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Abstract – Model checking (MC) is a widely used approach for verifying if a formal model of a system satisfies a particular
temporal logic formula. Symbolic model checking has been largely applied to solve non-deterministic planning problems, an
area calledplanning as model checking. In this approach, the planning domain is the system to be verified and the planning
goal is the formula that must be satisfied. In general, the planning domain is given by a set of action specifications given in
terms of preconditions and effects formulas and the MC pre-image computation performs some kind of translation of the actions
specification into a symbolic representation of the whole state-transition space. However, the symbolic representation of the entire
state transition space is a very expensive operation and, insome cases, even using the symbolic representation it is impossible
to come up with a plan for large problems. In order to overcomethis limitation, one can compute the pre-image ofX by using
directly the action specification, without representing the whole state-transition space, an operation calledsymbolic regression.
In this paper, we propose new symbolic non-deterministic regression operations based onQuantified Boolean Formulas(QBF)
inference, as an extension of previous work on deterministic symbolic planning. In addition, we prove that the regression
operations are equivalent to existing pre-image operations.

Keywords –Model Checking, Automated Planning, Non-Deterministic Actions, Temporal Logic.

1. INTRODUCTION

Automated planning [1] is the field of the artificial intelligence that studies the deliberative process involved in the planning
task, aiming to the implementation of automated planning systems. In this context, aplanning domainM is a specification of the
environment dynamics and is modeled as a direct graph where:(i) the vertices represent the states of the environment and; (ii )
the edges represent the transitions caused by actions (Figure 1), which are performed by an agent. A planning problem is defined
by a specification of a planning domainM, aninitial state s0 and agoal formulaϕ that must be satisfied in a state reached by the
agent.

Classical planning[2] assumes that the environment evolves deterministically, i.e., there is no uncertainty regarding the action
effects. Figure 1(a) shows a planning domain where the actions are deterministic, i.e. when an action is applied to a states it leads
to a unique successor state. For instance, in Figure 1(a), the execution of actiona1 in the states1 leads to a successor states0; the
execution ofb in s1 (or s2) leads to a states2 and; the execution ofc in s0 (or s1) leads to a states1. Deterministic assumptions
can indeed be inappropriate in various practical situations. Figure 1(b) shows a non-deterministic actiona2 that when executed
in the states1 can lead to the states0 or to the states2. A planning domain with at least one action with non-deterministic effect
is called anon-deterministicplanning domain.
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Figure 1: (Explicit) State-transition space representation of two planning domains.

Basically, a planning algorithm performs a search in the explicit representation of the domain (e.g., the graphs on Figure 1).
The search can be in a forward (progressive search) or backward way (regressive search). To find a solution, the progressive
search starts from the initial state and generates successor states, until it reaches a goal state. In a reverse way, the regressive
search starts from the set of states that satisfy a goal formula ϕ and generates the predecessor states, until it reaches the initial
states0. A solution for a deterministic planning problem is aplan, i.e., a path in the domain graph, starting froms0 and finishing
in a final state satisfyingϕ. A solution for a non-deterministic planning problem is apolicy, i.e., a mapping from states to actions,
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Figure 2: Different ways to compute the regression step for non-deterministic planning laid out along two directions: explicit or
implicit versus enumerative or symbolic representation.

that can induce at least one path starting from the initial state and finishing in a state satisfying the planning goal. A policy is
a sub-graph of the domain graph, that contains the initial state s0, in which at least one path starting froms0 leads to a final
state satisfyingϕ. A solution of a non-deterministic planning problem can be classified asweak, strongor strong-cyclic[3].
Intuitively, in a weak solution the agent can achieve a goal state; but due to the non-determinism, it does not guarantee to do so;
in a strong solution the agent always achieves a goal state, in spite of non-determinism; and in a strong-cyclic solutionthe agent
always achieves the goal, under the fairness assumption that execution will eventually exit from all existing cycles [4].

Efficient deterministic planning techniques, in general, do not work with explicit domain graphs as input but works with
a formal language (e.g., STRIPS [2]) to represent the actions that can be used to induce the graph. This is called animplicit
representationof the planning domain model, in opposition to the complete graph, i.e., anexplicit representationof the domain
model. With such language to specify the actions many efficient heuristic search planning algorithms for deterministic planning
have been proposed [5–7].

A common approach used to solve non-deterministic planningis model checking[8–10]. In this case, given an initial state
s0 and a goal formulaϕ, specified in a temporal logic (e.g.,Computational Tree Logic- CTL [11]), a model checker is used to
verify if a states0 of the domain model satisfiesϕ and, in the affirmative case, returns a corresponding policy. CTL allows the
specification of complex temporal goal formulas, for instance:∃⋄ϕ (exists a path where the goalϕ is finally reached) to represent
a weak solution;∀ ⋄ ϕ (for all paths the goalϕ is finally reached) to represent a strong solution and;∀ ⋄ ∃ϕ (for all paths the goal
ϕ is finally reached) to represent a strong cyclic solution. The main computation step in the planning as model checking is the
computation of predecessor states of a set of states: an operation calledpre-image of a set of states. In this paper we focus on the
regression step of non-deterministic planning; however, for didactic reasons we also describe some progressive computations.

An important aspect of planning as model checking when reasoning over the explicit graph is its performance: it can not
solve planning problems with large state space due to theenumerativerepresentation of the state transitions, i.e., based on set
theory. To overcome this limitation planning assymbolic model checkingrepresents the set of states and the transition relations
of the explicit domain graph as propositional logic formulas and verify the satisfaction of the goal formulaϕ by manipulating
formulas, using Binary Decision Diagrams [12] (BDDs) to allow efficient computation. Another way to improve the efficiency of
the regression step in non-deterministic planning is to usesymbolic representation and computation (also using BDDs)together
with the implicit representation of the domain, i.e., usingSTRIPS [2] action description.

Thus, given the symbolic representation of a set of statesX, this paper focus on how to compute the predecessor states ofX
using a symbolic representation of actions (i.e., an implicit and symbolic representation of non-deterministic planning domains),
instead of the transition relation (the explicit representation). For this, we define two new operations for non-deterministic
planning: symbolic weak regressionandsymbolic strong regressionand show how it can be implemented in an efficient way
using BDDs.

Figure 2 shows four different ways to represent and compute the regression step for non-deterministic planning problems.
The definitions on the left refer to theexplicit representationof the state transitions (graph transitions), whereas the ones on
the right refers to theimplicit representationof the state transitions (action language). The definitionson top refers to the
enumerative representation of the state transitions (set theory representation), whereas the ones on the bottom refers to the
symbolic representation of the state transitions (logic formulas). This paper contribution is defining the regressionoperation for
the bottom right category: implicit and symbolic representation.

In order to illustrate the importance of the implicit representation for planning problems, consider the benchmark domain
Logistics, used in the International Planning Competition(IPC [13]). The task in this domain is to transport several packages
from their initial location to their desired destinations,using trucks for transporting packages in the same city and planes to
transport packages among different cities. In this domain, a package is transported from one location to another by loading it into
a truck (or plane), driving the truck (or flying a plane) to thedestination, and unloading the truck (or plane). A truck (orplane) can
load any number of packages. The easiest problem in this domain has 2 cities, 2 trucks, 1 plane and 4 packages to be delivered.
The implicit representation for this simple problem takes 80 propositions and 212 actions. If we have to work with the explicit
representation, we have to construct from the actions specification the entire transition relation for a state-space with 280 states.
This is a difficult task, even using symbolic representation. MIPS [14] isa planner based on model checking that computes the
transition relation from the action specification. However, the transition relation is not computed from theoriginal description of
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the domain: there is a precompiling phase, which infers a concise state representation by exhibiting knowledge that is implicit
in the description of the planning domain [14]. This analysis uses structures called causal graphs [15] and drasticallyreduce the
length of the state space. As mentioned by Edelkamp and Helmert [16], building the BDD for the transition relation is critical in
both time and space.

