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Abstract

In many real world prediction problems, a classifier must, or should, assign more than one label to an instance, e.g. prediction

of machine failures, musical genre classification, etc. For this kind of problem, multi-label classification methods are needed.

One approach frequently used to learn multi-label predictors divides the problem into one or more multi-class classification

problems, and combines the models constructed for each sub-problem to classify new instances with multiple labels. Although

there are many multi-label learning methods, there is a need for exploring methods that can lead to improvement in prediction

power. In this work, we propose and evaluate a new method, called RB (Random-Bagging), based on dataset transformation

and combination of classifiers. Six real-world datasets were used to evaluate our method, which was compared to three existing

methods. Results were considered promising.

Keywords – Multi-label learning classifiers, Bagging, Label Random Selection.

1 Introduction

One of the main purposes of machine learning is to construct models based on examples, or instances, collected from some

domain. A group of these algorithms, known as supervised learning algorithms, are able to induce models, known as classifiers,

based on labeled instances. When a new instance is given to a classifier, the model is able to predict a single class label for

this instance. However, there are some domains in which the collected instances are labeled with more than one label. For

instance, we can cite text, videos, images and music labeling; failure diagnosis, and so on. A common approach for solving

this kind of problem is decomposing the original multi-label problem into one or various multiclass learning problems. There

are many methods in the literature based on this approach, applied to many different domains [1–7]. There are some methods

proposed in literature that usually decompose the initial problem into a number of independent binary problems, one for each

possible problems [2, 8, 9]. Others consider the pairwise relations between labels, such as the interaction between any pair of

labels [10, 11], or the full-order style of all other labels’ influence on each label [12, 13]. Methods considering relation between

(or among) labels can be very effective, however they can be computationally inefficient.

In this work, we propose a method to construct multi-label classifiers, that divides the original multi-label problem into multi-

class subproblems and combines the induced classifiers. The combination method is based on bagging combination method [14].

The advantage of our proposed method is the simplicity of the transformation process, associated to the complementarity of the
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constructed and combined multiclass classifiers. In the original bagging, multiple bootstrap samples, or subsets of the original

datasets, are constructed, selecting random instances with replacement from the original dataset. A classifier is induced for each

subset. There are other proposals in the literature to obtain varied classifiers from the same dataset, including random feature

selection [15]. In this work, we propose our method based on random label selection, which allows transforming the original

problem into multiclass subproblems, and also allows varied classifiers to be learned from the same original dataset. Our method

was implemented using the Mulan library1 [16], based on Weka [17]. Controlled experiments on six natural benchmark datasets,

available with Mulan, were conducted to evaluate our proposed method, and show that our method is effective in some situations.

This work is organized as follows: Section 2 describes some machine learning definitions and concepts and some multi-label

learning methods, used to compare to our proposed method. Section 3 describes the RB method, proposed in this work. Section

4 describes and analyzes experiments executed to evaluate the RB method. Finally, Section 5 concludes this work and discusses

some future work.

2 Multiclass and Multi-label Supervised Machine Learning

In many real world classification problems the examples are associated with a single label. The input for single-label super-

vised learning algorithms is a single-labeled dataset Ss, with N instances Ti, i = 1, ..., N , chosen from a domain X with fixed,

arbitrary and unknown distribution D, of the form (xi, yi), with i = 1, ..., N , for some unknown function f(x) = y. xi are

vectors typically of the form (xi1, ..., xiM ), with discrete or continuous values, where xij refers to the value of feature j, named

Xj , of the instance Ti. In classification problems, the yi is a single label value, and the possible values belong to a discrete set of

labels L, i.e y ∈ L = {l1, ..., l|L|}. These values refer to the values of feature Y , frequently called class feature. For |L| = 2, we

have a binary problem; for |L| > 2, we have a multiclass problem. Descriptions of many algorithms for supervised learning of

single label classifiers can be found in [17, 18].

In multi-label problems which appear in many different domains, such as image, text, music, proteins and genome classi-

fication [1–4], or failure diagnosis [5], to cite just a few, the input to the multi-label learning algorithms is also a dataset Sm

(dataset S with multiple labels), with N instances Ti, i = 1, ..., N , chosen from a domain X with fixed, arbitrary and unknown

distribution D, of the form (xi, Yi), with i = 1, ..., N , for some unknown function f(x) = Y . L is the set of possible labels

of the domain D, and Yi ⊆ L, i.e., Yi is the set of labels of the ith instance. The output of multi-label learning algorithms is a

classifier h that labels an instance xi with a set Zi = h(xi), i.e., Zi is the set of labels predicted by h for xi
2.

