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Abstract – Two main characteristics of multi-label dataset are cardinality and density, related to the number of labels
of (each instance of) a multi-label dataset. The relation between these characteristics and multi-label learning perfor-
mance has been observed with different datasets. However, the difference in domain dataset attributes also interfere
on multi-label learning performance. In this work, we used a real dataset named The Million Song Dataset (MSD),
available on the internet. A particularly useful characteristic of this dataset is the existence of many labels associated
to their instances (songs). We conduct the experiments on datasets processed from MSD, and the results show that
both density and cardinality characteristics influence the performance of the multi-label learning methods used in this
work. To extend our analysis, we also analyze the results obtained in natural datasets, i.e, datasets available on the in-
ternet pre-processed for empirical tests in multi-label learning. Our results show that density characteristic influences
more to multi-label learning than cardinality characteristic.

Keywords – Multi-label Learning, Cardinality and Density Measures.

1 INTRODUCTION

Some real applications are related to the task of classification, such as diagnosis, fault detection, and so on. These
problems are commonly treated by machine learning supervised algorithms, which induces classifiers, or predictors,
such as neural networks, SVM and decision trees, to cite just a few. These classifiers usually identify just one class
of a new instance, or case, from a set of possible labels. However, there are problems related to the task of predicting
more than one class for each case. For example, we can mention images and music labeling, failure diagnosis,
and others. These kind of problems are tackled by a special type of machine learning, called multi-label learning
algorithms. Many multi-label learning methods have been proposed in literature, such as [1–5]. A survey describing
some multi-label learning methods can be found in [6, 7]. Two main characteristics analyzed in a multi-label dataset
are cardinality and density, both related to the number of labels of each instance of a dataset and also of the entire
dataset. Cardinality of a multi-label dataset is the mean of the number of labels of the instances that belong to the
dataset, and density of a multi-label dataset is the datasets’s cardinality divided by the number of dataset’s labels.

Many large datasets have been collected on the internet. When these datasets present a multi-label problem to
be tackled, it is common that the number of labels is very large, with (very) low density values, and, in some cases,
large cardinality values. Some studies treat this kind of problems [8,9]. However, is not yet clear how cardinality and
density characteristics influence multi-label learning performance. Some researches in literature indicate that these
dataset characteristics — cardinality and density — may cause different behaviors in multi-label learning methods.
In [7], the authors affirm that two datasets with approximately the same cardinality, but with great difference in density,
may not exhibit the same properties, which causes different behaviors in multi-label learning methods. In [10], the
authors proposed a new method called BRkNN, an adaptation of the kNN algorithm for multi-label classification
based on Binary Relevance method (BR), and compared this method with LPkNN, another adaptation method of the
kNN algorithm based on Label Powerset multi-label method (LP). The authors observed the influence between the
LPkNN method and the influence of low density values, using three different datasets, with different domain features,
but they could not safely argue that high density lead to improve performance of the LPkNN. In [5] the influence of
these two characteristics was studied on the performance of two multi-label learners also used in this work — BR
and LP, also used in our benchmark. In this work, correlations were observed between cardinality and density and
the results obtained with some datasets. However, the domains of that datasets are quite different, what leaded us to
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question how the domain features influenced the analysis. All of these related studies analyze the relationship between
cardinality (and density) and multi-label learning algorithms results using different datasets, with different cardinality
and density values, and different domain dataset attributes. In this way, it is unknown how much the domain difference
interferes in cardinality and density analysis. One issue that turns difficult this study is the unavailability of a dataset
with the same features but different cardinality and density values.

In [11] the Million Song Dataset (MSD) is presented, a freely-available collection of audio features and metadata
for a million contemporary popular music tracks. The dataset does not include any kind of audio music, only the
derived features from them. This collection is available as a relational database. This dataset is labeled by tags that
can be seen as musical genres. Each song has more than one of these tags associated to. The main advantage of this
dataset on other available multi-label datasets is the high number of labels, which allows to vary the number of labels
without loosing the multi-label problems characteristic. One problem with this dataset is the transformation process
to allow data mining on it using the available data mining and machine learning tools.

The aim of this work is to present an analysis of the influence of cardinality and density measures to multi-label
learning. To allow this study, we pre-processed MSD. In this work, we present this dataset and its data pre-processing
step. To induce the multi-label classifiers, we used the Mulan library1 [12], based on Weka [13]. To induce the
base classifiers, we used Naı̈ve Bayes and J48 algorithms, because their low time consumption for induction of the
classifiers and its lack of requirement for parameters adjustment. We present the results obtained for MSD-based
datasets. We also bring to this work the results obtained for the six datasets used in [5] to enrich our analysis, and
we also enlarge that results to evaluate similarly to the evaluation using MSD. We analyze the relation between (i)
cardinality and (ii) density and the results obtained by each method.

This work is organized as follows: Section 2 describes Multi-Label Machine Learning concepts and notations.
Section 3 describes the Million Song Dataset, as well as our pre-process step of this dataset. Section 4 describes the
conducted experiments and results we obtained. Section 5 concludes this work.

2 MULTI-LABEL LEARNING

In classical supervised classification problems, the examples are associated with a single label. The input for
single-label supervised learning algorithms is a single-labeled dataset Ss, with N instances Ti, i = 1, ..., N , chosen
from a domain X with fixed, arbitrary and unknown distribution D, of the form (xi, yi), with i = 1, ..., N , for some
unknown function f(x) = y. xi are vectors typically of the form (xi1, ..., xiM ), with discrete or continuous values,
where xij refers to the value of feature j, named Xj , of the instance Ti. In classification problems, the yi is a single
label value, and the possible values belong to a discrete set of labels L, i.e y ∈ L = {l1, ..., l|L|}. These values refer
to the values of feature Y , frequently called class feature. For |L| = 2, we have a binary problem; for |L| > 2, we
have a multiclass problem. Descriptions of many algorithms for supervised learning of single label classifiers can be
found in [13, 14].