This paper is organized as follows. In Section 2, we show how to reason about deterministic and non-deterministic actions
in a progressive and regressive way. In Section 3, we presentthe planning as model checking framework. In Section 4, we
show how to represent symbolically states and transitions of the planning domain and how to perform symbolic pre-image
computation in a model that does not consider the actions behind the state transitions (e.g., the graphs of Figure 6). In Section 5,
we describe the symbolic pre-image computation in a model that consider the actions behind the state transitions (e.g.,the graphs
of Figure 1). In Section 6, we show how to represent deterministic and non-deterministic actions as propositional formulas; for
didactic reasons, we first present a previous work on regression for deterministic actions and; we show thesymbolic regression
for non-deterministic actions. Finally, in Section 7, we draw some conclusions.

2. Planning Foundations

STRIPS [2] is a first-order language largely used to represent deterministic actions. In a propositional version of STRIPS
language, the domain is defined by a set of atomic propositionsP, representing the properties of the world, and a set of actions
A representing the agent abilities to change the world state.The states are subsets ofP (assuming the closed world assumption).
The initial states0 of a planning problem is given by a complete set of propertiesthat defines a unique possible state in the world.
The planning goal is given by an incomplete set of properties(i.e., a subset ofP) that defines a set of states that satisfies them.
Each STRIPS action is a partial function from states to states (Definition 2.1). Notice that this representation is a set theory based
representation, i.e., an enumerative representation.

Definition 2.1. (STRIPS Deterministic actions) A deterministic actionα over a set of propositionsP is specified byα =
〈precond(α); effects(α)〉 where precond(α) is a set of preconditions, representing what has to be satisfied in the current state
before executingα, and effects(α) represent how the state s is modified with the action execution. The effects are given by the
couple effects(α) = 〈add(a), del(a)〉where: add(a) is a set of propositions that become true after executingα and del(a) is a set
of propositions that become false.

In this section, we show how to compute successor and predecessor states from the STRIPS action specification for deter-
ministic domains and for non-deterministic domains definedwith a simple extension of STRIPS for non-deterministic actions.
Figure 3(a) shows the STRIPS representation for the deterministic actionsa1, b andc, which correspond to the explicit represen-
tation shown in Figure 1(a). Figure 3(b) shows the extensionof the STRIPS notation that includes the non-deterministicaction
a2 and corresponds to the domain depicted in Figure 1(b).

a1 : 〈precond(a1) = {p, q}; 〈add(a1) = {p}; del(a1) = {q}〉〉
b : 〈precond(b) = {q}; 〈add(b) = {}; del(b) = {p}〉〉
c : 〈precond(c) = {p}; 〈add(c) = {q}; del(c) = {}〉〉

(a) The actions specification for the deterministic domain depicted in Figure 1(a)

a2 : 〈precond(a2) = {p, q}; { 〈 add(a2, e1) = {p}; del(a2,e1) = {q}〉 ,
〈add(a2, e2) = {q}; del(a2,e2) = {p}〉 }〉

b : 〈precond(b) = {q}; 〈add(b) = {}; del(b) = {p}〉〉
c : 〈precond(c) = {p}; 〈add(c) = {q}; del(c) = {}〉〉

(b) The actions specification for the non-deterministic domain depicted in Figure 1(b)

Figure 3: (Implicit) Representation of planning domains byactions specifications.

2.1 Reasoning about Deterministic Actions

Theprogressionof an initial statex by a deterministic actiona produces a unique successor stateprogra(x) (Equation 1).
For example, in the explicit representation of a planning domain of Figure 1(a),progrc(s0) = s1. In the implicit representation,
to computeprogra(x) we have first to verify if the actiona is applicablein a statex, i.e., if precond(a) ⊆ x. In this case, the
successor state reached by the execution ofa in x is obtained by adding the positive effects inx and, after that, eliminating the
negative effects (i.e., (x∪add(a)) \ del(a)). If precond(a) * x, then there isn’t a successor state. Formally,progra(x) is given by:

progra(x) =

{

(x∪ del(a)) \ add(a) if precond(a) ⊆ x
∅ otherwise.

(1)

In Figure 1(a), the successor state ofs0 by the actionc is obtained using Equation 1 as follows:progrc(s0) = progrc({p}) =
({p} ∪ {}) \ {q} = {p, q} = s1. Notice that the properties not affected by the action execution maintain their values in the successor
state (frame axiom [17]).
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The regressionof a goal statex by a deterministic actiona produces a set of predecessor statesregra(x). For instance, in
Figure 1(a),regrc(s1) = {s1, s0}. When reasoning on the implicit representation, i.e., on the actions, the regression generates
an abstract state, that can represent various states of the domain, once the propositions not included in the abstract state are
considered unknown, i.e., they can be true or false [18]. Notice the difference between the state representation used in the
regression and the one used in progression: in the progression we can make the close world assumption (i.e., the propositions not
included in the state are considered false) while in the regression this assumption is not allowed. Thus, regression reasons over
partial truth-assignments(i.e., belief-state space) and progression reasons overcomplete truth-assignments[19]. For an action
to berelevantto a current statex it must contribute to the properties satisfied inx, i.e., at least one of the action effects must unify
with an element ofx [20]. Furthermore, the action must not have any effect that negates a property ofx. Formally, given a state
x, an action can lead tox if add(a) ⊆ x anddel(a) ∩ x = ∅, in this case we say thata is arelevantaction to statex. Thus, the set
of predecessor states, ofx by the actiona is obtained by adding the preconditions and, after that, removing the positive effects in
x, i.e., (x∪ precond(a)) \ add(a), as defined by Equation 2:

regra(x) =

{

(x \ add(a)) ∪ precond(a) if add(a) ⊆ x anddel(a) ∩ x = ∅,
∅ otherwise.

(2)

For example, in Figure 1(a), the predecessor state ofs1 by actionc is obtained using Equation 2 as follows:regrc(s1) =
regrc({p, q}) = ({p, q} \ {q}) ∪ {p} = {p} = {{p,¬q}, {p, q}} = {s0, s1}.

The deterministic progression and regression operations can also be extended for set of states. LetX be a set of states and
a be an action, the Equation 3 defines the setprogra(X) of states that are successors of states inX, by the application ofa. A
successor is generated for each statex ∈ X wherea is applicable, i.e.,

progra(X) =
⋃

x∈X

{progra(x)}. (3)

Equation 4 defines the setregra(X) of states that are predecessors of states inX, according to the actiona. A predecessor is
generated by each statex ∈ X where the actiona can lead tox, that is:

regra(X) =
⋃

x∈X

{regra(x)}. (4)

For most planning domains, regression keeps the search branching factor smaller than progression. However, the fact that
regression uses set of states, rather than individual states, makes it harder to come up with good heuristics. That is themain reason
why the majority of efficient planners use progression [20]. Nevertheless, most ofthe approaches to solve non-deterministic
planning based on model checking performs regressive search.

2.2 Reasoning about Non-deterministic Actions

We can use an extension of STRIPS in order to describe non-deterministic actions, where we can express alternative effects.

Definition 2.2. (STRIPS-like non-deterministic actions) Based on STRIPS deterministic actions notation, a non-deterministic
actionα is specified byα = 〈precond(α); effects(α)〉 where: (i) precond(α) is a set of preconditions and; (ii) effects(α) is a set of
non-deterministic effects such that effects(a) = {e1, e2, · · · , ek} and each ei ∈ effects(a) is given by the pair〈add(a, ei), del(a, ei)〉.

Figure 3(b) shows an example of a non-deterministic action,according to Definition 2.2. In that figure, the non-deterministic
actiona2 has two alternative effects, namely,e1 ande2. The progression of an initial statex by a non-deterministic actiona
produces a set of possible successor statesprogra(x) (Equation 5). For example, in the explicit representationof a planning
domain of Figure 1(b),progra2(s1) = {s0, s2}. In the implicit representation, an actiona is applied in a statex if precond(a) ⊆
x. The set of successors states is generated by the union of thesuccessor states computed for each possible effect of a. If
precond(a) * x, then there is not a successor state.

progra(x) =

{ ⋃

e ∈ effects(a){(x \ del(a, e)) ∪ add(a, e)} if precond(a) ⊆ x,
∅ otherwise.