2.1 Characteristics and Statistics of Multi-label Datasets

In some multi-label datasets, the number of labels associated with an instance is small when compared to the total number

of possible labels |L|. This number can be seen as a parameter that influences the performance of different multi-label methods.

There are two measures for evaluating the characteristics of a dataset: cardinality Card and density Dens [19]. The cardinality

of Sm is the mean of the number of labels of the instances that belong to Sm, defined by Equation 1, and the density of Sm

is the mean of the number of labels of the instances that belong to Sm divided by |L|, defined by Equation 2. Two datasets

with approximately the same cardinality but with great difference in density may not exhibit the same properties, which causes

different behaviors in multi-label learning methods. The number of distinct labels is also important for many multi-label methods

based on dataset transformation. It is thus important to observe such measures when using multi-label learning methods.

Card =
1

N

N∑
i=1

|Yi| (1)

1Available at http://mulan.sourceforge.net.
2In this work, we use Ti to refer to an instance with associated label yi ou Yi, and we use xi when we are not considering the associate label, or xi does not

have an associated label yet.
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Dens =
1

N

N∑
i=1

|Yi|
|L|

(2)

2.2 Evaluation Measures

There are three classes of measures to evaluate multi-label classifiers: based on instances, based on labels and based on

ranking [19]. Measures based on instances used in this work are: Hamming Loss (Ham), Accuracy (Acc), F1 and Subset

Accuracy (SubAcc), respectively defined by Equations 3 to 63. It should be observed that SubAcc is extremely conservative

because it measures how many times the classifier predicts the exact set of labels associated to the instance.

Hamm(h, S) =
1

N

N∑
i=1

|Yi∆Zi|
|L|

(3) Acc(h, S) =
1

N

N∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(4)

F (h, S) =
1

N

N∑
i=1

2|Yi ∩ Zi|
|Zi|+ |Yi|

(5) SubAcc(h, S) =
1

N

N∑
i=1

I(Zi = Yi) (6)

Measures based on labels are calculated based on false positives fp, false negatives fn, true positives tp and true negatives tn,

i.e., measures B(tp, tn, fp, fn) can be used in this case. tpl
, tnl

, fpl
and fnl

as true positives, true negatives, false positives and

false negatives for each label l ∈ L, the micro and macro versions of these measures are given by Equations 7 and 8, respectively.

In this work we used micro and macro versions of the measures F1 and AUC (Area Under ROC curve).

Bmicro(h, S) =
1

|L|

|L|∑
i=1

B(tpi
, tni

, fpi
, fni

) (7)

Bmacro(h, S) =
1

|L|
B(

|L|∑
i=1

tpi
,

|L|∑
i=1

tni
,

|L|∑
i=1

fpi
,

|L|∑
i=1

fni
) (8)

Ranking based measures used in this work are One-Error (1Err) and Ranking Loss (RankLoss), defined respectively by

Eqs. 9 and 104. 1Err evaluates how many times the top-ranked label is not in the set of relevant labels of the instance; and

RankLoss expresses the number of times that irrelevant labels are ranked higher than relevant labels.

1Err(h, S) =
1

N

N∑
i=1

δ(argmin
l∈L

ri(l))

where δ(l) =

{
0, if l /∈ Yi
1, otherwise.

(9)

RankLoss(h, S) =
1

N

N∑
i=1

1

|Yi||Y i|
|A(i)|

where A(i) = {(la, lb) : ri(la) > ri(lb), (la, lb) ∈ Yi × Y i}

(10)

Each described evaluation measure in this section can be estimated using any performance estimation technique, such as

k-fold cross-validation.

3In Eq. 3, ∆ represents the symmetric difference between two datasets. In Eq. 6, I(true) = 1 and I(false) = 0.
4In these measures, ri(l) is the ranking predicted for a label l referred to instance xi, and Y i is the complementary set of Yi related to the set L.
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2.3 Description of Multi-label Learning Methods Used as Benchmark

Some approaches for multi-label learning transform the original problem into binary subproblems, e.g. the BR method,

or transform the original problem into a single multiclass problem, e.g. the LP and SR methods [19]. These three methods

are described next. These methods were used as comparison benchmarks because they are the most common methods used in

literature and are the closest to our method.