On the other hand, the multi-dimensional classification problem consists of finding a function h that assigns to each
instance x = (xi1, ..., xiM ) a vector of |L| class values c = (c1, ..., c|L|), i.e, h : DX1×...×DXM

→ DC1×...×DC|L|,
and so (x1, ..., xM ) 7→ (c1, ..., c|L|). We assume that Cl is a discrete variable, for all l = 1, ..., |L|, with DCl

denoting
its sample space, and I = DC1 × ... × DC|L|, the space of joint configurations of the class variables. Analogously,
DXj is the sample space of the discrete feature variable Xj , for all j = 1, ...,m. Multi-dimensional classification is a
more difficult problem than the single-class case. The main problem is that there is a large number of possible class
label combinations, |I|, and a corresponding sparseness of available data.

A particular case of multi-dimensional classification problem is the class multi-label classification problems, where
DCl

= {0, 1}. Multi-label problems appear in different domains, such as image, text, music, proteins and genome
classification [1–3], and failure diagnosis [4]. In multi-label problems, the input to the multi-label learning algorithms
is a dataset S, with N instances Ti, i = 1, ..., N , chosen from a domain X with fixed, arbitrary and unknown distribu-
tion D, of the form (xi, Yi), with i = 1, ..., N , for some unknown function f(x) = Y . In this work, we call domain
attributes datasets the attributes that compose X . L is the set of possible labels of the domain D, and Yi ⊆ L, i.e.,
Yi is the set of labels of the ith instance. The output of multi-label learning algorithms is a classifier h that labels an
instance xi with a set Zi = h(xi), i.e., Zi is the set of labels predicted by h for xi2.

1Available at http://mulan.sourceforge.net.
2In this work, we use Ti to refer to an instance with associated label yi or Yi, and we use xi when we are not considering the associate

label, or xi does not have an associated label yet.
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The number of labels |L| is frequently seen as a parameter that influences the performance of different multi-label

methods. There are two measures for evaluating the characteristics of a dataset, objects of this study: cardinality
Card and density Dens [7]. The cardinality of S is the mean of the number of labels of the instances that belong to
S, defined by Eq. 1, and the density of S is the mean of the number of labels of the instances that belong to S divided
by |L|, defined by Eq. 2.

Card =
1

N

N∑
i=1

|Yi| (1)

Dens =
1

N

N∑
i=1

|Yi|
|L|

(2)

2.1 EVALUATION MEASURES

To evaluate multi-label learning algorithms, there are three groups of measures to evaluate induced multi-label
classifiers: based on instances, based on labels and based on ranking [7, 15]. In this work, we use the first two groups
of measure, because multi-label ranking is not the aim of this work. In what follows, we describe each of the used
measures.

Measures based on instances: Hamming Loss (Ham) evaluates how many times an example-label pair is mis-
classified, i.e., how many times a label belonging to the example is not predicted or a label not belonging to the
example is predicted. Ham(h, S) is defined by Equation 3, where ∆ stands for the symmetric difference between
two datasets, N is the number of examples and |L| is the number of labels in the dataset S. The smaller the value
of Ham(h, S), the better the performance of h , and the performance is perfect when Ham(h, S) = 0. Subset
Accuracy (SAcc), or classification accuracy, is a very strict evaluation measure as it requires the predicted set of
labels to be an exact match of the true set of labels. SAcc(h, S) is defined by Equation 4, where I(true) = 1 and
I(false) = 0. Accuracy (Acc) for a single example xi is defined by the Jaccard similarity coefficients between the
label sets h(xi) = Zi and Yi. Accuracy is micro-averaged across all examples. Acc(h, S) is defined by Equation 5.
F is the harmonic mean between precision and recall. F (h, S) is defined by Equation 6.

Ham(h, S) =
1

N

N∑
i=1

|Yi∆Zi|
|L|

(3)

SAcc(h, S) =
1

N

N∑
i=1

I(Zi = Yi) (4)

Acc(h, S) =
1

N

N∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(5)

F (h, S) =
1

N

N∑
i=1

2|Yi ∩ Zi|
|Zi|+ |Yi|

(6)

Measures based on labels: Measures based on labels are calculated based on false positives fp, false negatives fn,
true positives tp and true negatives tn, i.e., measures of the type B(tp, tn, fp, fn) can be used in this case. Given that
tpl , tnl

, fpl and fnl
are true positives, true negatives, false positives and false negatives for each label l ∈ L, the micro

version of B measures is denoted by B− and given by Eq. 7, whereas the macro version of B measures is denoted
by B− and given by Eq. 8. In this work, we use F1 and AUC as B measure. F1 is the harmonic mean between
precision and recall. F1(tp, tn, fp, fn) is given by Eq. 9. In [16] there is an explanation about how to calculate Area
Under ROC Curves (AUC).

B−(h, S) =
1

|L|

|L|∑
i=1

B(tpi , tni , fpi , fni) (7)

B−(h, S) =
1

|L|
B(

|L|∑
i=1

tpi ,

|L|∑
i=1

tni ,

|L|∑
i=1

fpi ,

|L|∑
i=1

fni) (8)
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F1(tp, tn, fp, fn) =
2× fp

2× tp + fn + fp
(9)

2.2 DESCRIPTION OF MULTI-LABEL LEARNING METHODS USED IN THIS WORK

Multi-label machine learning methods can be divided into two categories [7]: problem transformation and algo-
rithm adaptation. In the first category, the multi-label problem is transformed to (many) multiclass (or binary) machine
learning problems, and each sub-problem is given to a classic (binary or multiclass) supervised machine algorithm.
These (binary or multiclass) classifiers are called base classifiers. In the second category, the machine learning algo-
rithm is adapted to deal with multi-label problems. Several multi-label learning methods were proposed in literature
in each category, and many of them are describe in [6, 7].