(5)

In Figure 1(b), the successor state ofs1 by the non-deterministic actiona2 is obtained using Equation 5 as follows:progra2(s1) =
{({p, q} \ {q}) ∪ {p}} ∪ {({p, q} \ {p}) ∪ {q}} = {p} ∪ {q} = {s0} ∪ {s2} = {s0, s2}.
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Equation 6 extends the non-deterministic progression operation for a set of statesX = {x1, x2, · · · , xn}, by computing the set
of states that are successors of each statex ∈ X by the non-deterministic actiona.

progra(X) =
⋃

x∈X

progra(x). (6)

As in the deterministic case, the regression of a statex according to a non-deterministic action produces a set of predecessor
statesregra(x). For instance, in Figure 1(b),regra2(s0) = {s1}. When reasoning on the implicit representation, we can use the
Equation 7 to computeregra(x) whena is non-deterministic. Basically, if some effect is relevant to the statex, then for each
e ∈ effects(a) the predecessor states are obtained as in the regression for deterministic actions (Equation 2) and, after that, the
subsets obtained are conjoint.

regra(x) =



















(x \ add(a, e)) ∪ precond(a) if if ∃e ∈ effects(a)such thatadd(a, e) ⊆ x and
del(a, e) ∩ x = ∅,
∅ otherwise.

(7)

In Figure 1(b), the predecessor state ofs0 by the non-deterministic actiona2 is obtained using Equation 7 as follows:
regra2(s0) = {({p} \ {p}) ∪ {p, q}} = {p, q}, onceadd(a2, e1) ⊆ x and del(a2, e1) ∩ x = ∅ for the non-deterministic effect e1

of the actiona2.
To compute the non-deterministic regression for a set of states, letX = {x1, · · · , xn} be a set of states anda a non-deterministic

action relevant to at least one of the states inX. Whena is executed in a statex, it can leadnecessarilyto a state inX or possibly
to a state inX (andpossiblyto a state not inX). Given a non-deterministic actiona, the set of predecessors states that lead
necessarilyto states inX is computed by thestrong regressionof X according to the actiona. The set of states that leadpossibly
to states inX is computed by theweak regressionof X according toa.

Definition 2.3. (Weak regression of a set of states) Let S be the set of states of the planning domain, X be a subset of S and,α be
a non-deterministic action. The weak regression of X according toα (denoted by weakRegrα(X)) is the set of states from which
a successor state in X is possibly reached after the execution ofα and is given by:

weakRegrα(X) = {y ∈ S : progrα(y) ∩ X , ∅}. (8)

Definition 2.4. (Strong regression of a set of states) Let S be the set of states of the planning domain, X be a subset of S , andα
be a non-deterministic action. The strong regression of X according toα (denoted by strongRegrα(X)) is the set of states from
which a successor state in X is necessarily reached after theexecution ofα and is given by:

strongRegrα(X) = {y ∈ S : ∅ , progrα(y) ⊆ X}. (9)

The weak regression of a set of statesX according to a set of actionsA can be obtained in terms of the weak regression
according to each actiona ∈ A, i.e.:

weakRegr(X) =
⋃

a∈A

weakRegra(X). (10)

The strong regression of a set of statesX according to a set of actionsA can also be obtained in terms of the strong regression
according to each actiona ∈ A, that is:

strongRegr(X) =
⋃

a∈A

strongRegra(X). (11)

In Section 6, we show how the regression operations can be computed symbolically, i.e., by using an extension of proposi-
tional logic with quantified formulas (Quantified Boolean Formulas[21]). Henceforth, we will only discuss regressive approaches
for planning.
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Figure 5: The model checking framework applied to solve planning problems.

3. Planning as Model Checking

Model checking consists of solving the problem (M, s) |= ϕ, whereM is a formal model of a system,s is a state of the world
andϕ is a formal specification of a property to be verified in this system. Essentially, a model checker (Figure 3) is an algorithm
that receives (M, s, ϕ) and systematically visits the states of the modelM in order to verify if the propertyϕ holds from the state
s. If (M, s) |= ϕ, then the model checker returnssuccess; otherwise, it returns a counter-example, e.g., a state whereϕ is violated.

When applying model checking framework to solve planning problems (Figure 3), the modelM describes the planning
domain,s is the initial states0 of the problem and the propertyϕ specifies the planning goal. Thus, if (M, s0) |= ϕ, the planner
based on model checking returns a plan; otherwise, it returns failure.

The reasoning that happens using model checking is done based on temporal logics over anexplicit representationof the
state transition space. In Section 3.1 we describe how to compute the predecessor states of a set of statesX, using CTL, which
represents the state transition space as a Kripke structure(graphs in Figure 1 without action labels). In Section 3.2 wedescribe
how to perform this computation using the logicα-CTL, which reason over anaction labeled transition system(as the graphs in
Figure 1). Notice that these representations are based on set theory, i.e., an enumerative representation.

3.1 Planning as Model Checking based on CTL

CTL (Computation Tree Logic) is a branching time temporal logic that allows for reasoning about alternative time lines (i.e.,
alternative futures) and it has been used to specify non-deterministic planning problems and related algorithms basedon model
checking [3, 22–24]. CTL formulas are composed by atomic propositions, propositional operators and temporal operators. The
symbols� (next),^ (finally),� (globally) and⊔ (until), combined with the quantifiers∃ and∀, are used to compose the temporal
operators of this logic. The syntax of CTL is inductively defined as:

ϕ � p ∈ P | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃ � ϕ1 | ∀ � ϕ1 | ∃�ϕ1 | ∀�ϕ1 | ∃(ϕ1 ⊔ ϕ2) | ∀(ϕ1 ⊔ ϕ2)

The semantics of CTL is defined over a Kripke structureM = 〈S, L,T〉 , where: (i) S is a set of states; (ii ) L : S 7→ 2P is a
state labeling function and; (iii ) T ⊆ S×S is a transition relation. A path inM is a sequence of statess0, s1, · · · such thats0 ∈ S
and (si , si+1) ∈ T, for all i ≥ 0. Figure 6(a) shows a Kripke structure corresponding to thegraph in Figure 1(b). Notice that in a
Kripke structure there is no label distinguishing the actions responsible for the transitions.

Model checking algorithms based on CTL [25] have a fundamental operation which is the computation of the pre-image of a
set of states. Given a set of statesX, the pre-image computes the predecessor states ofX. Pre-image operations can be classified
as: strong pre-imageandweak pre-image. The weak pre-image computes the set of states from which a state inX is possibly
reached in one step and the strong pre-image computes the setof states from which a state inX is necessarilyreached in one step.

Definition 3.1. (CTL pre-image of a set of states) Let M= 〈S, L,T〉 be a Kripke structure over a set of propositionsP and
X ⊆ S be a set of states. The function weakPrectl(X) returns the set of states from which some transitions lead tostates in X. The
function strongPrectl(X) returns the set of states from which all transitions lead to states in X. Formally:

• weakPrectl(X) = {s ∈ S | T(s) ∩ X , ∅};

• strongPrectl(X) = {s ∈ S | ∅ , T(s) ⊆ X}.