2.3.1 BR — Binary Relevance

One possible solution to a multi-label learning problem is decomposing the original problem into various binary problems. A

popular method that works with this type of decomposition is called Binary Relevance — BR —, used in [2]. In the BR method,

a classifier for each class is constructed using a supervised machine learning, applicable to binary problems. To this end, initially

the training dataset Sm is transformed into |L| datasets Ssl , where each dataset corresponds to a label li, i = 1, ..., |L|. Given a

learning algorithm applicable to binary problems, a classifier hl is induced using each dataset Sl. To classify a new instance x,

x is given to each classifier hl, l = 1, ..., |L|. x is classified with the set of labels for which hl = 1 (or = true).

2.3.2 LP — Label Powerset

The Label Powerset — LP — method, proposed in [20], transforms the original multi-label problem into a multiclass problem.

Each set of labels Yi in Sm is considered a class of the new multiclass problem. For instance, considering three labels l1, l2 and

l3 and a multi-label training dataset Sm, the instance T1 ∈ Sm labeled with Y1 = {l1, l2}, after the transformation is labeled

with y = l1,2; the instance T2 ∈ Sm labeled with Y1 = {l1, l3}, after the transformation is labeled with y = l1,3; the instance

T3 ∈ Sm labeled with Y1 = {l1}, after the transformation is (still) labeled with y = l1; and so on. With this new dataset S′
s, a

multiclass classifier h is induced.

Given a new instance x to be labeled, the classifier h labels x with a set of labels that have probability higher than a threshold

t. Supposing that the output of h is a probability distribution over all the possible classes, LP method can rank the original labels.

For instance, let us consider that h outputs the following probability distribution: l1,2 = 0.7, l2,3 = 0.2 and l1 = 0.1. So, the

probability of x being labeled by l1 = 0.7×1+0.2×0+0.1×1 = 0.8; being labeled by l2 = 0.7×1+0.2×1+0.1×0 = 0.9;

and being labeled by l3 = 0.7× 0 + 0.2× 1 + 0.1× 0 = 0.2. Defining t = 0.5, x is labeled with the set Z = {l1, l2}.

2.3.3 SR — Select Random

A simple method for transforming a multi-label problem into a multiclass problem consists of replacing, for each instance

Ti of the original dataset Sm, the label Yi with a single label y randomly selected from Yi. This simple transformation is called

Select Random, described in [19]. For instance, given three labels l1, l2 and l3 and a multi-label training set Sm, the instance

T1 ∈ Sm originally labeled with Y = {l1, l2}, after the transformation is labeled with y = l1; the instance T2 ∈ Sm originally

labeled with Y = {l1, l3}, after the transformation is labeled with y = l2; the instance T3 ∈ Sm originally labeled with

Y = {l1}, after the transformation is (still) labeled with y = l1; and so on. This new transformed dataset S′
s is used to induce a

multiclass classifier h.

Given a new instance x to be labeled, the classifier h labels x with a set of labels that have probability higher than a threshold

t. Supposing that the output of h is a probability distribution over all the possible classes, the SR method also can rank the

original labels. For instance, let us consider that h outputs the following probability distribution: l1 = 0.6, l2 = 0.1 e l3 = 0.3.

Defining t = 0.2, x is labeled with the set Z = {l1, l3}.
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3 Our Proposed Method: RB — Random-Bagging

The RB method, proposed in this work, is based in the SR and Bagging methods. SR weakness is related to the loss

of information due to absence of some (or many) labels in the induction of the classifier h. To solve this problem, the SR

transformation can be repeated C times and the induced classifiers can be combined. Our proposed method basically consists of

these two steps.

A classical method that combines classifiers is Bagging [14]. The Bagging method combines classifiers’ decisions by voting.

The combined classifiers are induced using bootstrap samples of the original dataset Sm. In our work, instead of selecting the

instances randomly with replacement, we randomly select labels for the instances.

Our proposed RB method consists of two steps: (1) induction of the component multiclass classifiers to compose the multi-

class classifier and (2) combination of the component classifiers to predict new instances. Note that C and t are parameters of

our method.

(1) Multi-label classifier construction: The input to RB is a dataset Sm = {(xi, Yi), i = 1, ..., N}. From Sm, C datasets

Ssc , c = 1, ..., C are constructed. Each dataset Ssc is composed by all instances xi ∈ Sm, and each instance xi is labeled with

a single yi ∈ Yi, randomly selected with replacement. So, each dataset Ssc is used to induce a multiclass classifier using a

supervised machine learning algorithm.