In this work, we use five methods, commonly used in multi-label learning, named BR, LP, RAKEL, CC and
HOMER. BR was chosen due to its low complexity when compared to other multi-label learners [17]. LP method
was chosen because it was the first method to deal with correlations among labels, although being challenged by
domains with large number of labels. The choice of RAKEL is due to being an extension of LP, attempting to
the computational complexity problem of LP [18]. CC and HOMER were appointed as two of the best multi-label
learning algorithms in [15].

2.2.1 Binary Relevance — BR

One main approach to solve a multi-label learning problem is decomposing the original problem into various binary
problems. The most popular method based on this approach is called Binary Relevance — BR —, used in [2]. In BR
method, firstly the training dataset Sm is transformed into |L| datasets Sli , where each dataset corresponds to a label
li, i = 1, ..., |L|. Then, a classifier for each label li, named hli , is constructed using a supervised learning algorithm
for binary problems. A new instance x is classified by the labels which hli = 1 (or hli = true).

2.2.2 Label Powerset — LP

The Label Powerset — LP — method, proposed in [19], transforms the original multi-label problem into a multiclass
problem. In LP, each set of labels Yi in Sm is considered a class. So, each xi is classified by the new label y′i,
where y′i is the concatenation of all labels in Yi. For instance, considering three labels l1, l2 and l3 and a multi-label
training dataset Sm, the original instance T1 ∈ Sm, labeled with Y1 = {l1, l2}, after the transformation is labeled
with y′1 = l1,2; the instance T2 ∈ Sm labeled with Y2 = {l1, l3}, after the transformation is labeled with y′2 = l1,3;
the instance T3 ∈ Sm labeled with Y3 = {l1}, after the transformation is (still) labeled with y′3 = l1; and so on. After
this process, a multiclass classifier h∗ is induced using the generated dataset.

Given a new instance x to be labeled, the classifier h∗ labels x with a set of labels that have probability higher
than a threshold t. For instance, let us consider that h∗ outputs the following probability distribution for x: l1,2 = 0.7,
l2,3 = 0.2 and l1 = 0.1. So, the probability of x being labeled by l1 = 0.7 × 1 + 0.2 × 0 + 0.1 × 1 = 0.8; being
labeled by l2 = 0.7 × 1 + 0.2 × 1 + 0.1 × 0 = 0.9; and being labeled by l3 = 0.7 × 0 + 0.2 × 1 + 0.1 × 0 = 0.2.
Defining t = 0.5, x is labeled with Z = {l1, l2}.

2.2.3 RAndom K-labELsets — RAKEL

The RAndom K-labELsets (RAKEL) method constructs an ensemble of multi-label classifiers h∗ [18]. Firstly,
RAKEL method constructs m random subsets of labels, called Ri, each of them containing K labels from L. Then,
each Ri, i = 1, ...,m is used to induce a multi-label model hi using LP multi-label learner method.

Given a new instance x to be classified, each hi provides binary predictions hi(x, lj) for each label lj ∈ Ri.
Subsequently, RAKEL calculates the mean of these predictions for each label lj ∈ L and outputs a final positive
decision if it is greater than a 0.5 threshold. For instance, considering L = {l1, l2, l3, l4, l5, l6} (and so |L| = 6),
m = 7 and k = 3, Figure 1 shows how an instance x is classified given a multi-label model h∗ constructed using
RAKEL method. It should be observed that the default value of parameter m is usually m = 2× |L|.
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Predictions

Model Label Set (Ri) l1 l2 l3 l4 l5 l6
h1 R1 = {l1, l2, l6} 1 0 - - - 1
h2 R2 = {l2, l3, l4} - 1 1 0 - -
h3 R3 = {l3, l5, l6} - - 0 - 0 1
h4 R4 = {l2, l4, l5} - 0 - 0 0 -
h5 R5 = {l1, l4, l5} 1 - - 0 1 -
h6 R6 = {l1, l2, l3} 1 0 1 - - -
h7 R7 = {l1, l4, l6} 0 - - 1 - 0

Average Votes 3/4 1/4 2/3 1/4 1/3 2/3
Final Prediction (Binary values) 1 0 1 0 0 1
Final Prediction (Set of Labels) Z = {l1, l3, l6}

Figure 1: Example of classification of an instance x by a multi-label classifier h∗ constructed by RAKEL method [18].

2.2.4 Hierarchy Of Multilabel classifiERs — HOMER

Problems with large number of labels can be found in several domains. For instance, the version of the Million Song
Dataset (MSD) we use in this work contains 726 genre music labels. The high dimensionality of the label space may
challenge a multi-label learning algorithm in many ways. Firstly, the number of training examples annotated with
each particular label will be significantly less than the total number of examples. This is similar to the class imbalance
problem in single-label data [20]. Secondly, the computational cost of training a multi-label model may be strongly
affected by the number of labels. To exemplify this problem, considering the BR method, the algorithm complexity is
linear with respect to |L|, and considering LP method, its complexity is even worse. Thirdly, although the complexity
of using a multi-label model for prediction is linear with respect to |L| in the best case, this may still be inefficient for
applications requiring fast time response. Finally, methods that need to maintain a large number of models in memory
may fail to scale up to such domains [7].

HOMER constructs a Hierarchy Of Multilabel classifiERs [21]. The method follows the divide-and-conquer
paradigm of algorithm design, transforming a large set os labels L into a tree-shaped hierarchy. The root Lroot of
this tree contains all labels li ∈ L, i.e., Lroot = L. Each leaf of this tree contains one, and only one, label from L,
and all of the leaves are disjunct, i.e., Lleaf i = {li}, i = 1, ..., |L|. Each internal node Lnode contains the union of the
label sets of its children, i.e., Lnode = ∪Lchildren, children ∈ children(node).