Example 3.1. (CTL pre-image computation) Let M= 〈S, L,T〉 be the Kripke structure depicted in Figure 6(a). Let X= {s2} be
a subset of S . The weak pre-image of X is:

weakPrectl(X) = {s1, s2}

, because from these states it is possible to reach s2 in one step. Furthermore, the strong pre-image of X is:

strongPrectl(X) = {s2}

, because all transitions starting in s2 leads only to states into X. Considering the state s1, for instance, although there is a
transition leading to the state s2 ∈ X, there is another transition leading to s0 < X. Thus, s1 < strongPrectl(X).
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Figure 6 shows how the CTL model checking algorithm computesthe set of states satisfying the CTL formula∃ ⋄ (¬p∧ q).
The Figure 6(a) depicts the Kripke structure with three states: s0, s1 ands2. In order to compute the set of states from which
there is a path where the formula(¬p ∧ q) is finally satisfied, the model checking algorithm starts by computing the setX of
states satisfying the formula (¬p ∧ q). In this case,X = {s2}. After that, in each iteration, the algorithm computes theweak
pre-imageof the set of states obtained in the previous iteration. Thisiterative process stops when a fix-point is achieved, i.e.,
when no new state is reached by the pre-image computation. Inthe first iteration of the algorithm, the weak pre-image ofX
is computed, obtainingweakPrectl(X) = {s1, s2} (Figure 6(b)). In the second iteration, the weak pre-image of the set of states
obtained in the previous iteration is computed, this is:weakPrectl(weakPrectl(X)) = {s0, s1, s2}. In the fourth iteration, the
algorithm computes the weak pre-image of the set of states obtained in the previous iteration and verifies that no new state was
reached (i.e.,weakPrectl(weakPrectl(X)) = weakPre(weakPrectl(weakPrectl(X)))), meaning that a fix-point was reached. Then,
the algorithm returns the set of states{s0, s1, s2} where each state satisfies the formula∃ ⋄ (¬p∧ q).

s0

s1

s2

p, q

¬p, q

p,¬q

(a) Kripke structure where the set of
statesX = {s2} satisfies¬p∧ q

s0

s1

s2

p, q

¬p, q

p,¬q

(b) 1st iteration:weakPrectl(X) = {s1, s2}

s0

s1

s2

p, q

¬p,q

p,¬q

(c) 2nd iteration:
weakPrectl(weakPrectl(X)) = {s0, s1, s2}

Figure 6: CTL model checking algorithm computing the set of states that satisfies the formula∃ ⋄ (¬p∧ q).

Figure 7 shows how the CTL model checking algorithm computesthe set of states satisfying the CTL formula∀ ⋄ (¬p∧ q),
i.e., the states from whichall paths finally reach a state satisfying(¬p ∧ q). Figure 7(a) highlights the setX = {s2} of states
satisfying the formula (¬p ∧ q). In the first iteration of the algorithm (Figure 7(b)), the strong pre-image ofX is computed,
obtainingstrongPrectl(X) = {s2}. As no new state was computed by the pre-image operation, a fix-point was reached. Then, the
algorithm returns the set of states{s2} that satisfies the formula∀ ⋄ (¬p∧ q).

s0

s1

s2

p, q

¬p,q

p,¬q

(a) Kripke structure where the set of
statesX = {s2} satisfies¬p∧ q

s0

s1

s2

p, q

¬p,q

p,¬q

(b) 1st iteration:strongPrectl(X) = {s2}

Figure 7: CTL model checking algorithm computing the set of states that satisfies the formula∀ ⋄ (¬p∧ q).

Model checking algorithms have been largely used to solve non-deterministic planning problems [3, 23]; however, these
algorithms have one limitation: the Kripke structure does not consider the actions responsible for the state transitions. In order to
overcome this limitation, an extension of CTL, calledα-CTL [4], was proposed. Theα-CTL semantics is based onaction labeled
transition systems, i.e., Kripke structures where the transitions are labeledwith actions (as the graphs showed in Figure 1).

3.2 Planning as Model Checking based onα-CTL

In CTL, the formula∀�ϕ holds on a states if and only if ϕ holds on all successors ofs, independently of the actions labeling
the transitions froms to its successors. Inα-ctl, to enforce that actions play an important role in its semantics, it is used a
different set of “dotted” symbols to represent temporal operators:⊙ (next),� (finally), ⊡ (globally) and⊔· (until).

Definition 3.2. (α-ctl Syntax) Let p∈ P be an atomic proposition, the syntax ofα-ctl is defined inductively as:

ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃ ⊙ ϕ1 | ∀ ⊙ ϕ1 | ∃ ⊡ ϕ1 | ∀ ⊡ ϕ1 | ∃�ϕ1 | ∀�ϕ1 | ∃(ϕ1 ⊔· ϕ2) | ∀(ϕ1 ⊔· ϕ2)

Let P , ∅ be a set of atomic propositions andA a finite set of actions. The semantics ofα-CTL is defined over an action
labeled transition system (ALT system, for short)M = 〈S, L,T〉 with signature (P,A), where: (i) S is a set of states; (ii )
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L : S 7→ 2P is a state labeling function and; (iii ) T ⊆ S × A × S is a transition relation where each transition is labeled byan
action. Figure 1(a) and (d) depicts ALT systems. Notice that, in an ALT system, the states are labeled by elements ofP and
the transitions are labeled by elements ofA. Intuitively, a states in an ALT system satisfies a formula∀ ⊙ ϕ (or ∃ ⊙ ϕ) if there
exists an actionα ∈ A that, when executed ins, necessarily (or possibly) reaches an immediate successorof swhich satisfies the
formulaϕ. In other words, the modality⊙ represents the set ofα-successors ofs, for some particular actionα ∈ A; the quantifier
∀ requires that all theseα-successors satisfyϕ; and quantifier∃ requires that some of theseα-successors satisfyϕ.

Although actions are essential in the semantics ofα-ctl, note that they are not used to composeα-ctl formulas. Indeed, when
we specify a planning goal, we wish to impose constraints only over the states visited during the execution of the plan. Ingeneral,
constraints over the actions that will be used to compose a plan are not relevant when we specify the planning goal. For this
reason, the existing actions logics [26, 27], which allow formulas with constraints over actions, are also inadequate to formalize
planning algorithms.

A model checker forα-CTL can be directly implemented from its semantics [4]. This algorithm is similar to the CTL model
checking algorithm, having three fundamental differences: (i) the system to be verified is an ALT system; (ii) the formula is
specified inα-CTL and; (iii) the pre-image computation is modified in order to consider the actions labelling the transitions, as
showed in the Definitions 3.3.

Definition 3.3. (α-CTL pre-image of a set of states) Let M= 〈S, L,T〉 be an action labeled state transition system with signature
(P,A) and X⊆ S be a set of states. The function weakPreαctl(X) computes the maximal set Y⊆ S such that, for each state s∈ Y,
there is an action a∈ A, whose execution in s leads to a state in X. Analogously, the function strongPreαctl(X) computes the
maximal set Y⊆ S such that, for each state s∈ Y, there is an action a∈ A, whose execution in s leads only to states in X.

weakPreαctl(X) = {s ∈ S | ∃a ∈ A andT (s, a) ∩ X , ∅}; (12)

strongPreαctl(X) = {s ∈ S | ∃a ∈ A and∅ , T (s, a) ⊆ X}. (13)

Example 3.2. (α-CTL pre-image computation) Let M= 〈S, L,T〉 be the ALT system of Figure 1(b) and X= {s2} be a subset of
S . The weak pre-image of X is:

weakPreαctl(X) = {s1, s2}

, because from s1 it is possible to reach s2 (by following the deterministic action b or the non-deterministic action a2) and from
s2 it is possible to reach s2 (by following the action b). Furthermore, the strong pre-image of X is:

strongPreαctl(X) = {s1, s2}

, because all transitions caused by the execution of the action b in s1 (and s2) lead to s2. Notice that, since we are working
with action-labeled transitions, we can distinguish the transitions starting from s1 and consider only those transitions which are
labeled by the action b. This is not possible in a Kripke structure because the transitions starting from a specific state cannot be
distinguished.

In α-CTL, we can also define the weak and strong pre-images of a setof states, according to each actiona ∈ A, as show in
Equations 14 and 15, respectively.

weakPreaαctl(X) = {s ∈ S | T (s, a) ∩ X , ∅}; (14)

strongPreaαctl(X) = {s ∈ S | ∅ , T (s, a) ⊆ X}. (15)

Taking the union of the states computed by strong and weak pre-images, according to each actiona ∈ A, we obtain
weakPreαctl(X) andstrongPreαctl(X), respectively:

weakPreαctl(X) =
⋃

a∈A

weakPreaαctl(X); (16)

strongPreαctl(X) =
⋃

a∈A

strongPreaαctl(X). (17)

Example 3.3. (α-CTL pre-image computation according to each action) Let M= 〈S, L,T〉 be the ALT system with signature
(P,A) depicted in the Figure 1(b) and X= {s2} be a subset of S . The weak pre-image of X according to each action a∈ A is:

weakPrea2
αctl(X) = {s1}; weakPrebαctl(X) = {s1, s2}; weakPrecαctl(X) = ∅.

