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Abstract — Model checking (MC) is a widely used approach for verifyifig formal model of a system satisfies a particular
temporal logic formula. Symbolic model checking has beegdly applied to solve non-deterministic planning proldeisin
area calledplanning as model checkingn this approach, the planning domain is the system to bifiegand the planning
goal is the formula that must be satisfied. In general, thanitey domain is given by a set of action specifications given i
terms of preconditions andfects formulas and the MC pre-image computation performsdond of translation of the actions
specification into a symbolic representation of the whaéestransition space. However, the symbolic represemtafithe entire
state transition space is a very expensive operation armhnire cases, even using the symbolic representation it issisille
to come up with a plan for large problems. In order to overctimgelimitation, one can compute the pre-imagexoby using
directly the action specification, without representing thole state-transition space, an operation caledbolic regressian
In this paper, we propose new symbolic non-deterministicagsion operations based Quantified Boolean Formula€BF)
inference, as an extension of previous work on determingstmbolic planning. In addition, we prove that the reg@ssi
operations are equivalent to existing pre-image operation
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1. INTRODUCTION

Automated planning [1] is the field of the artificial intedigce that studies the deliberative process involved in ldr@nmng
task, aiming to the implementation of automated plannirsgesys. In this context,lanning domainM is a specification of the
environment dynamics and is modeled as a direct graph wkigridte vertices represent the states of the environment @hd; (
the edges represent the transitions caused by actiongéFiguwhich are performed by an agent. A planning problenefséd
by a specification of a planning domah, aninitial state g and agoalformulag that must be satisfied in a state reached by the
agent.

Classical planning2] assumes that the environment evolves determinisgidadl, there is no uncertainty regarding the action
effects. Figure 1(a) shows a planning domain where the actrerdegerministic, i.e. when an action is applied to a stéteeads
to a unique successor state. For instance, in Figure 1&gxcution of actioal in the states; leads to a successor stagethe
execution ob in s; (or ) leads to a state, and; the execution afin s (or 1) leads to a state;. Deterministic assumptions
can indeed be inappropriate in various practical situatiéfigure 1(b) shows a non-deterministic act&@that when executed
in the states; can lead to the statg or to the states,. A planning domain with at least one action with non-deteistic efect
is called anon-deterministiplanning domain.

(a) State-transition space of a deterministic (b) State-transition space of a non-
domain. deterministic domain

Figure 1: (Explicit) State-transition space represeatetif two planning domains.

Basically, a planning algorithm performs a search in thdiekpepresentation of the domain (e.g., the graphs onrieidy).
The search can be in a forward (progressive search) or badkmay (regressive search). To find a solution, the progressi
search starts from the initial state and generates suacgtsdes, until it reaches a goal state. In a reverse wayetressive
search starts from the set of states that satisfy a goal fargnand generates the predecessor states, until it reachestiak i
statesp. A solution for a deterministic planning problem ipkan, i.e., a path in the domain graph, starting fregrand finishing
in a final state satisfying. A solution for a non-deterministic planning problem igdicy, i.e., a mapping from states to actions,
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Figure 2: Diferent ways to compute the regression step for non-detesticipianning laid out along two directions: explicit or
implicit versus enumerative or symbolic representation.

that can induce at least one path starting from the initatlesand finishing in a state satisfying the planning goal. Acpas
a sub-graph of the domain graph, that contains the initeiesh, in which at least one path starting frosm leads to a final
state satisfyinge. A solution of a non-deterministic planning problem can bassified asveak strongor strong-cyclic[3].
Intuitively, in a weak solution the agent can achieve a gtaesbut due to the non-determinism, it does not guarantde so;
in a strong solution the agent always achieves a goal stagpite of non-determinism; and in a strong-cyclic solutio® agent
always achieves the goal, under the fairness assumptibaxbeution will eventually exit from all existing cycles][4

Efficient deterministic planning techniques, in general, dovmark with explicit domain graphs as input but works with
a formal language (e.g., STRIPS [2]) to represent the agtibat can be used to induce the graph. This is calleiingficit
representatiorof the planning domain model, in opposition to the completb, i.e., arexplicit representationf the domain
model. With such language to specify the actions mdfgient heuristic search planning algorithms for deterntioiglanning
have been proposed [5-7].

A common approach used to solve non-deterministic planisingodel checking8—10]. In this case, given an initial state
S and a goal formuleg, specified in a temporal logic (e.@computational Tree Logie CTL [11]), a model checker is used to
verify if a statesy of the domain model satisfigsand, in the &irmative case, returns a corresponding policy. CTL alloves th
specification of complex temporal goal formulas, for instai o ¢ (exists a path where the gaais finally reached) to represent
a weak solutionY ¢ ¢ (for all paths the goap is finally reached) to represent a strong solution &heldy (for all paths the goal
¢ is finally reached) to represent a strong cyclic solutione frain computation step in the planning as model checkingis t
computation of predecessor states of a set of states: aatmpetalledpre-image of a set of statek this paper we focus on the
regression step of non-deterministic plannihgwever, for didactic reasons we also describe some pssigeecomputations.

An important aspect of planning as model checking when réagmver the explicit graph is its performance: it can not
solve planning problems with large state space due t@thenerativeepresentation of the state transitions, i.e., based on set
theory. To overcome this limitation planning ssgmbolic model checkingpresents the set of states and the transition relations
of the explicit domain graph as propositional logic fornsuénd verify the satisfaction of the goal formyldy manipulating
formulas, using Binary Decision Diagrams [12] (BDDs) taalleficient computation. Another way to improve thé@ency of
the regression step in non-deterministic planning is tosysebolic representation and computation (also using BRaggther
with the implicit representation of the domain, i.e., usBigRIPS [2] action description.

Thus, given the symbolic representation of a set of stédtehis paper focus on how to compute the predecessor stades of
using a symbolic representation of actions (i.e., an intidied symbolic representation of non-deterministic plagrdomains),
instead of the transition relation (the explicit represgion). For this, we define two new operations for non-deteistic
planning: symbolic weak regressicsnd symbolic strong regressioand show how it can be implemented in aficgent way
using BDDs.

Figure 2 shows four dlierent ways to represent and compute the regression stepriedeterministic planning problems.
The definitions on the left refer to thexplicit representatiorof the state transitions (graph transitions), whereas tres @n
the right refers to theémplicit representatiorof the state transitions (action language). The definitiomgsop refers to the
enumerative representation of the state transitions (®&iry representation), whereas the ones on the bottonsriefehe
symbolic representation of the state transitions (logioiidas). This paper contribution is defining the regressiperation for
the bottom right category: implicit and symbolic represion.