In [21] the authors also present a definition of meta-label: The meta-label of a node Lnode, µnode, is a disjunction of
the labels contained in that node, µnode ≡ ∨lj , lj ∈ Lnode. A training instance xi is annotated with a meta-label µnode
if Yi has at least one label of µnode, i.e., µnode ∩ Yi 6= ∅. For each meta-label, a multi-label classifier hnode. The task
of hnode is the prediction of one or more of the meta-labels of its children. Given a new instance x to be classified,
this instance is firstly presented to hnode, which is a multi-label classifier. Remembering that hnode classifies an
instance into a set of labels Zi ∈ L, the instance x will be conducted to their children and internal nodes Lnode which
meta-labels µnode ∩ Zi 6= ∅. This process is followed until the instance is classified by the leaves. Considering, for
instance, the sample hierarchy shown in Figure 2.

2.2.5 Classifier Chains — CC

The transformation approach based on decomposing the original problem into various binary problems is used by
many other proposed methods, and Classifier Chains (CC) is when of them, proposed by Read [22]. The method
BR assumes label independence in the multi-label problem, and is commonly mentioned as the main problem of the
method. CC takes advantage of the computational efficiency of BR, and also includes the possibility to use dependency
between labels for classification. To achieve this purpose, CC also constructs |L| binary classifiers, as in BR. On the
other hand, to turn possible using dependency between labels, CC considers an order of the elements of the label set
L, for instance (l1, l2, L3, ..., l|L|). Then, the base classifiers are linked along a chain, which forms the multi-label
classifier h∗. The chain is formed as follows: The first classifier h1 is constructed using only the domain attributes
Xi ∈ X . Each of the other classifiers hj , j = 2, ..., |L| deals with the binary relevance problem associated with all
labels l1, ..., lj−1 ∈ L, and so the feature space of each link in the chain is extended with the 0/1 label associations
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Lroot = {l1, l2, l3, l4, l5, l6, l7, l8} hRoot

µ1 = l1 ∨ l2

Lnode1 = {l1, l2}

hnode1

µ2 = l3 ∨ l4 ∨ l5

Lnode2 = {l3, l4, l5}

hnode2

µ3 = l6 ∨ l7 ∨ l8

Lnode3 = {l6, l7, l8}

hnode3

l1 l2 l3 l4 l5 l6 l7 l8

Figure 2: A sample hierarchy constructed by HOMER. Grey filled shapes indicate a possible path of an instance x
given to the multi-label classifier h∗ constructed by HOMER.

of all previous links. In other words, the label l1 is added to the attribute domain X to induce h2; labels l1 and l2 are
added to X to induce h3; and so on.

To classify a new instance x, h∗ is used respecting the order of the formed chain (h1, ...,h|L|). Each classifier hj is
responsible for learning and predicting the binary association of label lj given the feature space, augmented by all prior
binary relevance predictions in the chain (l1, ..., lj−1). The classification process begins at h1 and propagates along
the chain: h1 determines Pr(l1|x), and every following classifier h2, ...,h|L| predicts Pr(lj |x, l1, ..., lj−1). In other
words, h1 firstly classifies x; then x′ = (x1, ..., xM ,h1(x)) is classified by h2; x′′ = (x1, ..., xM ,h1(x),h2(x

′)) is
classified by h3; and so on.

3 DATASETS DESCRIPTION

In this work, we use the Million Song Dataset. Also, we use and expand the results obtained in [5], which consider
other multi-label dataset found on the internet. We describe all these datasets in what follows.

3.1 The MSD Dataset

The MSD — The Million Song Dataset3 [11] — is a freely-available collection of audio features and metadata for
a million contemporary popular music tracks. The core of the dataset is composed of features and metadata extracted
from one million songs, provided by The Echo Nest4. The dataset does not include any kind of audio music, only
the derived features from them. Each data music is stored using HDF5 format, which is a data model, library, and
file format for storing and managing data. These HDF5 files were constructed using an API provided by The Echo
Nest. Each file consists of features extracted from a music, such as version, artist and two types of genres collection
associated to each music: (i) Terms, which are tags provided by The Echo Nest, and they can come from a number
of places, but mostly from blogs; and (ii) Mbtags, which are tags provided from MusicBrainz specifically applied by
humans to a particular artist. Particularly, Mbtags are cleaner than terms for genre recognition.

A HDF5 file has 55 features, and the most important features to use for representing this domain are segment-
pitches and segments-timbre. Pitch is the sound property that classifies it as low or high in pitch, or, in other word,
bass or sharp sound, respectively. This feature is related to frequency of the signal sound: Higher frequencies, or high
pitches, correspond to lower wave length, or sharp sound; Lower frequencies, or low pitches, correspond to higher
wave length, or bass sound. Timbre is the sound property dependent from the complexity of the signal sound. Perceiv-
ing timbre is affected either by frequencies domain aspects, i.e. the way the signal can be decomposed in elementary
periodical signals, or time domain aspects, i.e. the way the signal amplitude varies with time. Timbre is usually
defined as the color of the sound, because by timbre we can identify a sound produced by different fonts, such as two
musical instruments playing the same accord or two people singing the same melody [23]. Other important features
are artist name (the singer of the music), title of the music, location (where the music was recorded), year when

3http://labrosa.ee.columbia.edu/millionsong/
4http://echonest.com/.
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the music was recorded, time duration, segments-start, bars start, similar artists, terms and mbtags — MusicBrainz
tags, provided by MusicBrainz5. The last five listed features, jointly to segments-timbres and segments-pitches, are
multi-valued. segments-start is a list of V values, where V is variable among songs. Each value of segments-start
corresponds to the start, in seconds, of intervals, or segments, of the music. segments-pitches and segments-timbres
are arrays of two dimensions, where the first one has 12 positions, and each of these positions has V values.