The strong pre-image of X according to each action a∈ A is:

strongPrea2
αctl(X) = ∅; strongPrebαctl(X) = {s1, s2}; strongPrecαctl(X) = ∅.
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Following, we show theorems confirming that the set of statesobtained by the regression is the same obtained by theα-CTL
pre-image computation.

Theorem 3.1. If a ∈ A is an action and X⊆ S is a set of states, then weakRegra(X) = weakPrea
αctl(X).

Proof. Part (I): Lets ∈ weakRegra(X) be a state and suppose thats < weakPrea
αctl(X). Thus, according to Equation 8, it follows

that progra(s) ∩ X , ∅; and, according to Equation 14, it follows thatT (s, a) ∩ X = ∅. However, this is a contradiction (if
T (s, a) ∩ X = ∅, then the states has no successor in the setX that can be reached by a transition labeled by the actiona and,
consequently, the progression ofs through the actiona cannot lead to a state insideX). Thus, it follows thats ∈ weakRegra(X)→
s ∈ weakPrea

αctl(X), i.e.,weakRegra(X) ⊆ weakPrea
αctl(X). Part (II): Analogously, we can show thats ∈ weakPrea

αctl(X) → s ∈
weakRegra(X), i.e.,weakPrea

αctl(X) ⊆ weakRegra(X). Therefore, we can conclude thatweakRegra(X) = weakPrea
αctl(X). �

Theorem 3.2. weakPreαctl(X) = weakRegr(X).

Proof.

weakPreαctl(X) =
⋃

a∈A

weakPrea(X) (by Equation 16)

=
⋃

a∈A

weakRegra(X) (by Theorem 3.1)

= weakRegr(X) (by Equation 10)

�

Theorem 3.3. If a ∈ A is an action and X⊆ S is a set of states, then strongRegra(X) = strongPrea
αctl(X).

Proof. Part (I): Let s ∈ strongRegra(X) be a state and suppose thats < strongPrea
αctl(X). Thus, according to Equation 9, it

follows that∅ , progra(s) ⊆ X; and, according to Equation 15, it follows that∅ , T (s, a) * X. However, this is a contradiction
(if ∅ , T (s, a) * X, then executing the actiona in the states a states′ < X can be achieved, consequently, the progression ofs
through the actiona cannot lead to only states insideX). Thus, it follows thats ∈ strongRegra(X) → s ∈ strongPrea

αctl(X), i.e.,
strongRegra(X) ⊆ strongPrea

αctl(X). Part (II): Analogously, we can show thats ∈ strongPrea
αctl(X) → s ∈ strongRegra(X), i.e.,

strongPrea
αctl(X) ⊆ strongRegra(X). Therefore, we can conclude thatstrongRegra(X) = strongPrea

αctl(X).
�

Theorem 3.4. strongPreαctl(X) = strongRegr(X).

Proof.

strongPreαctl(X) =
⋃

a∈A

strongPreaαctl(X) (by Equation 17)

=
⋃

a∈A

strongRegra(X) (by Theorem 3.3)

= strongRegr(X) (by Equation 11)

�

The image and pre-image operations showed in this section are inefficient, once it is impossible to represent all transitions for
large state-spaces. As we will see in the next section, the use of symbolic operations allows to apply model checking in practice.

4. Planning as Symbolic Model Checking

In the previous section, we describes planning as model checking using anexplicit representationof the planning domain
model (i.e., the Kripke structure or the ALT system), which can be very inefficient. We can use a symbolic representation of the
explicit representation ofM, i.e., a symbolic representation ofT (orT ) and apply efficient BDD operations allowing the verifica-
tion of large state-space systems [3, 14, 28]. The symbolic model checking requires the following steps: (i) codifying states and
transitions as propositional formulas; (ii) representingthese formulas as BDDs and; (iii) performing efficient BDDs operations.
In this section, we show a symbolic representation of the Kripke structure and the ALT system and how to symbolically compute
the CTL andα-CTL pre-image (weak and strong).
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4.1 Symbolic Representation for States and Transitions

In this section we show how to represent states as formulas and also the two transition functionsT (CTL model) andT
(α-CTL model) represented as logical formulas.

Definition 4.1. (Propositional representation for states and set of states) Let M = 〈S, L,T〉 be a state transition system over a
set of propositionsP. The propositional codification of a state s∈ S , denoted byξ(s), is the formula

ξ(s) =
∧

p∈L(s)

p, (18)

and the propositional codification of a set of states X⊆ S is the formula

ξ(X) =
∨

s∈X

ξ(s). (19)

Example 4.1. (Symbolic representation of a set of states) The set of states S= {s0, s1, s2} of the state transition system depicted
in Figure 6(a) can be represented by the formula:

ξ(S) = (p∧ ¬q) ∨ (p∧ q) ∨ (¬p∧ q).

In a Kripke structure (depicted in Figure 6), a transition isa subset ofS×S. In order to represent the states before and after a
transition, we generate an extra copy of the propositionsP and prime all variables. For instance, in Figure 8,ξ(s0) = p∧ ¬q is a
formula representing the current state in the transition and ξ(s′1) = p′∧q′ is a formula representing the next state in the transition.

s0 s′1

p,¬q p′, q′

Figure 8: Representation of the states before and after a transition in a Kripke structure.

Definition 4.2. (Propositional representation for transition and transition relation in a Kripke structure) Let M= 〈S, L,T〉 be
a Kripke structure over a set of propositionsP. The propositional codification for a transition(s, s′) ∈ T, denoted byξ(t) is a
formula

ξ(t) = ξ(s) ∧ ξ(s′) (20)

and the propositional codification for the transition relation T is a formulaξ(T)

ξ(T) =
∨

t∈T

ξ(t). (21)

Example 4.2. (Symbolic representation for the transition relation in a Kripke structure) The transition relation T= {(s0, s1),
(s1, s1), (s1, s0), (s1, s2), (s2, s2)} of the Kripke structure depicted in Figure 6(a) can be represented by the formula:

ξ(T) = (p∧ ¬q∧ p′ ∧ q′) ∨ (p∧ q∧ p′ ∧ q′) ∨ (p∧ q∧ p′ ∧ ¬q′) ∨ (p∧ q∧ ¬p′ ∧ q′) ∨ (¬p∧ q∧ p′ ∧ ¬q′).

However, when applying model checking to solve planning problems, the Kripke structure must be enhanced by the actions
in the label of the transitions. Thus, in an ALT system, a transition is a subset ofS×A×S. In order to consider actions, planning
as symbolic model checking approaches [3] use another setA of propositional variables, calledaction variables. Thus, each
actiona ∈ A has a corresponding action variableα ∈ A.

Definition 4.3. (Propositional representation for transition and transition relation in an ALT system) Let M= 〈S, L,T〉 be an
ALT system with signature(P,A). The propositional codification for a transition(s, a, s′) ∈ T, denoted byξ(t) is a formula

ξ(t) = ξ(s) ∧ α ∧ ξ(s′) (22)

and the propositional codification for the transition relation T is a formulaξ(T)

ξ(T) =
∨

t∈T

ξ(t). (23)

Example 4.3. (Symbolic representation for the transition relation in anALT system) The transition relation T= {(s0, c, s1), (s1, c, s1),
(s1, a2, s0), (s1, a2, s2), (s1, b, s2), (s2, b, s2)} of the ALT system depicted in Figure 1(b) is:

ξ(T) = (p∧ ¬q∧ c∧ p′ ∧ q′) ∨ (p∧ q∧ c∧ p′ ∧ q′) ∨ (p∧ q∧ a2 ∧ p′ ∧ ¬q′) ∨

(p∧ q∧ a2 ∧ ¬p′ ∧ q′) ∨ (p∧ q∧ b∧ ¬p′ ∧ q′) ∨ (¬p∧ q∧ b∧ p′ ∧ ¬q′)).
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Quantified Boolean Formulas In order to perform an efficient computation of regression of pre-image and regression, it is
necessary to use an extension of proposition logic which allows the quantification over the propositions values [21] (Quantified
Boolean Formulas). For instance, in pre-image computation, the most important symbolic operations between sets of states and
transitions represented as propositional formulas are based on existential and universal abstraction [29]. Given a propositional
formulaϕ and a propositionp occurring inϕ, the existential abstraction is defined as:

∃p. ϕ ≡ ϕ[⊤/p] ∨ ϕ[⊥/p] (24)

whereϕ[⊤/p] is obtained by replacing the propositionp by the value⊤ in the formulaϕ andϕ[⊥ /p] is obtained by replacingp
by⊥ in the formulaϕ. The universal abstraction is a formula:

∀p. ϕ ≡ ϕ[⊤/p] ∧ ϕ[⊥/p] (25)

The quantifications also can be defined for a set of variables.Let B = {b1, b2, · · · , bn} be a subset of propositional variables
occurring inϕ. Thus,∃B.[ϕ] ≡ ∃b1.(· · · ∃bn.ϕ) e∀B.[ϕ] ≡ ∀b1.(· · · ∀bn.ϕ).

