the silhouette index in well-defined instances, it was tested in instances that there 

are a lot of objects among the clusters. These instances make the clustering process more complex. However, it was observed 

that, since the number of k is fixed and is the best, the model tends to place the objects in the best position for each cluster. 

This is can be viewed with the instance 300p3c1, in figure 8. Thus, sometimes the k-median also improves the index silhouette 

from AECBL. But it is not guaranteed that this always happens, because the AECBL and k-median model uses different 

functions. 

 

  

  
Figure 6: Instance 300p3c1 : Image from solution by AECBL  and AECBL+KM  
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The second comparison is between the AECBl+KM , CLUES and MRDBSCAN. This comparison is shown in table2. The 

algorithms AECBl+KM  and  CLUES  were run 5 (five) times for each instance. The columns have the same meanings as in 

Table 1. The column Best show the best value of Silhouette Index found by the tree algorithms. In this comparison, the 

difference between the average deviation is large, 1.30 to 5.49 and 31.06, meaning that the AECBL+KM is closer to the best 

solutions. Besides having an average deviation much better, AECBL+KM also achieves the best values in a larger number of 

instances. The AECBL+KM reaches the best value in 29 instances, in a total of 42. The CLUES reaches the best value in 21 

instances and MRDBSCAN in 15 instance. In relation to the Runtime, the  AECBl+KM    is slower  because the exact model 

K-median is very slow.  