Because MSD contains many multi-valued features, a database-oriented approach to propositionalization is nec-
essary [24]. In [11], they propositionalized only segments-timbre for year prediction task. As described before,
segments-timbre has 12 lists, i.e, segT list1, ..., segT list12. In this case, the authors aggregate each list calculat-
ing 12 mean values, one for each list, generating the features meansegT list1 , ..., meansegT list12 . Also, the authors
calculate the covariance matrix for the twelve lists. The purpose of this covariance matrix was to verify the variance
between each pair of segT list. The covariance matrix is a matrix whose elements in the (i, j) position is the co-
variance cov between two random variables x and y; in this case, x is the list segT listi, y is the list segT listj ,
i, j = {1, ..., 12}. The covariance between two random variables x and y, cov(x, y), is defined by the linear correla-
tion coefficient ρxy =

σxy
σxσy

. When x 6= y, cov(x, y) = cov(y, x); and when x = y, cov(x, y) = cov(x, x) = σ2x. In
this case, where there are 12 lists, instead of generating all the 122 = 144 matrix values, only σ2segt listi , i = {1, ..., 12}
and ρsegt listisegt listj , i, j = {1, ..., 12}, i > j are calculated, what means generating 12 variance features and 60 cor-
relation or covariance features, totalizing 78 covariance features. So, in [11], they generated 90 features from the
Million Song Dataset. Figure 3 shows the structure of the MSD dataset.

Figure 3: A visualization of the structure of each HDF5 file of the MSD dataset.

In this work, we did not only consider these 90 features, but we also considered the segments-pitches multi-valued
feature, because we believe that the pitch of the music may influence its genre definition. The same procedure used
to generate the features extracted from segments-timbre was used to generate features from segments-pitches. In this
way, three features subsets are constructed:

1. Means of segments-timbre lists, represented by {meansegP list1 , ...,meansegP list12};

2. Variances of segments-timbre lists, represented by {σ2segP list1
, ..., σ2segP list12

}; and

3. Correlation coefficients of segments-timbre lists, represented by {ρsegP list1segP list2 , ..., ρsegP list1segP list12 ,
ρsegP list2segP list3 , ..., ρsegP list2segP list12 , ..., ρsegP list11segP list12}.

Considering the aggregations of segments-timbre and segments-pitches, the description features totalize 180 do-
main features. Each instance was classified by the tags given by MusicBrainz, as described earlier.

5http://musicbrainz.org/
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The original dataset contains 1 million songs. The authors also made available a sample of the original dataset

containing 10.000 songs, which was used for this work. When analyzing this dataset sample, we observed that (i)
there were instances without any label; and (ii) there were labels with too few instances associated to them, as well
as there were labels with too many of them. Instances without any label were discarded, resulting 3.710 instances.
Labels with too few instances associated to them could be considered noisy labels.

In this work, we used MSD to vary cardinality and density values. For this task, we considered that each label
should be linked to a minimum of N0 instances on the dataset. We considered the following values as minimum
instances to each label: N0 ∈ {0, 5, 15, 25, 35, 45, 65, 75, 85, 95, 145, 195}, where N0 = 0 means that all the labels
were considered; N0 = 5, only labels with 5 or more instances associated with it were considered; N0 = 15, only
labels with 15 or more instances associated with it were considered; and so on. Each generated dataset was renamed
to MSD-000, MSD-005, MSD-015, MSD-025, MSD-035, MSD-045, MSD-055, MSD-065, MSD-075, MSD-085,
MSD-095, MSD-145 and MSD-1956. Table 1 describes the main characteristics of each generated datasets, where
Min #Inst indicates the minimum number of instances a label has to be associated to be considered; #Inst represents
the number of instances resulted after disconsidering labels that do not satisfy the Min #Inst Per Label condition;
#Labels represents the number of remaining labels; Card is the label cardinality value — Eq. 1; and Dens is the
label density value — Eq. 2. We should remember that each dataset has 180 domain dataset attributes, all numerical
ones.

Table 1: MSD-Generated Datasets Characteristics

Min #Inst #Inst #Labels Card Dens

MSD-000 0 3710 726 3.8919 0.0054
MSD-005 5 3669 483 3.7817 0.0078
MSD-015 15 3587 272 3.4767 0.0128
MSD-025 25 3541 202 3.2937 0.0163
MSD-035 35 3506 161 3.1954 0.0198
MSD-045 45 3466 140 3.1056 0.0222
MSD-055 55 3408 122 2.9759 0.0244
MSD-065 65 3372 107 2.9517 0.0276
MSD-075 75 3345 98 2.8906 0.0295
MSD-085 85 3340 90 2.8189 0.0313
MSD-095 95 3256 84 2.8443 0.0339
MSD-145 145 3080 62 2.6182 0.0422
MSD-195 195 2904 47 2.4938 0.0531

3.2 Natural Datasets

We used six natural datasets in our experiments, also used in [5]7: Emotions, Genbase, Scene, Yeast, Enron e
Medical. Table 2 describes characteristics of these datasets, where #Inst. is the number of instances in the dataset;
#Feat. Disc and #Feat. Cont. are, respectively, number of discrete and continuous features; #Labels is the total
number of labels; Card is the label cardinality value — Eq. 1; and Dens is the label density value — Eq. 2. It is
worth to mention that we extended the experiments described in [5] to appropriately analyze the impact of cardinality
and density measures to both natural and MSD-based datasets.