Binary Decision Diagrams Binary Decision Diagrams (BDDs) are a canonical representation for boolean functions. A BDD
is similar to a decision tree: an acyclic graph where non-terminal nodes are labelled with boolean variables and terminal nodes
are labelled with 0 or 1. In order to allow a compact representation, the following optimizations are performed: (i) removal
of duplicate terminals and non-terminals nodes and; (ii) removal of redundant tests. Furthermore, it is imposed an ordering
on the variables occurring along any path in order to improveefficiency. Applying these removals and fixing the ordering on
the variables, we obtain anReduced and Ordering BDD(ROBDD). For simplicity, when we mention a BDD actually we are
mentioning a ROBDD. BDDs allow compact representations forboolean functions which only have exponential representations
in other systems, such as truth tables and conjunctive normal forms [25].

4.2 Symbolic CTL Pre-Image Computation

Let M = 〈S, L,T〉 be a Kripke structure over a set of propositionsP, ξ(X) (Definition 4.1) be the propositional representation of
a set of statesX ⊆ S andξ(T) be the propositional representation of the transition relation, symbolic model checking tools [30,31]
computes the pre-image ofX using QBF as showed in the Definitions 4.4 and 4.5.

Definition 4.4. (CTL symbolic weak pre-image) Let M= 〈S, L,T〉 be a Kripke structure over a set of propositionsP, the CTL
symbolic weak pre-image of a set of states X⊆ S is given by [25]:

symbWeakPrectl(X) = ∃P′.(ξ(T) ∧ ξ(X′)) (26)

Example 4.4. (CTL symbolic weak pre-image) Let M= 〈S, L,T〉 be the Kripke structure depicted in Figure 6(a); X= {s2} ⊆ S
be a set of states, whose representation using primed variables is given by the formulaξ(X′) = ¬p′ ∧ q′ and; ξ(T) be the
propositional representation of the transition relation (Example 4.2). The CTL symbolic weak pre-image of X is given by:

symbWeakPrectl(X) = ∃P′.(ξ(T) ∧ ξ(X)′) (by Equation26)

= ∃{p′, q′}.(((p∧ ¬q∧ p′ ∧ q′) ∨ (p∧ q∧ p′ ∧ q′) ∨ (p∧ q∧ p′ ∧ ¬q′)

∨ (p∧ q∧ ¬p′ ∧ q′) ∨ (¬p∧ q∧ p′ ∧ ¬q′)) ∧ (¬p′ ∧ q′))

= ∃p′.∃q′.(q∧ ¬p′ ∧ q′)

= ∃p′.((q∧ ¬p′∧ ⊥) ∨ (q∧ ¬p′ ∧ ⊤))

= ∃p′.(q∧ ¬p′)

= q (representing the set of states{s1, s2})

Definition 4.5. (CTL symbolic strong pre-image) Let M= 〈S, L,T〉 be a Kripke structure over a set of propositionsP, the
symbolic strong pre-image of a set of states X⊆ S is computed by [3]:

symbStrongPrectl(X) = ∀P′.(ξ(T)→ ξ(X′)) ∧ ∃P′.ξ(T) (27)

Example 4.5. Let M = 〈S, L,T〉 be the Kripke structure depicted in Figure 6,ξ(X′) be the propositional representation of
X = {s2} ⊆ S using primed variables and;ξ(T) the propositional representation of the transition relation (Example 4.2). The
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CTL symbolic strong pre-image of X is given by:

symbStrongPrectl(X) = ∀P′.(ξ(T)→ ξ(X′)) ∧ ∃P′.ξ(T) (by Equation 27)

= ∀{p′, q′}.((p∧ ¬q∧ p′ ∧ q′) ∨ (p∧ q∧ p′ ∧ q′) ∨ (p∧ q∧ p′ ∧ ¬q′)

∨ (p∧ q∧ ¬p′ ∧ q′) ∨ (¬p∧ q∧ ¬p′ ∧ q′)→ (¬p′ ∧ q′)) ∧ ∃{p′, q′}.ξ(T)

= ∀{p′, q′}.((¬p∨ ¬q∨ ¬p′) ∧ (¬p∨ ¬p′ ∨ ¬q′)) ∧ ((p∧ ¬q) ∨ (p∧ q) ∨ (¬p∧ q))

= ∀p′.∀q′.((¬p∨ ¬q∨ ¬p′) ∧ (¬p∨ ¬p′ ∨ ¬q′)) ∧ ((p∧ ¬q) ∨ (p∧ q) ∨ (¬p∧ q))

= (¬p∨ ¬q) ∧ ¬p∧ ((p∧ ¬q) ∨ (p∧ q) ∨ (¬p∧ q))

= ¬p∧ q (representing the state s2)

In this section, we showed how image and pre-image operations for CTL are defined based on a symbolic representation
of the state-space. The symbolic representation using Binary Decision Diagrams are the state-of-art in the model checking
area. However, when apply model checking for automated planning, CTL is not adequate to represent the actions labellingthe
transition relation. For this reason, in the next section weshow how the symbolic model checking operations can be extended to
represent the actions.

5. Symbolicα-CTL Pre-Image Computation

When symbolic model checking is applied to solve planning problems, the Kripke structure have to be enhanced by the
actions that labels the transition relation. In the traditional model checking approaches, each transition is a pair (state,successor
state’); however, in non-deterministic planning as model checking, each transition is a triple (state,action, successor state’). For
instance, in the Figure 1(b), there are two transitions between the statess1 ands2: (s1, a2, s2) produced by actiona2 and (s1, b, s2)
caused by actionb. In a Kripke structure, these two transitions are the same transition, once the actions labeling the transitions
are not represented.

In this section we extend the work in [4] to define the firstα-CTL symbolic pre-image computation for models with transitions
labeled with actions, i.e., the firstα-CTL symbolic model checking. Therefore, we represent the actions by using a set of
propositional variables calledaction variablesbased on the work ofCimatti, et al. (2003)[3]. Intuitively, an action variable is
true if and only if the corresponding action is being executed. Thus, a transition to a states to a successor states′ produced by
the actiona is represented as:

Ta = ξ(s) ∧ α ∧ ξ(s′),

whereα is a proposition representing an actiona ∈ A. Each actiona ∈ A has a corresponding action variableα ∈ A.
The transition relationT of the graph corresponding to a planning domain is represented as a disjunction of allTa (as in the
Definition 4.2). The Definition 5.1 shows how to compute weak pre-image when the transitions are labeled with actions and
the Definition 5.2 shows how to compute strong pre-image. In both definitions, it is necessary to include the elimination of the
actions variables (∃A).