In order to illustrate the importance of the implicit repeatation for planning problems, consider the benchmarkaiom
Logistics, used in the International Planning Competiid?C [13]). The task in this domain is to transport severakages
from their initial location to their desired destinationsing trucks for transporting packages in the same city daneg to
transport packages amongfdrent cities. In this domain, a package is transported froelacation to another by loading it into
atruck (or plane), driving the truck (or flying a plane) to ttesstination, and unloading the truck (or plane). A trucklane) can
load any number of packages. The easiest problem in thisiddma 2 cities, 2 trucks, 1 plane and 4 packages to be ddiivere
The implicit representation for this simple problem tak@spBopositions and 212 actions. If we have to work with theliekp
representation, we have to construct from the actions patidn the entire transition relation for a state-spac #° states.
This is a dificult task, even using symbolic representation. MIPS [14] jdanner based on model checking that computes the
transition relation from the action specification. Howetee transition relation is not computed from tiréginal description of
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the domain: there is a precompiling phase, which infers &iserstate representation by exhibiting knowledge thahdicit
in the description of the planning domain [14]. This anaysses structures called causal graphs [15] and drastiealiice the
length of the state space. As mentioned by Edelkamp and Hig]h@, building the BDD for the transition relation is ddal in
both time and space.

This paper is organized as follows. In Section 2, we show lmveason about deterministic and non-deterministic astion
in a progressive and regressive way. In Section 3, we préBerglanning as model checking framework. In Section 4, we
show how to represent symbolically states and transitidntie planning domain and how to perform symbolic pre-image
computation in a model that does not consider the actionmbt¢he state transitions (e.g., the graphs of Figure 6) eltign 5,
we describe the symbolic pre-image computation in a mo@gkdbnsider the actions behind the state transitions (eeygraphs
of Figure 1). In Section 6, we show how to represent detestimand non-deterministic actions as propositional fdemufor
didactic reasons, we first present a previous work on reigireésr deterministic actions and; we show tiymbolic regression
for non-deterministic actiond-inally, in Section 7, we draw some conclusions.

2. Planning Foundations

STRIPS [2] is a first-order language largely used to repttedeterministic actions. In a propositional version of SPRI
language, the domain is defined by a set of atomic proposifiprepresenting the properties of the world, and a set of @stio
A representing the agent abilities to change the world stdte states are subsetsifassuming the closed world assumption).
The initial statesy of a planning problem is given by a complete set of propettiasdefines a unique possible state in the world.
The planning goal is given by an incomplete set of prope(ties a subset dP) that defines a set of states that satisfies them.
Each STRIPS action is a partial function from states to st@definition 2.1). Notice that this representation is alsebty based
representation, i.e., an enumerative representation.

Definition 2.1. (STRIPS Deterministic actions) A deterministic actiorover a set of proposition® is specified byr =
{preconde); effectga)) where preconl) is a set of preconditions, representing what has to be sadisfi the current state
before executing, and gfectga) represent how the state s is modified with the action exetuilibie gects are given by the
couple gfectqa) = (add(a), dell@)) where: adda) is a set of propositions that become true after executimgnd de(a) is a set
of propositions that become false.

In this section, we show how to compute successor and prssi@cstates from the STRIPS action specification for deter-
ministic domains and for non-deterministic domains defiwétl a simple extension of STRIPS for non-deterministicarts.
Figure 3(a) shows the STRIPS representation for the detéstigi actionsy;, b andc, which correspond to the explicit represen-
tation shown in Figure 1(a). Figure 3(b) shows the extensfdhe STRIPS notation that includes the non-determingtton
a, and corresponds to the domain depicted in Figure 1(b).

a : (precondas) = {p, q}; (addas) = {p}; deay) = {q}))
b: (precondb) = {g}; (add(b) = {}; dekb) = {p}))
c: (precondc) = {p}; (add(c) = {q}; dekc) = {})
(a) The actions specification for the deterministic domapicted in Figure 1(a)

a : (preconday) = {p.q}; { (addaz, e1) = {p}; delaz,e1) = {q}),
(add(@z, &) = {q}; del(az,&2) = {ph) )
b : (precondb) = {q}; (addb) = {}; del(b) = {p}))
c: (precondc) = {p}; (add(c) = {a}; dekc) = {}))
(b) The actions specification for the non-deterministic dentepicted in Figure 1(b)

Figure 3: (Implicit) Representation of planning domainsleyions specifications.

2.1 Reasoning about Deterministic Actions

The progressiornof an initial statex by a deterministic actioa produces a unique successor stategri(x) (Equation 1).
For example, in the explicit representation of a planningpdim of Figure 1(a)progré(sy) = s;. In the implicit representation,
to computeprogrd(x) we have first to verify if the action is applicablein a statex, i.e., if preconda) C x. In this case, the
successor state reached by the executiamiofx is obtained by adding the positiv&fects inx and, after that, eliminating the
negative ects (i.e., kU adda)) \ del(a)). If preconda) ¢ x, then there isn't a successor state. Formalipgrd(x) is given by:

(xu dela)) \ add(a) if preconda) C x
0 otherwise

progri(x) = { 1)

In Figure 1(a), the successor statespby the actiorc is obtained using Equation 1 as followstogre(sy) = progré({p}) =
({prtu )\ {a} = {p, g} = s1. Notice that the properties noffacted by the action execution maintain their values in tleesssor
state (frame axiom [17]).
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The regressionof a goal statex by a deterministic actioma produces a set of predecessor staggg?(x). For instance, in
Figure 1(a)regr(s1) = {s1, S}. When reasoning on the implicit representation, i.e., @aattions, the regression generates
an abstract state, that can represent various states obthain, once the propositions not included in the abstrade sire
considered unknown, i.e., they can be true or false [18].iddahe diference between the state representation used in the
regression and the one used in progression: in the progressi can make the close world assumption (i.e., the prapositot
included in the state are considered false) while in theasgion this assumption is not allowed. Thus, regressisonsaover
partial truth-assignment§.e., belief-state space) and progression reasonsocaveplete truth-assignments9]. For an action
to berelevantto a current stat& it must contribute to the properties satisfiedjn.e., at least one of the actioffects must unify
with an element ok [20]. Furthermore, the action must not have affgeet that negates a propertyxfFormally, given a state
X, an action can lead wif add(a) c x anddel(a) N x = 0, in this case we say thatis arelevantaction to stat. Thus, the set
of predecessor states, by the actiora is obtained by adding the preconditions and, after thatpkang the positive fects in
X, i.e., XU preconda)) \ add(a), as defined by Equation 2:

(x\ add(@)) U preconda) if add(a) ¢ xanddel(a) n x =0,
0 otherwise

regri(x) = { (2)

For example, in Figure 1(a), the predecessor statg @fy actionc is obtained using Equation 2 as followsegré(s;) =
regre({p, ) = ({p. @} \ {a}) U {p} = {p} = {{p. —al}. {p. A} = {0, S1}.

The deterministic progression and regression operatianatso be extended for set of states. Xdie a set of states and
a be an action, the Equation 3 defines the meigrd(X) of states that are successors of stateX,iby the application o&. A
successor is generated for each sia¢eX whereais applicablei.e.,

progri(X) = | Jprogri(x)}. (3)

xeX

Equation 4 defines the setgr?(X) of states that are predecessors of state§ iaccording to the actioa. A predecessor is
generated by each statee X where the actiom can lead ta, that is:

regri(X) = U{regr’j‘(x)}. (4)

xeX

For most planning domains, regression keeps the searchhingnfactor smaller than progression. However, the faat th
regression uses set of states, rather than individuakstatekes it harder to come up with good heuristics. That isihi@ reason
why the majority of dicient planners use progression [20]. Nevertheless, motteofpproaches to solve non-deterministic
planning based on model checking performs regressivelsearc

2.2 Reasoning about Non-deterministic Actions
We can use an extension of STRIPS in order to describe nanrdigiistic actions, where we can express alternatitects.