Table 2: Datasets Characteristics

Dataset #Inst. #Feat. Disc. #Feat. Cont #Labels Card Dens

Yeast 2417 0 103 14 4.237 0.303
Scene 2407 0 294 6 1.074 0.179

Emotions 593 0 72 6 1.869 0.311
Genbase 662 1186 0 27 1.252 0.046
Enron 1000 1001 0 53 3.378 0.064

Medical 978 1449 0 45 1.245 0.028

6The generated datasets are available at http://www.professores.uff.br/fcbernardini/papers/compl/MSD_MR/
7These datasets and others are available at Mulan library site — http://mulan.sourceforge.net/datasets.html
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Figures 4 and 5 show, respectively, cardinality and density values of each dataset used in this work. We can observe

in Figure 5 that density values of the MSD-based datasets are much lower than density values of the natural datasets.

Figure 4: Cardinality Values of Each Dataset

Figure 5: Density Values of Each Dataset

4 EXPERIMENTS, RESULTS AND ANALYSIS

To evaluate the influence of cardinality and density characteristics to multi-label learning, we considered five multi-
label learning methods frequently used in literature, briefly described in Section 2.2 — BR, LP, RAKEL, HOMER [7]
and CC [22]. To induce the multi-label classifiers, we used the Mulan library8 [12], based on Weka [13]. To induce the
base classifiers, we used Naı̈ve Bayes and J48 algorithms, also implemented in Weka, due to its low time consumption
for induction of the classifiers and lack of requirement for parameters adjustment. We denote each combination
of multi-label learning method and base learning algorithm as BR-NB, BR-J48, CC-J48, CC-NB, HOMER-J48,
HOMER-NB, LP-J48, LP-NB, RAKEL-J48 and RAKEL-NB. Figures 6 and 7 shows all the results obtained for each
triple of (i) dataset, (ii) multi-label learning method and (iii) base learning algorithm. It is important to observe that
the methods CC-J48, CC-NB,LP-J48, LP-NB, RAKEL-J48 and RAKEL-NB could not be executed for MSD-000
dataset; and HOMER-J48 and HOMER-NB could not be executed for MSD-000 and MSD-005 datasets. All of these
executions could not be terminated by lack of memory problem.

Figures 6 and 7 shows that the multi-label learning methods presents low performance for all measures when using
MSD-based datasets. We believe that this is because many features were extracted from the original MSD dataset,
but also a very large number of labels. However, yet is necessary to evaluate the influence of Card and Dens on
multi-label learning methods, mainly in these cases, which brought us to this study.

We aim to analyze if there is a relation between cardinality Card, inherent to each multi-label dataset, and the
measure values obtained for each multi-label learning method and each dataset, as well as if there is some relation

8Available at http://mulan.sourceforge.net.
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(a) Results — Ham Measure

(b) Results — SAcc Measure

(c) Results — F Measure

(d) Results — Acc Measure

Figure 6: Results for instance-based measuresMea ∈ {Ham,SAcc, F,Acc}, all datasets and all multi-label learning
methods.
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(a) Results — F1− Measure

(b) Results — F1− Measure

(c) Results — AUC− Measure

Figure 7: Results for label-based measures Mea ∈ {F1−, F1−AUC−}, all datasets and all multi-label learning
methods.
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between the density Dens and the measure values. To compute the correlation, we considered that Card and Dens
are variables, and the correlation was calculated between each of them and each of the evaluation measures. Be-
cause Pearson Correlation is a parametric statistic, we first executed the Anderson-Darling’s normality test for all
algorithms results. In some results we could reject the normality test, what leaded us to measure Spearman’s rank
correlation9 [25].

Spearman’s rank correlation assesses how well the relationship between two variables X and Y and can be de-
scribed using a monotonic function. If there are no repeated data values, a perfect Spearman correlation of +1 or -1
occurs when each of the variables is a perfect monotone function of the other. For a sample of size N from X and
Y , the N scores Xi, Yi are converted to ranks rXi , rYi , and ρ(X,Y ) is computed as shown in Equation 10, where
di = rXi − rYi , is the difference between ranks.

ρ(X,Y ) = 1− 6
∑
d2i

N(N2 − 1)
(10)

Spearman’s rank correlation was firstly calculated between Card and each measure results, and also was cal-
culated between Dens and each measure results using all datasets. Correlation between the results and Card, as
well as between the results and Dens, was expected. However, as we explain later in this section, we observed that
many situations where correlations were observed in [5] could not be observed in our results. We also calculated
Spearman’s rank correlation between Card and each measure results, and also was calculated between Dens and
each measure results using (i) only natural datasets; and (ii) only MSD-based datasets. We extended the experiments
shown in [5] to also consider multi-label methods and base learning algorithms that were not considered before to
appropriately analyze the behavior of natural and MSD-based datasets. Figures 8 to 14 shows the |ρ(Card,Mea)|
and |ρ(Dens,Mea)| values for measures Mea ∈ {Ham,SAcc, F,Acc, F1−, F1−AUC−} using (a) all datasets,
(b) using only natural datasets, and (c) using only MSD-based datasets.

(a) |ρ(Card,Ham)| and |ρ(Dens,Ham)| using all datasets.

(b) |ρ(Card,Ham)| and |ρ(Dens,Ham)| using only natural
datasets.

(c) |ρ(Card,Ham)| and |ρ(Dens,Ham)| using only MSD-
based datasets.

Figure 8: |ρ(Card,Ham)| and |ρ(Dens,Ham)| values for all test scenarios.

9Anderson-Darling’s normality test and Spearman’s rank correlation was calculated using R software, available at http://www.
r-project.org/
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(a) |ρ(Card, SAcc)| and |ρ(Dens, SAcc)| using all datasets.

(b) |ρ(Card, SAcc)| and |ρ(Dens, SAcc)| using only natural
datasets.

(c) |ρ(Card, SAcc)| and |ρ(Dens, SAcc)| using only MSD-
based datasets.