(2) Instances prediction: The classifiers constructed in Step 1 offer the most probable label and a probability distribution

over the possible labels that the classifier can predict5 of the possible labels the classifier can predict. Given a new instance

x to be classified, for each label l ∈ L we calculate the mean of probability distribution offered for each classifier hc —

γl =
1
C

∑C
c=1 p(c|x). Finally, the instance x is labeled with labels for which γl is higher then a threshold t — γl ≥ t.

To evaluate the RB method, we implemented RB using Mulan library [16] and Weka tools [17]. Weka is a free computational

solution developed to aid the data mining process. Weka includes tools to support supervised and unsupervised learning, and other

tasks. This solution has the interesting property of being implemented in Java, allowing portability. The Mulan library (Multi-

label Learning) was proposed to attend the needs and specificities of multi-label problems. The Mulan library was implemented

based on Weka. Mulan was used to support RB implementation.

4 Experiments and Results

Our experiments aim to (i) evaluate the prediction performance of our proposed method RB; (ii) evaluate the prediction

performance of SR, since we did not find any results about this method; (iii) compare both methods to BR and LP. To induce

the base (binary and multiclass) classifiers of all methods, we used three different machine learning algorithms implemented

within Weka: J48 — the C4.5 algorithm for induction of decision trees [21], implemented on Weka; NB — the Naive Bayes

algorithm [18], which uses bayesian statistics for classifier induction; and SMO — an algorithm that efficiently solves the

optimization problem for inducing SVMs (Support Vector Machines) [22]. Six natural datasets were used in our experiments6:

Emotions, Genbase, Scene, Yeast, Enron e Medical. Table 1 describes characteristics of these datasets, where #Inst. is the

number of instances in the dataset; #Feat. Disc and #Feat. Cont. are, respectively, number of discrete and continuous features;

#Labels is the total number of labels; Card is the label cardinality value — Eq. 1; and Dens is the label density value — Eq. 2.

RB behavior was evaluated using different number of component classifiers — C = |L| e C = 10|L| —, and different

threshold values — 0.1, 0.2, 0.3, 0.4, 0.5, 0.7 and 0.9. All evaluation measures described in Section 2.2 were used. k-fold

cross-validation, with k = 10, was used to evaluate each multi-label method behavior. Figures 1 to 10 show the results of 10-fold

cross-validation for BR, LP, SR with threshold values t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, and RB with all combination of C and

t listed, using all measures described in Section 2.2. Figures 1 to 4 show results using example based measures; Figures 5 to 8
5Algorithms that offers pertinence degree to each label as output should also be used in this work. However, we did not considered these algorithms in our

experiments.
6These datasets and others are available at Mulan library site — http://mulan.sourceforge.net/datasets.html
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Dataset #Inst. #Feat. Disc. #Feat. Cont #Labels Card Dens

Yeast 2417 0 103 14 4.237 0.303

Scene 2407 0 294 6 1.074 0.179

Emotions 593 0 72 6 1.869 0.311

Genbase 662 1186 0 27 1.252 0.046

Enron 1000 1001 0 53 3.378 0.064

Medical 978 1449 0 45 1.245 0.028

Table 1: Datasets Characteristics

show results using label based measures; and Figures 9 and 10 show results using ranking based measures. Figures showing

SMO results do not have results for the Enron dataset using RB method with C = 10|L| and the SMO base learner because

we could not execute these experiments due to the high computational cost. In what follows, we analyze each group of figures,

corresponding to each evaluation metric.

4.1 Analyzing Performance Methods per Measure

In what follows we describe the results obtained by analyzing each measure. To make it easier to interpret the results, we

indicate with ↓ the measures for which the lower the value of the measure, the higher the performance of the method; and we

indicate with ↑ the measures that the higher the values of the measure, the higher the performance of the method.

Hamming Measure (↓): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods performance for the Hamm

measure. The plots show that, for the Scene dataset, the results are quite different when varying the base learner algorithm

(SMO, J.48 or NB); for all the other datasets, the results are similar. They also show that the datasets with lowest density —

Genbase, Enron and Medical — have the best results considering this measure for all multi-label and base learners. It is

also interesting to notice that BR with the NB base learner obtained a much poorer result for the Enron dataset than the

other learning algorithm.