Definition 2.2. (STRIPS-like non-deterministic actions) Based on STRER&mhinistic actions notation, a non-deterministic
actiona is specified byr = (precondc); effectga)) where: (i) precondw) is a set of preconditions and; (iiffectga) is a set of
non-deterministic gects such thatfectda) = {e1, &, - - - , &} and each g e effectga) is given by the paitadd(a, g), del(a, g)).

Figure 3(b) shows an example of a non-deterministic actiooording to Definition 2.2. In that figure, the non-deteristio
actiona2 has two alternativeftects, namelye; ande,. The progression of an initial stateby a non-deterministic actioa
produces a set of possible successor stptegr?(x) (Equation 5). For example, in the explicit representatbm planning
domain of Figure 1(b)progri?(s;) = {S, S}. In the implicit representation, an actiaris applied in a state if preconda) C
X. The set of successors states is generated by the union sfitieessor states computed for each possifiéeteof a. If
preconda) ¢ x, then there is not a successor state.

Uec eﬁ”ectsa){(x \ del(a, €)) U add(a, g)} if preconda) C X,

Progri(x) = { 0 otherwise ®)

In Figure 1(b), the successor statespby the non-deterministic actica® is obtained using Equation 5 as followsogri(s;) =
{{p.ap\{a) U {ph uilip.ab\ {p}) Ulal = {p}U{d} = {so} U (s} = {0, S}
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Equation 6 extends the non-deterministic progressionatijper for a set of stateX = {xi, X, - - - , Xn}, by computing the set
of states that are successors of each sta& by the non-deterministic actica

progri(X) = | progri(y). (6)

xeX

As in the deterministic case, the regression of a statecording to a non-deterministic action produces a setexlguessor
statesregrd(x). For instance, in Figure 1(bdegr®(s) = {s1}. When reasoning on the implicit representation, we can luse t
Equation 7 to computeegr?(x) whena is non-deterministic. Basically, if soméfect is relevant to the state then for each
e € effectga) the predecessor states are obtained as in the regressidetéoministic actions (Equation 2) and, after that, the
subsets obtained are conjoint.

(x\ add(a, €)) U preconda) if if Jee effects(a)such thatadd(a, €) c x and
regri(x) = ¢ della, )N x=0, (7
0 otherwise

In Figure 1(b), the predecessor statespfby the non-deterministic actioa2 is obtained using Equation 7 as follows:
regri®(sp) = {({p} \ {p}) U {p.q}} = {p.q}, onceadd@2, e;) C x and dela2,e;) N x = 0 for the non-deterministicfiect
of the actiora2.

To compute the non-deterministic regression for a set téstéetX = {Xy, - - - , X} be a set of states am@h non-deterministic
action relevant to at least one of the stateX.ifWhena is executed in a state it can leachecessarilyo a state inX or possibly
to a state inX (andpossiblyto a state not irX). Given a non-deterministic actica the set of predecessors states that lead
necessariljto states inX is computed by thetrong regressionf X according to the actioa. The set of states that leadssibly
to states inX is computed by theveak regressionf X according toa.

Definition 2.3. (Weak regression of a set of states) Let S be the set of sfdteslanning domain, X be a subset of S antle
a non-deterministic action. The weak regression of X adogrtb « (denoted by weakRe{(iX)) is the set of states from which
a successor state in X is possibly reached after the execratie and is given by:

weakRedt(X) = {ye S : progri(y) n X + 0}. (8)

Definition 2.4. (Strong regression of a set of states) Let S be the set oksththe planning domain, X be a subset of S, and
be a non-deterministic action. The strong regression of oating toa (denoted by strongRetfiX)) is the set of states from
which a successor state in X is necessarily reached aftestbeution ofr and is given by:

strongRegt(X) = {ye S : 0 # progr*(y) ¢ X}. 9)

The weak regression of a set of stalsccording to a set of actions can be obtained in terms of the weak regression
according to each actiame A, i.e.:

weakRegfX) = UweakRegar(X). (10)

acA

The strong regression of a set of staXeagccording to a set of actio@scan also be obtained in terms of the strong regression
according to each actiane A, that is:

strongRegfX) = U strongRegf(X). (11)

acA
In Section 6, we show how the regression operations can bewimeh symbolically, i.e., by using an extension of proposi-

tional logic with quantified formulagjuantified Boolean Formuld21]). Henceforth, we will only discuss regressive appioes
for planning.
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Figure 5: The model checking framework applied to solve piag problems.
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3. Planning as Model Checking

Model checking consists of solving the problem(s) E ¢, whereM is a formal model of a systers,is a state of the world
andy is a formal specification of a property to be verified in thisteyn. Essentially, a model checker (Figure 3) is an algorith
that receives M, s, ¢) and systematically visits the states of the mao#tikin order to verify if the property holds from the state
s. If (M, 9) E ¢, then the model checker retursisccessotherwise, it returns a counter-example, e.g., a stateeyhis violated.

When applying model checking framework to solve planningbpegms (Figure 3), the modé\t describes the planning
domain,sis the initial statesy of the problem and the propergyspecifies the planning goal. Thus, i, %) E ¢, the planner
based on model checking returns a plan; otherwise, it retiaiture.

The reasoning that happens using model checking is done lmamstemporal logics over a@xplicit representatiorof the
state transition space. In Section 3.1 we describe how tguterthe predecessor states of a set of stétessing CTL, which
represents the state transition space as a Kripke strugftaphs in Figure 1 without action labels). In Section 3.2describe
how to perform this computation using the logie€CTL, which reason over aaction labeled transition syste(as the graphs in
Figure 1). Notice that these representations are based tresey, i.e., an enumerative representation.

3.1 Planning as Model Checking based on CTL

CTL (Computation Tree Log)ds a branching time temporal logic that allows for reasgrabout alternative time lines (i.e.,
alternative futures) and it has been used to specify noaraénistic planning problems and related algorithms basedhodel
checking [3,22-24]. CTL formulas are composed by atomi@epsitions, propositional operators and temporal opesafbne
symbolso (nexd, ¢ (finally), o (globally) andu (until), combined with the quantifieandY, are used to compose the temporal
operators of this logic. The syntax of CTL is inductively defi as:

e=peP|=p1lp1A@2|@1V 2O @1 | Y O@1| A0 | VOp1 | A1 U @2) | V(e1 U ¢2)

The semantics of CTL is defined over a Kripke structimie= (S,L, T) , where: () Sis a set of statesjij L : S+ 2" isa
state labeling function andiji) T € S x S is a transition relation. A path iM is a sequence of stateg s;,--- suchthatgy e S
and ,s+1) € T, foralli > 0. Figure 6(a) shows a Kripke structure corresponding tagtaeh in Figure 1(b). Notice that in a
Kripke structure there is no label distinguishing the atsicesponsible for the transitions.