Figure 9: |ρ(Card, SAcc)| and |ρ(Dens, SAcc)| values for all test scenarios.

(a) |ρ(Card, F )| and |ρ(Dens, F )| using all datasets.

(b) |ρ(Card, F )| and |ρ(Dens, F )| using only natural datasets. (c) |ρ(Card, F )| and |ρ(Dens, F )| using only MSD-based
datasets.

Figure 10: |ρ(Card, F )| and |ρ(Dens, F )| values for all test scenarios.
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(a) |ρ(Card,Acc)| and |ρ(Dens,Acc)| using all datasets.

(b) |ρ(Card,Acc)| and |ρ(Dens,Acc)| using only natural
datasets.

(c) |ρ(Card,Acc)| and |ρ(Dens,Acc)| using only MSD-based
datasets.

Figure 11: |ρ(Card,Acc)| and |ρ(Dens,Acc)| values for all test scenarios.

(a) |ρ(Card, F1−)| and |ρ(Dens, F1−)| using all datasets.

(b) |ρ(Card, F1−)| and |ρ(Dens, F1−)| using only natural
datasets.

(c) |ρ(Card, F1−)| and |ρ(Dens, F1−)| using only MSD-
based datasets.

Figure 12: |ρ(Card, F1−)| and |ρ(Dens, F1−)| values for all test scenarios.
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(a) |ρ(Card, F1−)| and |ρ(Dens, F1−)| using all datasets.

(b) |ρ(Card, F1−)| and |ρ(Dens, F1−)| using only natural
datasets.

(c) |ρ(Card, F1−)| and |ρ(Dens, F1−)| using only MSD-
based datasets.

Figure 13: |ρ(Card, F1−)| and |ρ(Dens, F1−)| values for all test scenarios.

(a) |ρ(Card,AUC−)| and |ρ(Dens,AUC−)| using all
datasets.

(b) |ρ(Card,AUC−)| and |ρ(Dens,AUC−)| using only natu-
ral datasets.

(c) |ρ(Card,AUC−)| and |ρ(Dens,AUC−)| using only
MSD-based datasets.

Figure 14: |ρ(Card,AUC−)| and |ρ(Dens,AUC−)| values for all test scenarios.
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In what follows, we analyse the influence of Card and Dens on (i) MSD and natural datasets together, (ii) only

natural datasets, and (iii) only MSD-based datasets.

4.1 Impact of cardinality dataset measure considering natural datasets

In [5], the authors observed that, for BR and LP methods using three base learning classifiers, the absolute value of
correlation between Card and SAcc measure was higher than 0.7 (|ρ(Card, SAcc)| ≥ 0.7) in all cases. It is worth to
observe that they used Pearson’s Correlation, which may lead to inconsistences when comparing to our work. In this
work, as mentioned before, we used Spearman’s rank correlation. Figure 9(b) shows that |ρ(Card, SAcc)| ≥ 0.7 is
observed when: (i) using BR and CC methods, and using J48 but not NB learning algorithm; and (ii) using HOMER,
LP and RAkEL and using both J48 and NB learning algorithms. These results indicate that Card measure influences
SAcc values in multi-label learning methods. In [5], the authors also observed, for BR and LP methods, using three
base learning classifiers, that |ρ(Card,AUC−)| ≥ 0.7 in one case for BR and in two cases for LP. In Figure 14(b) we
can observe that |ρ(Card,AUC−)| ≥ 0.7 is observed when using: (i) J48 base learning algorithm and all multi-label
learning methods; (ii) NB algorithm and only HOMER multi-label learning method. These results indicate that Card
measure influences AUC− values only when using J48 base learning algorithm.

Continuing the analyses of impact of Card measures using only the natural datasets, we can observe that:

• Ham measure is not influenced by Card (|ρ(Card,Ham)| < 0.7 in all cases — Figure 8(b));

• F measure is influenced by Card when using BR, CC and LP when using NB (|ρ(Card, F )| ≥ 0.7 in these
cases — Figure 10(b));

• Acc and F1− measure are influenced by Card when using J48 base learning algorithm for all multi-label
learning methods, and NB algorithm for only HOMER multi-label learning method, as occurring with AUC−
(|ρ(Card,Acc)| ≥ 0.7 in these cases — Figures 11(b) and 13(b), respectively);

• F1− measure is influenced by Card when using J48 base learning algorithm for all but HOMER multi-label
learning methods (|ρ(Card,Acc)| ≥ 0.7 in these cases — Figure 12(b)).

4.2 Impact of density dataset measure considering natural datasets

In [5], only Ham measure exhibited high correlation with Dens for all measures and all base classifiers. In our
results, high correlation can be observed betweenHam andDens, as can be observed in Figure 8(b). Measures SAcc,
F1− and AUC− are not influenced by Dens, because high correlation between Dens and each of these measures
could not be observed for any multi-label method and base-learning algorithm, as can be observed in Figures 9(b),
13(b) and 14(b). High correlation with Dens was punctually observed for:

• F measure when using HOMER and NB — Figure 10(b);

• Acc measure when using BR and CC with NB as base learning algorithm — Figure 11(b)); and

• F1− measure when using BR, CC, LP and RAkEL with NB as base learning algorithm — Figure 12(b)).