Definition 5.1. (α-CTL symbolic weak pre-image) Let M= 〈S, L,T〉 be an ALT system with signature (P,A); ξ(X′) be the
propositional representation using primed variables of X⊆ S ;ξ(T ) be the propositional representation of the transition relation
T and;A be the set of propositional actions variables set. The symbolic weak pre-image of X is:

symbWeakPreαctl(X) = ∃A.∃P′.(ξ(T ) ∧ ξ(X′)). (28)

Example 5.1. (α-CTL symbolic weak pre-image) Let M= 〈S, L,T〉 be the ALT system depicted in Figure 1(b);ξ(X′) = ¬p′ ∧ q′

be the primed representation of the set X= {s2} ⊆ S and; ξ(T ) be the symbolic representation of the transition relation
(Example 4.3). The symbolic weak pre-image of X is given by:

symbWeakPreαctl(X) = ∃A.∃P′.(ξ(T) ∧ ξ(X′)) (Equation28)

= ∃A.∃P′.(((p∧ ¬q∧ c∧ p′ ∧ q′) ∨ (p∧ q∧ c∧ p′ ∧ q′) ∨ (p∧ q∧ a2 ∧ p′ ∧ ¬q′) ∨

(p∧ q∧ a2 ∧ ¬p′ ∧ q′) ∨ (p∧ q∧ b∧ ¬p′ ∧ q′) ∨ (¬p∧ q∧ b∧ ¬p′ ∧ q′)) ∧ (¬p′ ∧ q′))

= ∃a2.∃b.∃c.∃p′.∃q′.((p∧ q∧ a2∧ ¬p′ ∧ q′) ∨ (q∧ b∧ ¬p′ ∧ q′))

= (p∧ q) ∨ q

= q (representing the set of states{s1, s2}).

Definition 5.2. (α-CTL symbolic strong pre-image) Let M= 〈S, L,T〉 be an ALT system with signature(P,A); ξ(X′) be the
propositional representation using primed variables of X⊆ S ;ξ(T ) be the propositional representation of the transition relation
T and;A be the the propositional actions variables set. The symbolic strong pre-image of X is:

symbStrongPreαctl(X) = ∃A.(∀P′.(ξ(T )→ ξ(X′)) ∧ ∃P′.ξ(T )). (29)
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Example 5.2. Let M = 〈S, L,T〉 be the ALT system depicted in Figure 1(b),ξ(X′) be the primed representation of the set of
states X= {s2} ⊆ S ; andξ(T ) be the symbolic representation of the transition relation (Example 4.3). The symbolic strong
pre-image of X is given by:

symbStrongPreαctl(X) = ∃A.(∀P′.(ξ(T )→ ξ(X′)) ∧ ∃P′.ξ(T ))

= ∃A.(∀P′.(((p∧ ¬q∧ c∧ p′ ∧ q′) ∨ (p∧ q∧ c∧ p′ ∧ q′) ∨ (p∧ q∧ a2∧ p′ ∧ ¬q′) ∨ (p∧ q∧ a2

∧¬p′ ∧ q′) ∨ (p∧ q∧ b∧ ¬p′ ∧ q′) ∨ (¬p∧ q∧ b∧ ¬p′ ∧ q′))→ (¬p′ ∧ q′)) ∧ ∃P′.ξ(T )

= ∃A.((∀P′.((¬p∨ ¬q∨ ¬a2∨ ¬p′ ∨ q′) ∧ (¬p∨ ¬c∨ ¬p′ ∨ ¬q′)) ∧ ((p∧ q∧ a2)∨ (q∧ b) ∨ (p∧ c)))

= ∃A.((¬p∨ ¬c) ∧ (¬p∨ ¬q∨ ¬a2)∧ ((p∧ q∧ a2)∨ (q∧ b) ∨ (p∧ c)))

= ∃A.((q∧ ¬a2∧ b∧ ¬c) ∨ (¬p∧ q∧ b))

= q∨ (¬p∧ q)

= q (representing the set of states{s1, s2}).

In this section we showed that symbolic image and pre-image operations forα-CTL are more adequate for planning as model
checking, since they consider the actions behind the state-transitions. In the next section, we show how to symbolically compute
the set of predecessors and successors states directly fromthe action specification. In this case, given a planning problem
described in terms of the actions, it is not necessary to translate the actions into the transition relation to apply model checking
algorithms.

6. Symbolic Regression of Actions

Representing symbolically states and actions, we can compute the predecessor states of a set of states without representing
explicitly the transitions of the planning domain (i.e., the tuple (state, action, successor state)) as it is done in the traditional
symbolic model checking approaches. We call this operationas: symbolic regression of actions. Notice that the symbolic
regression reasons over the implicit model of the planning domain (as those presented in Figure 3) while the symbolic pre-image
reasons over the explicit model of the planning domain (as those depicted in Figure 1). In the Section 6.1 we present a previous
work on symbolic regression for deterministic actions and in Section 6.2 we show the main contribution of this paper, which is
thesymbolic regression for non-deterministic actions.

6.1 Symbolic Regression for Deterministic Actions

First, we will show how to represent STRIPS deterministic actions as propositional formulas and, after that, how to perform
symbolic regression computation.

Definition 6.1. (Propositional representation for deterministic actions) The propositional representation for a STRIPS determin-
istic actionα = 〈precond(α); effects(α)〉 (Definition 6.1) is a pair of formulasα = 〈ξ(precond(α)); ξ(effects(α))〉 such that:

• ξ(precond(α)) is a literal or a conjunction of literals representing the preconditions ofα, i.e.,

ξ(precond(α)) =
∧

p ∈ precond(α)

p and, (30)

• ξ(effects(α)) is a literal or a conjunction of literals representing the effects ofα, i.e.,

ξ(effects(α)) =
∧

d ∈ add(α)

d ∧
∧

r ∈ del(α)

¬r. (31)

Example 6.1. The deterministic actions a1, b and c described in Figure 3(a) can be represented as:

a1 = 〈p∧ q; p∧ ¬q〉; b = 〈q;¬p〉; c = 〈p; q〉.

Given a set of statesX represented in a symbolic way, the propositional plannerPropPlan [32] computes the set of predecessor
states ofX using directly the deterministic action specification. We call this operation assymbolic regression for deterministic
actions. In order to perform the regression operation, it is defined for each actiona ∈ A the setchanges(e) as the set of
propositions occurring in the effecteof the actiona. For instance,changes(ea1) = {p, q}, changes(eb) = {p} and changes(ec) = {q}
are, respectively, the change set for the actionsa1, b andc (Figure 3(a)).
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Definition 6.2. (Symbolic regression of a set of states by a deterministic action) Letα be a deterministic action represented by a
pair of proposition formulas such thatα = 〈ξ(precond(α)); ξ(effects(α))〉 and letξ(X) be the propositional representation of a set
of states X (Equation 23), the symbolic regression of X by thedeterministic actionα is [32]:

symRegrα(ξ(X)) = ξ(precond(α)) ∧ ∃changes(e).(ξ(e) ∧ ξ(X)). (32)

Example 6.2. Given the set of actionsA = {a1, b, c} (Figure 3(a)), symRegra1(X) , symRegrb(X) and symRegrc(X) for ξ(X) =
¬p∧ q where X= {s2} is computed as follows:

symRegra1(ξ(X)) = ξ(precond(a1)) ∧ ∃changes(a1).(ξ(e(a1)) ∧ ξ(X)) (by Equation32)

= (p∧ q) ∧ ∃{p, q}.((p∧ ¬q) ∧ (¬p∧ q))

= (p∧ q) ∧ ∃{p, q}.(⊥)

= ⊥;

symRegrb(ξ(X)) = ξ(precond(b)) ∧ ∃changes(b).(ξ(e(b)) ∧ ξ(X)) (by Equation32)

= q∧ ∃p.(¬p∧ (¬p∧ q))

= q∧ ∃p.(¬p∧ q)

= q;

symRegrc(ξ(X)) = ξ(precond(c)) ∧ ∃changes(c).(ξ(e(c)) ∧ ξ(X)) (by Equation32)

= p∧ ∃q.(q∧ (¬p∧ q))

= p∧ ∃q.(¬p∧ q)

= p∧ ¬p

= ⊥ .

Symbolic regression can be also computed for a set of actionsA taking the disjunction of the symbolic regression according
to each actiona ∈ A as we can see in the Definition 6.3.