Model checking algorithms based on CTL [25] have a fundaalemteration which is the computation of the pre-image of a
set of states. Given a set of stadghe pre-image computes the predecessor statésBfe-image operations can be classified
as: strong pre-imagendweak pre-image The weak pre-image computes the set of states from whicate istX is possibly
reached in one step and the strong pre-image computes thiessates from which a state Kis necessarilyeached in one step.

Definition 3.1. (CTL pre-image of a set of states) Let M (S, L, T) be a Kripke structure over a set of propositiohsand
X C S be a set of states. The function weakffd€) returns the set of states from which some transitions leatkties in X. The
function strongPrg (X) returns the set of states from which all transitions leadttdes in X. Formally:

o weakPrgy(X) ={se S| T(9n X =0}
e strongPrey(X) = {s€ S|0 # T(s) C X}.

Example 3.1. (CTL pre-image computation) Let M (S, L, T) be the Kripke structure depicted in Figure 6(a). LetXs,} be
a subset of S. The weak pre-image of X is:
weakPrey(X) = {s1, s}

, because from these states it is possible to reach ene step. Furthermore, the strong pre-image of X is:

strongPrey(X) = {sp}

, because all transitions starting in, $eads only to states into X. Considering the statefsr instance, although there is a
transition leading to the state, & X, there is another transition leading tg & X. Thus, s ¢ strongPre,(X).
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Figure 6 shows how the CTL model checking algorithm comptiteset of states satisfying the CTL formda (-p A Q).
The Figure 6(a) depicts the Kripke structure with threeestady, 5 ands,. In order to compute the set of states from which
there is a path where the formulap A q) is finally satisfiedthe model checking algorithm starts by computing the)Xset
states satisfying the formulasp A Q). In this caseX = {s;}. After that, in each iteration, the algorithm computes weak
pre-imageof the set of states obtained in the previous iteration. Thigtive process stops when a fix-point is achieved, i.e.,
when no new state is reached by the pre-image computatiothelfirst iteration of the algorithm, the weak pre-imageXof
is computed, obtainingreakPrgy(X) = {s1, S} (Figure 6(b)). In the second iteration, the weak pre-imagih® set of states
obtained in the previous iteration is computed, thisuwseakPrgy(weakPrgy(X)) = {S, S1, S2}. In the fourth iteration, the
algorithm computes the weak pre-image of the set of statesnalul in the previous iteration and verifies that no newestats
reached (i.e weakPrgy(weakPrey(X)) = weakPréweakPrey(weakPrey(X)))), meaning that a fix-point was reached. Then,
the algorithm returns the set of statss s, S} where each state satisfies the formflika(—p A ).

S

(a) Kripke structure where the set of (b) 1stiteration:weakPrey(X) = {s1, S} (c) 2nd iteration:
statesX = {s,} satisfies-p A q weakPrgy(weakPrey (X)) = {So, s1, S2}

Figure 6: CTL model checking algorithm computing the settafes that satisfies the formula (—p A Q).

Figure 7 shows how the CTL model checking algorithm comptiteset of states satisfying the CTL formila (—p A Q),
i.e., the states from whichll paths finally reach a state satisfyirig:p A g). Figure 7(a) highlights the s& = {s,} of states
satisfying the formula<{p A g). In the first iteration of the algorithm (Figure 7(b)), thigomg pre-image oK is computed,
obtainingstrongPre, (X) = {S:}. As no new state was computed by the pre-image operationiit was reached. Then, the
algorithm returns the set of statgs} that satisfies the formublao (=p A g).

(a) Kripke structure where the set of (b) 1st iteration:strongPrey (X) = {2}
statesX = {sp} satisfies-pAq

Figure 7: CTL model checking algorithm computing the settafes that satisfies the formua (=p A Q).

Model checking algorithms have been largely used to solvedeierministic planning problems [3, 23]; however, these
algorithms have one limitation: the Kripke structure doesaonsider the actions responsible for the state transitim order to
overcome this limitation, an extension of CTL, calleTL [4], was proposed. The-CTL semantics is based aetion labeled
transition systems.e., Kripke structures where the transitions are labelitld actions (as the graphs showed in Figure 1).

3.2 Planning as Model Checking based oa-CTL

In CTL, the formulay¥ © ¢ holds on a stateif and only if ¢ holds on all successors sfindependently of the actions labeling
the transitions frons to its successors. la-ctL, to enforce that actions play an important role in its seiantt is used a
different set of “dotted” symbols to represent temporal opesato(nexd, ¢ (finally), @ (globally) andL! (until).

Definition 3.2. (a-ct. Syntax) Let pe P be an atomic proposition, the syntax@tr. is defined inductively as:

e=pl-pletA@2leiV e |01 [VOe1] Ame1| VO | A0e1 | YOu1 | A1 Liw2) | V(1 Lig2)

LetP # 0 be a set of atomic propositions arda finite set of actions. The semantics@fTL is defined over an action
labeled transition system (ALT system, for shoM) = (S,L,7) with signature P, A), where: {) S is a set of states;ii]
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L : S — 27 is a state labeling function andiij 7 € S x A x S is a transition relation where each transition is labelecivy
action. Figure 1(a) and (d) depicts ALT systems. Notice,thmtin ALT system, the states are labeled by elemeniz afid
the transitions are labeled by elementsiofintuitively, a statesin an ALT system satisfies a formu¥ae ¢ (or 4 © ¢) if there
exists an actiow € A that, when executed ig) necessarily (or possibly) reaches an immediate succegsovhich satisfies the
formulay. In other words, the modality represents the set afsuccessors of, for some particular actiom € A; the quantifier
¥ requires that all these-successors satisfy, and quantified requires that some of theaesuccessors satisfy.

Although actions are essential in the semantics-ofi, note that they are not used to compasar formulas. Indeed, when
we specify a planning goal, we wish to impose constraintg omér the states visited during the execution of the plageimeral,
constraints over the actions that will be used to composeia gte not relevant when we specify the planning goal. Fer thi
reason, the existing actions logics [26, 27], which allowrialas with constraints over actions, are also inadequodtarmalize
planning algorithms.

A model checker for-CTL can be directly implemented from its semantics [4].STaligorithm is similar to the CTL model
checking algorithm, having three fundamentdtatiences: (i) the system to be verified is an ALT system; (& filrmula is
specified ina-CTL and; (iii) the pre-image computation is modified in artie consider the actions labelling the transitions, as
showed in the Definitions 3.3.

Definition 3.3. (a-CTL pre-image of a set of states) LetdS, L, 7) be an action labeled state transition system with signature
(P, A) and XC S be a set of states. The function weakRieX) computes the maximal setYS such that, for each statessy,,
there is an action e&e A, whose execution in s leads to a state in X. Analogously,uthetibn strongPrg.;y(X) computes the
maximal set YC S such that, for each statessY, there is an action @ A, whose execution in s leads only to states in X.

weakPrgq(X) ={se S|Jac Aand7(s,a)N X # 0}; (12)

strongPre (X) = {se S|Jae A and0 # 7 (s a) € X}. (13)

Example 3.2. (a-CTL pre-image computation) Let M (S, L, 7") be the ALT system of Figure 1(b) and=Xs,} be a subset of
S. The weak pre-image of X is:

weakPrecy(X) = {s1, s2}
, because fromst is possible to reachs(by following the deterministic action b or the non-detarisiic action 2) and from
s, itis possible to reach,g(by following the action b). Furthermore, the strong preame of X is:

strongPrey(X) = {s1, S}

, because all transitions caused by the execution of th@madtiin § (and $) lead to $. Notice that, since we are working
with action-labeled transitions, we can distinguish thenitions starting fromi;sand consider only those transitions which are
labeled by the action b. This is not possible in a Kripke dtiteebecause the transitions starting from a specific stateot be
distinguished.