4.3 Impact of cardinality and density measures considering MSD-based datasets

For MSD-based datasets, it is interesting to notice that when high (or low) absolute correlation value between
Dens and each classifier evaluation measure is observed, the same is observed between Card and each classifier
evaluation measure. We can observe that the measures influenced by cardinality and density dataset measures are
Ham, F , Accand F1− — all these measures are highly correlated to Card and to Dens dataset measure, as can be
seen in Figures 8(c), 10(c), 11(c) and 12(c). We also can observe that the measures not influenced by cardinality and
density dataset measure are SAcc, F1− and AUC− — all these measures are weally correlated to Card and Dens
dataset measure, as can be seen in Figures 9(c), 13(c), 14(c).
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4.4 Impact of cardinality and density measures considering all datasets

When analyzing the results considering all datasets, we could not observe high correlation between Cardinality
values and measures results for all but four situations. These exceptions can be observed in Figure 8(a) for CC-NB
method, and in Figure 14(a) for CC-NB, HOMER-NB and LP-NB. However, for SAcc, F and Acc measures, beside
all correlations between Card and Mea (ρ(Card,Mea)) are lower than 0.7, they are near to 0.7.

Regarding to density values, we can observe that for Ham, SAcc, F , Acc and F1− measures, which correlation
values are shown in Figures 8(a), 9(a), 10(a),11(a) and 12(a), all correlations, but three, are greater than 0.7. The
exception are forHammeasure and CC-NB, HOMER-J48 and RAKEL-NB methods. This observation indicates that
Dens highly influences the results in these measures.

We also noticed that multi-label methods may be more affected by low density values than by high cardinality
values. Because LP and RAKEL transform the original multi-label problem into transformed multi-class(es) prob-
lem(s), it was expected that these methods would show high correlation considering both Card and Dens values.
However, only Dens showed high correlations with the mentioned measures. Finally, we also observed that, for F1−

and AUC− measures, we could not observe any pattern in correlation behaviour.

5 CONCLUSIONS AND FUTURE WORK

Cardinality and density are characteristics of multi-label datasets related to the degree of difficulty to learn a
multi-label classifier, i.e., lower the density and higher the cardinality, more difficult the multi-label learning process.
In [5], the authors started an investigation on how much cardinality and density could impact the results of multi-
label learning methods. They used only six natural datasets, available on the internet. However, all of them have
different domain features. In this work, we describe the million song dataset, the pre-process phase for multi-label
learning, and the generated datasets, with the same domain features, but different cardinality and density values. Also,
we considered the results of the six natural datasets used before, extending the experiments to be comparable to the
results obtained with MSD-based datasets. All of the obtained results compose our analyzes. We observed in our
results that, when analyzing the impact of Card and Dens on multi-label learners only using the natural datasets,
with distinct domains, Card influences results of SAcc, F , F1− and AUC− measures; and Dens influences results
of Ham, F , Acc and F1− measures. When analyzing the impact of Card and Dens only using the MSD based
datasets, both Card and Dens influences the results of Ham, F , Acc and F1− measures. On the other hand, when
we put all these datasets together to analyze the Card and Dens influence, we do not verify the same influence
patterns, although some influences are worth to notice. Card barely influenced the results on the used measures, but
Dens highly influenced the results ofHam, SAcc, F , Acc and F1− measures when using all the datasets. This bring
us evidences, as expected, that density characteristic should be carefully treated when using multi-label datasets with
low density values. In this way, exploring how to increase density values without changing the learning problems
could be an interesting approach.

Another important observation in our experiments is that, on one hand, the MSD-based datasets have large number
of features and large number of labels, and on the other hand the natural datasets have low number of features and
low number of labels when compared to the MSD-based datasets. Also, the results obtained with the multi-label
learning methods using the natural datasets were better than the results obtained using the MSD-based datasets.
The performance of the multi-label learning methods using the MSD-based datasets may have been low due to the
characteristics of these datasets. So, it is not yet clear what characteristics of the datasets really lead to the influence of
low Dens values on measures results. To this end, we are conducting experiments to evaluate the influence of Card
and Dens values using artificially generated multi-label datasets [26].

Also, it is important to notice that real multi-label datasets may present low density values and high number of
labels. It should be observed that HOMER is a method developed to scale up multi-label learning according to number
of labels; however, HOMER could not be executed for the the datasets with highest number of labels, what indicates
that investigation of more scalable algorithms is interesting.
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[15] G. Madjarov, D. Kocev, D. Gjorgjevikj and S. Džeroski. “An extensive experimental comparison of methods for
multi-label learning”. Pattern Recognition, vol. 45, no. 9, pp. 3084–3104, 2012.

[16] T. Fawcett. “ROC graphs: Notes and practical considerations for researchers.” Machine Learning, vol. 31, pp.
1–38, 2004.

[17] E. Alvares-Cherman, J. Metz and M. C. Monard. “Incorporating label dependency into the binary relevance
framework for multi-label classification”. Expert Systems with Applications, vol. 39, no. 2, pp. 1647–1655,
2012.

[18] G. Tsoumakas, I. Katakis and L. Vlahavas. “Random k-Labelsets for Multilabel Classification”. IEEE Transac-
tions on Knowledge and Data Engineering, vol. 23, no. 7, 2011.

[19] J. Read. “A pruned problem transformation method for multi-label classification”. In Proc. 2008 New Zealand
Computer Science Research Student Conference (NZCSRS 2008), pp. 143–150, 2008.

70



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 12, Iss. 1, pp.
53-71, 2014

c© Brazilian Society on Computational Intelligence
[20] N. Chawla, Japkowicz, N. and A. Kotcz. “Editorial: special issue on learning from imbalanced data sets”.

SIGKDD Explorations, vol. 6, pp. 1–6, 2004.

[21] G. Tsoumakas, I. Katakis and I. Vlahavas. “Effective and efficient multilabel classification in domains with large
number of labels.” In Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD’08), pp.
30–44, 2008.

[22] J. Read, B. Pfahringer, G. Holmes and E. Frank. “Classifier Chains for Multi-label Classification”. In Proc 13th
European Conference on Principles and Practice of Knowledge Discovery in Databases and 20th European
Conference on Machine Learning, 2009.

[23] C. Stephanidis. The Universal Access Handbook. CRC Press, 2010.
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