Definition 6.3. (Symbolic regression of a set of states by a set of actions) Let A be a set of actions and letξ(X) be a propositional
representation of a set of states X, the symbolic regressionof X is given by:

symbRegr(ξ(X)) =
∨

a∈A

symbRegra(ξ(X)). (33)

Notice that, symbolic regression reasons about actions (implicit representation of the planning domain) instead of the transi-
tion relation (explicit representation) and, furthermore, does not need an extra set of primed propositions neither anextra set of
propositional variables as in the symbolic pre-image.

6.2 Symbolic Regression for Non-deterministic Actions

In this paper, we propose how to perform symbolic regressionwhen the actions are non-deterministic. The operationssym-
bolic weak regressionandsymbolic strong regressionare able to compute the set of predecessor states using directly the non-
deterministic actions specification instead of the transition relation. First, we show how to represent non-deterministic actions as
propositional formulas (Definition 6.4) and, after that, how to compute symbolic weak regression (Definition 6.7) and symbolic
strong regression (Definition 6.8).

Definition 6.4. (Propositional representation for non-deterministic actions) The propositional representation for a non-deterministic
actionα = 〈precond(a); effects(α)〉 is a pairα = 〈ξ(precond(α); ξ(effects(α))〉 such that:

• ξ(precond(α)) is a literal or a conjunction of literals representing the preconditions ofα, i.e.,

ξ(precond(α)) =
∧

p ∈ precond(α)

p and, (34)

• ξ(effects(α)) is a disjunction of all non-deterministic effects ofα, i.e.,
∨

ei ∈ effects(α)

(
∧

d ∈ add(α,ei)

d ∧
∧

r ∈ del(α,ei)

¬r). (35)
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Example 6.3. The non-deterministic action a2 in the Figure 3(b) can be represented as:

a2 = 〈p∧ q; (p∧ ¬q) ∨ (¬p∧ q)〉

In the symbolic non-deterministic regression, each effectei of the actionα has a corresponding change set given bychanges(α, ei).
The change set of the actionα is given by taking the union of the eachchange(α, ei), i.e.:

changes(α) =
⋃

ei ∈ effects(α)

changes(a, ei). (36)

For instance, the change set of the actiona2 (Figure 3(b)) that has two non-deterministic effectse1 and e2 is given by:
changes(e1) ∪ changes(e2) = {p, q} ∪ {p, q} = {p, q}.

The symbolic weak regression of a set of statesX by a non-deterministic actionα (Definition 6.5) computes the set of states
from which some effect ofα reaches a state inX while the symbolic strong regression ofX (Definition 6.6) computes the set of
states from which all the non-deterministic effects ofa reach a state inX.

Definition 6.5. (Weak symbolic regression of a set of states by a non-deterministic action) Letα be a non-deterministic action
represented by a pair of proposition formulas〈ξ(precond(α)); ξ(effects(α))〉 (Definition 6.1) and letξ(X) be the propositional
representation of a set of states X (Equation 23), the symbolic weak regression of X is given by:

symbWeakRegrα(ξ(X)) = ξ(precond(α)) ∧ ∃changes(α).(ξ(effects(α)) ∧ ξ(X)). (37)

We can analyse this equation from right to left. First, the conjunctionξ(effects(α)) ∧ ξ(X) selects the subset of states inX
reached by the effects ofα. If none effect of α is relevant toX, thenξ(effects(α)) ∧ ξ(X) = ⊥. However, if some effect of
a is relevantto X, thenξ(effects(α)) ∧ ξ(X) ,⊥ (notice that a similar analysis is done in the Equation 7 whenit is verified if
∃e ∈ effects(a) such thate is relevant to the statex). After this conjunction, the existential quantification using the set changes(α)
eliminates one by one the effects variables in the relevant states. A similar elimination also is done in the Equation 7, but in
this case the positive effects of the action are eliminated by the difference set operation. Finally, the precondition is conjoint,
obtaining the formula representing the set of predecessor states (as can also be verified in the Equation 7 by taking the union of
the preconditions).

Example 6.4. (Symbolic weak regression of a set of states) Given the set ofstates X= {s2} (Figure 1(b)) represented by the
propositional formulaξ(X) = ¬p∧q and the non-deterministic action a2 = 〈precond(a2);effects(a2)〉 = 〈(p∧q); (p∧q)∨(¬p∧q)〉,
then symbWeakRegra2(X) is:

sWeakRegra2(ξ(X)) = ξ(precond(a2))∧ ∃changes(a2).(ξ(effects(a2))∧ ξ(X))) (by Equation37)

= (p∧ q) ∧ (∃{p, q}.(((p∧ ¬q) ∨ (¬p∧ q)) ∧ (¬p∧ q))

= (p∧ q) ∧ (∃p.∃q.(¬p∧ q))

= (p∧ q) ∧ ⊤

= (p∧ q).

Definition 6.6. (Symbolic strong regression of a set of states by an action) Let α be a non-deterministic action represented
by a pair of proposition formulas〈ξ(precond(α)); ξ(effects(α))〉 (Definition 6.1) and let X be a set of states represented by a
propositional formulaξ(X). The symbolic strong regression of X is:

symbStrongRegra(ξ(X)) = ξ(precond(a))∧ ∀changes(α).(effects(a)→ ξ(X)).

Example 6.5. (Symbolic strong regression of a set of states) Given the setof states X= {s2} (Figure 1(b)) represented by the
propositional formulaξ(X) = ¬p∧q and the non-deterministic action a2 = 〈precond(a2);effects(a2)〉 = 〈(p∧q); (p∧q)∨(¬p∧q)〉,
then symbolic strong regression of X according to the actiona2 is:

strongRegra2(ξ(X)) = ξ(precond(a2))∧ ∀changes(a2).(ξ(effects(a2))∧ ξ(X))) (by Equation37)

= (p∧ q) ∧ (∀p.∀q.(((p∧ ¬q) ∨ (¬p∧ q))→ (¬p∧ q))

= (p∧ q) ∧ (∀p.∀q.(¬p∨ q))

= (p∧ q) ∧ ∀p.(¬p)

= (p∧ q) ∧ (⊤∧ ⊥)

= (p∧ q) ∧ (⊥)

= ⊥ .
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Symbolic weak (and strong) regression can be also computed for a set of actionsA taking the disjunction of the symbolic
weak (and strong) regression according to each actiona ∈ A as we can see in the Definition 6.7 (and in Definition 6.8).

Definition 6.7. (Symbolic weak regression of a set of states by a set of actions) LetA be a set of actions and letξ(X) be a
propositional representation of a set of states X, the symbolic weak regression of X is given by:

symbWeakRegr(ξ(X)) =
∨

a∈A

symbWeakRegra(ξ(X)). (38)

Definition 6.8. (Symbolic strong regression of a set of states by a set of actions) LetA be a set of actions and let X be a set of
states, represented by a propositional formula, the symbolic strong regression of X is given by:

symbStrongRegr(ξ(X)) =
∨

a∈A

symbStrongRegra(ξ(X)). (39)

The symbolic progression and regression operations presented in this section are able to compute, respectively, the set of
predecessor and successor states from the implicit representation of the planning domain. We claim that these operations are more
appropriate when applying model checking algorithms for planning, once it is not necessary translate the actions specification
into the transition relation. However, both formalisms have the same complexity since they are based on QBF inference.
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7. Conclusion

Symbolic model checking is a largely applied technique to solve non-deterministic planning problems. In this approach,
called planning as symbolic model checking, the fundamental operation is the computation of the pre-image of a set of states,
which is performed by using the symbolic representation of the entire transition relation representing the planning domain graph.
However, translating the set of actions into the entire transition relation is a very expensive operation and, in some cases, even
using the symbolic representation it is impossible to come up with a plan for huge domains. In order to overcome this limitation,
we propose two new operations called: symbolic weak regression and symbolic strong regression. The proposed operations
compute the predecessors of a set of states using directly the actions specifications (pre-conditions and effects) and, thus, it is not
necessary to construct the entire transition relation.

As future work, we intend to implement the non-deterministic regression operations using BDDs and compare their perfor-
mance against to symbolic pre-image operations, using the non-deterministic planning domains from the InternationalPlanning
Competition.
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