In a-CTL, we can also define the weak and strong pre-images of af s&tes, according to each actiar A, as show in
Equations 14 and 15, respectively.

weakPré  (X) = {se S| T (s a) N X # 0}; (14)
strongPré ,(X) ={se S |0 # 7 (s a) c X} (15)

Taking the union of the states computed by strong and wealinpages, according to each actiane A, we obtain
weakPrecq(X) andstrongPre ., (X), respectively:

weakPrecy(X) = U weakPré_, (X); (16)

acA

strongPre(X) = U strongPré ,(X). a7

acA

Example 3.3. (a-CTL pre-image computation according to each action) LeeMS, L, T) be the ALT system with signature
(P, A) depicted in the Figure 1(b) and X {s,} be a subset of S. The weak pre-image of X according to eaamaxt A is:

weakPré2,(X) = {s1}; weakPré  (X) = {s1, ),  weakPré ,(X) = 0.
The strong pre-image of X according to each action A is:

strongPré?,(X) = 0;  strongPré ,(X) = {s1, &2);  strongPré ,(X) = 0.
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Following, we show theorems confirming that the set of stakgained by the regression is the same obtained by{G&L
pre-image computation.

Theorem 3.1.Ifa € A is an action and XC S is a set of states, then weakR¢¥) = weakPré , (X).

Proof. Part (I): Lets € weakRegt(X) be a state and suppose tisat weakPré , (X). Thus, according to Equation 8, it follows
that progrd(s) N X # 0; and, according to Equation 14, it follows tha{(s,a) N X = 0. However, this is a contradiction (if
7 (s,.a) N X = 0, then the stats has no successor in the séthat can be reached by a transition labeled by the aetiand,
consequently, the progressionsthrough the actiom cannot lead to a state insi®. Thus, it follows that € weakRegt(X) —
s € weakPré ,(X), i.e.,weakRegt(X) ¢ weakPré ,(X). Part (Il): Analogously, we can show that weakPré ,(X) — s e
weakRedH(X), i.e.,weakPré , (X) ¢ weakRegt(X). Therefore, we can conclude tha¢akRegt(X) = weakPré , (X). O

Theorem 3.2. weakPrgy(X) = weakRegfX).

Proof.
weakPreq(X) = U weakPré(X) (by Equation 16)
acA
= U weakRedl(X) (by Theorem 3.1)
= \?\izakReqo() (by Equation 10)

Theorem 3.3.Ifa € A is an action and XC S is a set of states, then strongR¥X) = strongPré , (X).

Proof. Part (1): Lets € strongReg#(X) be a state and suppose tisag strongPré ,(X). Thus, according to Equation 9, it
follows that® # progré(s) C X; and, according to Equation 15, it follows that: 7(s,a) ¢ X. However, this is a contradiction
(if 0 # 7(s a) ¢ X, then executing the actianin the states a states' ¢ X can be achieved, consequently, the progressian of
through the actiom cannot lead to only states insi#g. Thus, it follows thats € strongReg#(X) — s € strongPré ,(X), i.e.,
strongReg#(X) C strongPré ,(X). Part (Il): Analogously, we can show that strongPré ,(X) — s € strongReg#(X), i.e.,
strongPré , (X) ¢ strongRegf(X). Therefore, we can conclude thetongReg#(X) = strongPré , (X).

a
Theorem 3.4. strongPrecy(X) = strongRegtX).
Proof.
strongPre(X) = U strongPré ., (X) (by Equation 17)
acA
= U strongRegt(X) (by Theorem 3.3)
= Zet?ongReg(rX) (by Equation 11)
m]

The image and pre-image operations showed in this sectiwindficient, once it is impossible to represent all transitions fo
large state-spaces. As we will see in the next section, th@iusymbolic operations allows to apply model checking iacice.

4. Planning as Symbolic Model Checking

In the previous section, we describes planning as modekatgasing anexplicit representatiorf the planning domain
model (i.e., the Kripke structure or the ALT system), whiemde very infficient. We can use a symbolic representation of the
explicit representation dfl, i.e., a symbolic representationf(or 7°) and apply &icient BDD operations allowing the verifica-
tion of large state-space systems [3, 14, 28]. The symbadidehchecking requires the following steps: (i) codifyingtes and
transitions as propositional formulas; (ii) representimgse formulas as BDDs and; (iii) performinfiieient BDDs operations.

In this section, we show a symbolic representation of thek&istructure and the ALT system and how to symbolically catap
the CTL anda-CTL pre-image (weak and strong).
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4.1 Symbolic Representation for States and Transitions

In this section we show how to represent states as formuldskso the two transition functioriB (CTL model) and7”
(a-CTL model) represented as logical formulas.

Definition 4.1. (Propositional representation for states and set of sfatets M = (S, L, T) be a state transition system over a
set of proposition®. The propositional codification of a statessS , denoted by(s), is the formula

g9=/\ p (18)

peL(s)
and the propositional codification of a set of stateg % is the formula

&x) = \/ &9. (19)
seX

Example 4.1. (Symbolic representation of a set of states) The set ofss&te{s), s1, S} of the state transition system depicted
in Figure 6(a) can be represented by the formula:

ES)=(pA-QV(pPAQ)V (=pAQ).

In a Kripke structure (depicted in Figure 6), a transitioa Bubset o6 x S. In order to represent the states before and after a
transition, we generate an extra copy of the propositibasd prime all variables. For instance, in Figuré@) = p A -qis a
formula representing the current state in the transitiahé4s) = p’ A Q' is a formula representing the next state in the transition.

@ @

Figure 8: Representation of the states before and aftensitien in a Kripke structure.

Definition 4.2. (Propositional representation for transition and transit relation in a Kripke structure) Let M= (S,L, T) be
a Kripke structure over a set of propositioRs The propositional codification for a transitiqis, ') € T, denoted by(t) is a
formula

&(t) = £(9) A E(S) (20)
and the propositional codification for the transition ratat T is a formulag(T)
&1 =\/ &). (21)

teT

Example 4.2. (Symbolic representation for the transition relation in a@igke structure) The transition relation E {(S, 1),
(s1, 91), (S1, 0), (S1, S2), (2, &)} Of the Kripke structure depicted in Figure 6(a) can be repraed by the formula:

EM)=PA=gAP Ad)V(PAGQAP AT)V(PAGAP A=D)V(PAGA=D AG)V (=PAGA P A=)

However, when applying model checking to solve plannindfms, the Kripke structure must be enhanced by the actions
in the label of the transitions. Thus, in an ALT system, adition is a subset dd x A x S. In order to consider actions, planning
as symbolic model checking approaches [3] use anothefisgt propositional variables, callegalction variables Thus, each
actiona € A has a corresponding action variable A.