Table2: Comparison between  AECBL+KM  and CLUES 

    AECBL+KM CLUES  MRDBSCAN 

INSTANCE BEST SI NC % SI NC % SI NC % 

RuspiniDataSet 0,738 0,738 4 0,00 0,738 4 0,00 0,738 4 0,00 

Iris Plants Database 0,687 0,686 3 0,15 0,563 3 18,05 0,687 2 0,00 

MaronnaDataSet 0,575 0,575 4 0,00 0,575 4 0,00 0,562 2 2,26 

200DATA 0,823 0,823 3 0,00 0,462 3 43,86 0,823 3 0,00 

VowelDataset 0,448 0,425 3 5,13 0,448 9 0,00 0,417 2 6,92 

100p3c 0,786 0,786 3 0,00 0,786 3 0,00 0,786 3 0,00 

100p3c1 0,597 0,580 3 2,85 0,597 3 0,00 0,104 5 82,58 

100p5c1 0,703 0,696 7 1,00 0,703 6 0,00 0,424 2 39,69 

100p7c 0,834 0,834 7 0,00 0,834 7 0,00 0,834 7 0,00 

100p7c1 0,551 0,491 27 10,89 0,551 7 0,00 -0,012 2 102,18 

100p10c 0,834 0,834 10 0,00 0,834 10 0,00 0,691 8 17,15 

200p2c1 0,764 0,764 2 0,00 0,591 3 22,64 0,624 2 18,32 

200p3c1 0,680 0,680 3 0,00 0,674 3 0,88 0,648 2 4,71 

200p4c 0,773 0,773 4 0,00 0,773 4 0,00 0,773 4 0,00 

200p4c1 0,754 0,754 4 0,00 0,754 4 0,00 0,622 3 17,51 

200p7c1 0,576 0,576 8 0,00 0,555 9 3,65 0,392 3 31,94 

200p12c1 0,570 0,570 8 0,00 0,562 9 1,40 0,403 3 29,30 

300p2c1 0,776 0,776 2 0,00 0,490 5 36,86 0,620 4 20,10 

300p3c 0,766 0,766 3 0,00 0,552 3 27,94 0,766 3 0,00 

300p3c1 0,677 0,677 3 0,00 0,592 4 12,56 0,639 2 5,61 

300p4c1 0,592 0,592 2 0,00 0,592 7 0,00 0,269 3 54,56 

300p6c1 0,661 0,661 8 0,00 0,579 7 12,41 0,548 2 17,10 

400p3c 0,799 0,799 3 0,00 0,799 3 0,06 0,799 4 0,00 

400p4c1 0,620 0,607 4 2,10 0,620 4 0,00 0,379 2 38,87 

400p17c1 0,552 0,514 2 6,88 0,552 15 0,00 0,183 14 66,85 

500p3c 0,825 0,825 3 0,00 0,825 3 0,00 0,825 3 0,00 

500p4c1 0,660 0,660 3 0,00 0,515 3 21,97 0,305 2 53,79 

500p6c1 0,669 0,631 6 5,68 0,669 6 0,00 0,494 12 26,16 

600p3c1 0,721 0,721 3 0,00 0,703 3 2,50 0,686 2 4,85 

600p15c 0,781 0,781 15 0,00 0,753 16 3,59 0,781 15 0,00 

700p4c 0,797 0,797 4 0,00 0,797 4 0,00 0,797 4 0,00 

700p15c1 0,692 0,680 15 1,73 0,660 17 4,62 0,122 2 82,37 

800p4c1 0,714 0,705 4 1,26 0,714 4 0,00 0,508 2 28,85 
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800p10c1 0,507 0,478 2 5,72 0,507 8 0,00 0,079 2 84,42 

800p18c1 0,694 0,691 19 0,43 0,694 19 0,00 0,265 24 61,82 

800p23c 0,787 0,787 23 0,00 0,739 22 6,10 0,787 23 0,00 

900p5c 0,716 0,716 5 0,00 0,613 7 14,39 0,716 5 0,00 

900p12c 0,841 0,841 12 0,00 0,798 10 5,11 0,841 12 0,00 

1000p5c1 0,643 0,643 5 0,00 0,558 7 13,22 0,164 2 74,49 

1000p6c 0,736 0,736 6 0,00 0,736 6 0,00 0,736 6 0,00 

1000p14c 0,831 0,831 14 0,00 0,767 11 7,70 0,808 15 2,77 

1000p27c1 0,563 0,516 24 8,35 0,563 14 0,00 -0,293 3 152,04 

Deviation Average       1,30     5,49     31,06 

Number of Best       29     21     15 

 

   

To ilustrade the difficulty of instances, a few of them are shown in Figures  7, 8, 9, 10, 11 and 12. We just have the images 

from the AECBl+KM  and CLUES. The images from MRDBSCAN wasn’t available.   The instances have two main formats: 

clusters are separated and well defined (Figures 7  and 9); the clusters have many points among them, and in some cases, the 

clusters are not defined, because is not known where ends one cluster and begins the other (Figures 8, 10, 11and 12). The 

AECBL+KM  is more efficient  and find either good or optimal solutions. Deviation average confirm this, with value of 1.30. 

 

 

  
Figure 7 : Instance 200DATA : Image from solution by Clues  and AECBL+KM 
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Figure 8 : Instance VowelDataSet : solution by Clues and AECBL+KM  

 

 

  

Figure 9 : Instance Maronna : solution by Clues and  AECBL+KM  

 

 

 
 

Figure 10 : Instance 300p3c1 : solution by Clues and AECBL+KM 
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Figure 11 : Instance 400p4c1 : solution by Clues and AECBL+KM  

 

 

  
Figure 12 : Instance 1000p27c1 : solution by Clues and AECBL+ KM  

 

7   Conclusions 

It was presented a new hybrid method joining Evolutionary Algorithm with Integer Programming. The goal of this method is 

tries to improve the solutions found in Evolutionary Algorithm using Integer Programming.  

The hybrid model AECBL+KM can improve the solutions found by the AECBL because, in some cases, it can find the best 

place of each object. When compared with the CLUES and MRDBSCAN , it was realized that it was very robust and reaches 

the best solutions. But this does not happen always.  The mainly reasons are: the value of k passed to the hybrid model may not 

be the ideal; and the AECBL+KM is trying to improve the solution using a function different than the Silhouette Index. As a 

negative point, the processing time of the hybrid model is much higher. 
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