Definition 4.3. (Propositional representation for transition and transit relation in an ALT system) Let M (S,L, T) be an
ALT system with signatuk®, A). The propositional codification for a transitiqs, a, ') € T, denoted b¥(t) is a formula

&) =&(9) Aa A&(S) (22)
and the propositional codification for the transition ratat T is a formulag(T)
&T) = \/ 0. (23)

teT
Example 4.3. (Symbolic representation for the transition relation in&InT system) The transition relation= {(s, C, S1), (S1, C, S1),
(s1, @2, %0), (S1, &2, &), (51, b, %), (2, b, )} of the ALT system depicted in Figure 1(b) is:
EM)=(PA-gacAp Ad) V (PAGACAP AG) V (PAGAGADP AT)V
(PAGARA=P AG) V (PAGADA=P AD) V (PAGADA P A=CT)).
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Quantified Boolean Formulas In order to perform anf&cient computation of regression of pre-image and regrass#ids
necessary to use an extension of proposition logic whidwalithe quantification over the propositions values [Zlj4ntified
Boolean Formulas For instance, in pre-image computation, the most impmbgmbolic operations between sets of states and
transitions represented as propositional formulas arecban existential and universal abstraction [29]. Givenappsitional
formulag and a propositiom occurring ing, the existential abstraction is defined as:

Ap. o =¢[T/p] V ¢[L/p] (24)

whereyp[T/p] is obtained by replacing the propositiprby the valuert in the formulap andy[ L /p] is obtained by replacing
by L in the formulap. The universal abstraction is a formula:

Vp.o=¢[T/p]l A¢[L/p] (25)

The quantifications also can be defined for a set of varialblesB = {b;, by, - - - , by} be a subset of propositional variables
occurring ing. Thus,AB.[¢] = Ab;.(- - - Abn.¢) e VB.[¢] = Vby.(- - - YDbn.0).

Binary Decision Diagrams Binary Decision Diagrams (BDDs) are a canonical represemor boolean functions. A BDD

is similar to a decision tree: an acyclic graph where nomieal nodes are labelled with boolean variables and termioges
are labelled with 0 or 1. In order to allow a compact represtio, the following optimizations are performed: (i) revab

of duplicate terminals and non-terminals nodes and; (if)aeal of redundant tests. Furthermore, it is imposed anrorgle
on the variables occurring along any path in order to imprmtieiency. Applying these removals and fixing the ordering on
the variables, we obtain @educed and Ordering BDROBDD). For simplicity, when we mention a BDD actually wesar
mentioning a ROBDD. BDDs allow compact representation®dfmiean functions which only have exponential represemtst

in other systems, such as truth tables and conjunctive ridommas [25].

4.2 Symbolic CTL Pre-Image Computation

LetM = (S, L, T) be a Kripke structure over a set of propositiéng(X) (Definition 4.1) be the propositional representation of
a set of stateX C S and4(T) be the propositional representation of the transitioati@h, symbolic model checking tools [30,31]
computes the pre-image #fusing QBF as showed in the Definitions 4.4 and 4.5.

Definition 4.4. (CTL symbolic weak pre-image) Let M(S, L, T) be a Kripke structure over a set of propositidhsthe CTL
symbolic weak pre-image of a set of states % is given by [25]:

symbWeakPrg (X) = IP".(£(T) A (X)) (26)

Example 4.4. (CTL symbolic weak pre-image) Let M(S, L, T) be the Kripke structure depicted in Figure 6(a);=X{s;} € S
be a set of states, whose representation using primed Jagdb given by the formul&(X’) = —-p’ A ' and; &(T) be the
propositional representation of the transition relatidbxample 4.2). The CTL symbolic weak pre-image of X is given by

symbWeakPrg (X) AP.(&(T) A E(X)")  (by Equatiorn26)

= AP (PA-gAP AD) V (PAAAP AG) V (PAGAP A-T)
V(PAGA=P'AG) V (PAGADP A=) A (=P A D))

= APAJ.(aA-p A D)

= Ap((@A-pP'AL)V(QA-P AT)

= dp.(qA-p)

= ( (representing the set of states, s})

Definition 4.5. (CTL symbolic strong pre-image) Let M (S,L, T) be a Kripke structure over a set of propositiohsthe
symbolic strong pre-image of a set of states % is computed by [3]:

symbStrongPrg(X) = YP'.(£(T) — &(X')) A TP .&(T) (27)

Example 4.5. Let M = (S,L, T) be the Kripke structure depicted in Figure §X’) be the propositional representation of
X = {s;} € S using primed variables andg(T) the propositional representation of the transition retati(Example 4.2). The
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CTL symbolic strong pre-image of X is given by:

symbStrongPg(X) YP'.(&(T) — &(X)) A AP .E(T)  (by Equation 2Y

= VP, dL(PA-gA P Ad) V (PAGAP AD) V (PAGAP AT)
V(PAGA=P'AD) V (=pAGA =P A]) = (=P Ad)) AP, qLE(T)

= V{P.d(=pV-aqV-p)A(=pV-p V-d)A(PA-Q) V(PAQ) V(=pAQ)

= VpVg((=pV-qV -p)A(=pV-p V-ad)A(PA-Q V(PAQ) YV (=pAQ)

= (=pV-QA-pPA((PA-A)V(PAQG V(=PAQ))

= =pAq (representingthe state)s

In this section, we showed how image and pre-image opesfmmCTL are defined based on a symbolic representation
of the state-space. The symbolic representation usingriDacision Diagrams are the state-of-art in the model cimgck
area. However, when apply model checking for automatedhiotgn CTL is not adequate to represent the actions labetliag
transition relation. For this reason, in the next sectiorsh@w how the symbolic model checking operations can be drttto
represent the actions.

5. Symbolica-CTL Pre-Image Computation

When symbolic model checking is applied to solve planningbfgms, the Kripke structure have to be enhanced by the
actions that labels the transition relation. In the tradisil model checking approaches, each transition is a gtaite(successor
state); however, in non-deterministic planning as model chegk&ach transition is a triplesiate,action, successor statefFor
instance, in the Figure 1(b), there are two transitions betwthe states ands;: (s, a2, ) produced by action, and (&, b, $,)
caused by actiob. In a Kripke structure, these two transitions are the saaresition, once the actions labeling the transitions
are not represented.

In this section we extend the work in [4] to define the firs€TL symbolic pre-image computation for models with traiosis
labeled with actions, i.e., the firattCTL symbolic model checking. Therefore, we represent ttt®oas by using a set of
propositional variables calleakttion variableshased on the work a€imatti, et al. (2003]3]. Intuitively, an action variable is
true if and only if the corresponding action is being exedutBhus, a transition to a statdo a successor sta produced by
the actiora is represented as:

Ta=£&(9) Na Ag(s),

wherea is a proposition representing an actiare A. Each actiora € A has a corresponding action varialkles A.
The transition relatiom of the graph corresponding to a planning domain is represeas a disjunction of all; (as in the
Definition 4.2). The Definition 5.1 shows how to compute wead-inage when the transitions are labeled with actions and
the Definition 5.2 shows how to compute strong pre-image.oth lkdefinitions, it is necessary to include the eliminatibthe
actions variables{#).

Definition 5.1. (a-CTL symbolic weak pre-image) Let M (S,L,7) be an ALT system with signaturg, ); £(X’) be the
propositional representation using primed variables of 6 ; £(77) be the propositional representation of the transition tela
7 and; A be the set of propositional actions variables set. The syimbeak pre-image of X is:

symbWeakPrg(X) = AA.IP".(£(T) A £(X)). (28)

Example 5.1. (e-CTL symbolic weak pre-image) Let M(S, L, 7") be the ALT system depicted in Figure 1@0)X’) = -p' A Q'
be the primed representation of the set=X{s;} € S and; &(7") be the symbolic representation of the transition relation
(Example 4.3). The symbolic weak pre-image of X is given by:

symbWeakPrgy (X) AATP.((T) A E(X")) (Equation28)

= JAAAP.(pA-qACAP AQ)V(PAGACAP A]) V (PAGAEAP A=)V
(PAgqAazA=p AQ) V (PAGADA=P AQ) V (PAGADA =P AQ)) A (=P AD))

= Fa2dbdcAp' Ad.(prgra2A-p Aq)V(QAbA =P A())

= (pAO)VQ

g (representing the set of states s,}).

Definition 5.2. (a-CTL symbolic strong pre-image) Let M (S,L,7) be an ALT system with signatuf®, A); £(X’) be the
propositional representation using primed variables of)S ; £(7°) be the propositional representation of the transition tela
7 and; A be the the propositional actions variables set. The symlstiong pre-image of X is:
symbStrongPrg(X) = AA.(YP'.(&(T) — &(X')) A TP E4(T)). (29)
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Example 5.2. Let M = (S,L,7") be the ALT system depicted in Figure 1(X’) be the primed representation of the set of
states X= {;} € S; and&(7") be the symbolic representation of the transition relati@xgmple 4.3). The symbolic strong
pre-image of X is given by:

symbStrongPrgy(X) AA(YP(E(T) — (X)) A TP E(T))

= AANMP.((pA-gACAP AQ)V(PAGQACAP AQ)V(PAQARZAP AT)V(PAGA A2
AP AQ)V(PAAADA=P AG) V (GPAGADA =P AD)) = (=P Ad)) A TP ET)

= JA(VYP'.((-pV-qV-a2Vv-p VA)A(=pV-cV-p vV-gd) A((pPAgAa2) Vv (gAb) Vv (pAC)))

= AA((=pV -C)A(=pV-qV-a2)A((pArgAra2)Vv(gAab) Vv (pAc)))

= AA.((gA-a2AbA-=C)V (=pAQgAD))

= qV(-pAQ)

g (representing the set of statss s,}).

In this section we showed that symbolic image and pre-imageations for-CTL are more adequate for planning as model
checking, since they consider the actions behind the statsitions. In the next section, we show how to symboloadimpute
the set of predecessors and successors states directiyttimarction specification. In this case, given a planning lerab
described in terms of the actions, it is not necessary tekatanthe actions into the transition relation to apply maetiecking
algorithms.

6. Symbolic Regression of Actions

Representing symbolically states and actions, we can ctarpa predecessor states of a set of states without regiresen
explicitly the transitions of the planning domain (i.e.ettuple gtate, action, successor stgtas it is done in the traditional
symbolic model checking approaches. We call this opera&gnsymbolic regression of actionsNotice that the symbolic
regression reasons over the implicit model of the plannomain (as those presented in Figure 3) while the symbolidgrpege
reasons over the explicit model of the planning domain (asdtdepicted in Figure 1). In the Section 6.1 we present dqurev
work on symbolic regression for deterministic actions an&eéction 6.2 we show the main contribution of this paperctvis
thesymbolic regression for non-deterministic actions

6.1 Symbolic Regression for Deterministic Actions
First, we will show how to represent STRIPS deterministiticars as propositional formulas and, after that, how to qrenf

symbolic regression computation.

Definition 6.1. (Propositional representation for deterministic actipfifie propositional representation for a STRIPS determin-
istic actiona = (preconda); effectga)) (Definition 6.1) is a pair of formulaa = (¢(preconda)); £(effectga))) such that:

o £(preconda)) is a literal or a conjunction of literals representing thegmonditions ofy, i.e.,

&(preconda)) = A p and (30)

p € preconde)
o £(effectda)) is a literal or a conjunction of literals representing thgexts ofe, i.e.,

£(effectda)) = A d A A . (31)

d € add(a) r € del(@)
Example 6.1. The deterministic actionslab and c described in Figure 3(a) can be represented as:
al=(pAdg;pA-Q);b=<(g-p)yc=(p;q.
Given a set of stateX represented in a symbolic way, the propositional plafr&tPLan [32] computes the set of predecessor
states ofX using directly the deterministic action specification. Vel this operation asymbolic regression for deterministic
actions In order to perform the regression operation, it is defiredefach actiora € A the setchange¢e) as the set of

propositions occurring in theffecte of the actiora. For instancechange&e,) = {p. g}, changes,) = {p} and changesf) = {q}
are, respectively, the change set for the actens andc (Figure 3(a)).

110



Learning and Nonlinear Models (L&NLM) - Journal of the Brazi lian Computational Intelligence Society, Vol. 12, Iss. 2, p. 98-114, 2014
© Brazilian Computational Intelligence Society (SBIC)

Definition 6.2. (Symbolic regression of a set of states by a deterministiocLeta be a deterministic action represented by a

pair of proposition formulas such that= (£(preconda)); £(effectga))) and let£(X) be the propositional representation of a set
of states X (Equation 23), the symbolic regression of X byl#terministic actior is [32]:

symRegt(¢(X)) = £(preconda)) A dchangege).(£(€) A £(X)). (32)

Example 6.2. Given the set of actions = {al, b, ¢} (Figure 3(a)), symRedH(X) , symRedlX) and symRed(X) for £(X) =
-p A qwhere X= {s,} is computed as follows:

symRegt'(£(X))

&(preconday)) A Ichangetas).(£(e(a1)) A £(X))  (by Equation32)
(PAQ)ATp.gh.((PA-Q) A(-pAQ))

(pAQ)AT{p,ah(L)

4,

symRegh(&(X))

&(precondb)) A Achangef).(£(e(b)) A £(X))  (by Equation32)
= qA3Ip.(=pA(=pAq))

= gqAdp(-pAQ)

= Q

symRedi(£(X)) = &(precondc)) A dchangeke).(£(e(c)) A (X))  (by Equation3?2)
= pAda(@A(=pAQ)
= pAda(-pAq)
= PpA-p

1.

Symbolic regression can be also computed for a set of actidaking the disjunction of the symbolic regression accagdin
to each actioa € A as we can see in the Definition 6.3.

Definition 6.3. (Symbolic regression of a set of states by a set of actiorts) be a set of actions and |&(X) be a propositional
representation of a set of states X, the symbolic regregsidhis given by:

symbReg(X)) = \/ symbRegi(£(X)). (33)

acA

Notice that, symbolic regression reasons about actiongi@iinrepresentation of the planning domain) instead efttiansi-
tion relation (explicit representation) and, furthermatees not need an extra set of primed propositions neither@a set of
propositional variables as in the symbolic pre-image.

6.2 Symbolic Regression for Non-deterministic Actions

In this paper, we propose how to perform symbolic regresaioen the actions are non-deterministic. The operatiyns-
bolic weak regressioandsymbolic strong regressioare able to compute the set of predecessor states usingyditexnon-
deterministic actions specification instead of the tramsitelation. First, we show how to represent non-deterstimactions as

propositional formulas (Definition 6.4) and, after thatwhim compute symbolic weak regression (Definition 6.7) andlsylic
strong regression (Definition 6.8).

Definition 6.4. (Propositional representation for non-deterministiciaots) The propositional representation for a non-deteiistio
actiona = (preconda); effectga)) is a paira = (£(preconda); £(effectga))) such that:

e £(preconda)) is a literal or a conjunction of literals representing thegmonditions ofy, i.e.,

&(preconda)) = /\ p and, (34)

p € preconde)
o £(effectda)) is a disjunction of all non-deterministigfects ofq, i.e.,

( A d A A ). (35)
e € effectga) d € adde.e) r € dela.e)
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Example 6.3. The non-deterministic actior?an the Figure 3(b) can be represented as:

a2=(pAg,(pA-Q) Vv (=pAQ))

Inthe symbolic non-deterministic regression, eatbate of the actionr has a corresponding change set givenlgngeér, ).
The change set of the actianis given by taking the union of the eachangée, ), i.e.:

changeéy) = U changeé&, e). (36)
§ € effectsa)

For instance, the change set of the act@@n(Figure 3(b)) that has two non-deterministifeetse; ande, is given by:
changege;) U changeée;) = {p,q} U {p,a} = {p.q}.

The symbolic weak regression of a set of stafdsy a non-deterministic actiom (Definition 6.5) computes the set of states
from which some ffect of @ reaches a state i while the symbolic strong regression Xf(Definition 6.6) computes the set of
states from which all the non-deterministitexts ofa reach a state iX.

Definition 6.5. (Weak symbolic regression of a set of states by a non-detistiniaction) Leta be a non-deterministic action
represented by a pair of proposition formulégpreconda)); £(effectga))) (Definition 6.1) and let(X) be the propositional
representation of a set of states X (Equation 23), the syimbyalak regression of X is given by:

symbWeakReg£(X)) = £&(preconda)) A Achangeéy).(é(effectga)) A £(X)). (37)

We can analyse this equation from right to left. First, thajooctioné(effectga)) A £(X) selects the subset of statesXn
reached by theftects ofa. If none dfect of « is relevant toX, thené(effectga)) A £(X) = L. However, if some fect of
a is relevantto X, then&(effectga)) A £(X) #L (notice that a similar analysis is done in the Equation 7 wihénverified if
e € effectga) such thatis relevant to the statg). After this conjunction, the existential quantificatiosing the set changes(
eliminates one by one thdfects variables in the relevant states. A similar elimimaadso is done in the Equation 7, but in
this case the positiveffiects of the action are eliminated by thefdience set operation. Finally, the precondition is conjoin
obtaining the formula representing the set of predecesatass(as can also be verified in the Equation 7 by taking tianwof
the preconditions).

Example 6.4. (Symbolic weak regression of a set of states) Given the ssatas X= {s,} (Figure 1(b)) represented by the
propositional formul&(X) = =pAq and the non-deterministic actio@a (preconda2); effects(a2) = ((pAQ); (PAQ)V(=PAQ)),
then symbWeakRé&§(X) is:

sWeakRedf(£(X))

&(preconda?)) A dchange&?).(é(effectga?)) A £(X)))  (by Equation37)
= (PA)AQERG((PA= V(=pAQ)A(=PAT))

= (pAQ)A(Epdg(-pAr Q)

= (PAYAT

= (pArQ).

Definition 6.6. (Symbolic strong regression of a set of states by an actiebyLbe a non-deterministic action represented
by a pair of proposition formulagé(preconda)); £(effectqa))) (Definition 6.1) and let X be a set of states represented by a
propositional formulaé(X). The symbolic strong regression of X is:

symbStrongRei£(X)) = £(preconda)) A Ychanget).(effectfa) — £(X)).

Example 6.5. (Symbolic strong regression of a set of states) Given thefsshtes X= {s,} (Figure 1(b)) represented by the
propositional formul&(X) = =pAq and the non-deterministic actio@a (preconda2); effects(a2) = ((pAQ); (PAQ)V(=PAQ)),
then symbolic strong regression of X according to the actidis:
strongReg®(£(X)) &(preconda2)) A Ychange&?2).(é(effectga?)) A £(X)))  (by Equation37)

= (PAQA(YPY(((PA—-Q) V (=pAQ)) = (=PAQ)

= (PAQ)A(YP.YG.(-pV Q)

= (PAA)AYP.(=P)

= (PAQA(TA L)

= (PAgA(L)

= 1.
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Symbolic weak (and strong) regression can be also compateal $et of actiong\ taking the disjunction of the symbolic
weak (and strong) regression according to each aetior as we can see in the Definition 6.7 (and in Definition 6.8).

Definition 6.7. (Symbolic weak regression of a set of states by a set of a&jtlaat A be a set of actions and |&(X) be a
propositional representation of a set of states X, the syimb@ak regression of X is given by:

symbWeakReg(X)) = \/ symbWeakRe((X)). (38)

acA

Definition 6.8. (Symbolic strong regression of a set of states by a set afreatiLetA be a set of actions and let X be a set of
states, represented by a propositional formula, the syinktiong regression of X is given by:

symbStrongReg#(X)) = \/ symbStrongRed(X)). (39)

acA

The symbolic progression and regression operations pexbém this section are able to compute, respectively, thefse
predecessor and successor states from the implicit repetige of the planning domain. We claim that these openatare more
appropriate when applying model checking algorithms fanping, once it is not necessary translate the actionsfizin
into the transition relation. However, both formalismsé#ve same complexity since they are based on QBF inference.
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7. Conclusion

Symbolic model checking is a largely applied technique twesmon-deterministic planning problems. In this apprqach
called planning as symbolic model checking, the fundani@mteration is the computation of the pre-image of a set désta
which is performed by using the symbolic representatiomefentire transition relation representing the planningalio graph.
However, translating the set of actions into the entiredition relation is a very expensive operation and, in sonsegaeven
using the symbolic representation it is impossible to comwith a plan for huge domains. In order to overcome this i,
we propose two new operations called: symbolic weak regmesnd symbolic strong regression. The proposed opemation
compute the predecessors of a set of states using direethctions specifications (pre-conditions affées) and, thus, it is not
necessary to construct the entire transition relation.

As future work, we intend to implement the non-determicistigression operations using BDDs and compare their perfor
mance against to symbolic pre-image operations, usingghedeterministic planning domains from the Internatidplanning
Competition.
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