Accuracy Measure (↑): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods for the Acc measure. These

plots show that, when using the NB base learner (Fig. 4.1), the results obtained with all multi-label learners were the

poorest results, except for the Scene dataset, for which the results are similar, considering the variation of base learners.

F Measure (↑): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods for the F measure. These plots show

that the results are similar when varying the base learner, except for the GenBase dataset, for which the multi-label learners

decreased their performance with the NB base learner. It is interesting to notice that RB with t = 0.1 and the J.48 base

learner shows improvement compared to the other multi-label learners for Emotions dataset, but for the same method — RB

and J.48 base learner — the best results were obtained for t = 0.2 and t = 0.3 for the Scene dataset.

Subset Accuracy Measure (↑): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods for the SubAccmeasure.

This measure is very important to analyze the ability of multi-label predictors to classify the entire label set. We can observe

that poor results were obtained when considering Emotions, GenBase and Yeast datasets. For this measure the NB base

learner obtained the poorest results.

Micro Version of AUC (↑): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods for theAUCmicro measure.

All multi-label learners show good results for this measure, regardless of the base learner. The exception is the LP method,

showing poorer results when using the SMO base learner than the other multi-label and base learners. For the other

multi-label learners, the results are similar when using SMO and NB, with a subtle difference when using J.48.
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(a) Hamm using SMO (b) Hamm using J48

(c) Hamm using NB

Figure 1: Results in all Test Scenarios Considering Hamm measure
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(a) Acc using SMO (b) Acc using J48

(c) Acc using NB

Figure 2: Results in all Test Scenarios Considering Acc measure

33



Learning and Nonlinear Models - Journal of the Brazilian Computational Intelligence Society, Vol. 11, Iss. 1, pp. 26–47, 2013.

c© Brazilian Computational Intelligence Society

(a) F using SMO (b) F using J48

(c) F using NB

Figure 3: Results in all Test Scenarios Considering F measure
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(a) SubAcc using SMO (b) SubAcc using J48

(c) SubAcc using NB

Figure 4: Results in all Test Scenarios Considering SubAcc measure

35



Learning and Nonlinear Models - Journal of the Brazilian Computational Intelligence Society, Vol. 11, Iss. 1, pp. 26–47, 2013.

c© Brazilian Computational Intelligence Society

(a) AUCmicro using SMO (b) AUCmicro using J48

(c) AUCmicro using NB

Figure 5: Results in all Test Scenarios Considering AUCmicro measure
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Macro Version of AUC (↑): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods the AUCmacro measure.

Unexpectedly, the results for AUCmacro are quite different from AUCmicro, except when using LP with SMO: the results

are very poor also for the macro version of AUC. In general, the results of this version of AUC are worse than the results

of the micro version of AUC. It is surprising that for Medical and Enron the results are so poor. Using NB base learner, the

results are still much poorer than using the other base learners.

(a) AUCmacro using SMO (b) AUCmacro using J48

(c) AUCmacro using NB

Figure 6: Results in all Test Scenarios Considering AUCmacro measure

Micro Version of F1 (↑): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods for the F1micro measure.

SMO and J.48 learners show similar results. Once more, NB shows poorest results than the other learners, especially for

the GenBase dataset, for which the drop in performance is visible.

Macro Version of F1 (↑): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods for the F1macro measure.

The SMO and J.48 learners show similar results. Again, NB shows poorer results than the other learners, especially for the

GenBase dataset, for which the drop in performance is visible.

One Error (↓) and RankLoss (↓): Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods for the 1Errmeasure;

and Figures 4.1, 4.1 and 4.1 show the performance of multi-label methods for the RankLoss measure. We show these

results together because they are very similar. Only for these measures the NB learner shows better results than SMO and

J.48 in general. LP multi-label learner shows the poorest results, compared to the other multi-label learners. RB and SR

show similar results compared to BR, but using J.48 base learners and for some datasets we notice improvement of RB

compared to SR — Figs. 4.1 and 4.1.
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(a) F1micro using SMO (b) F1micro using J48

(c) F1micro using NB

Figure 7: Results in all Test Scenarios Considering F1micro measure
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(a) F1macro using SMO (b) F1macro using J48

(c) F1macro using NB

Figure 8: Results in all Test Scenarios Considering F1macro measure
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(a) 1Err using SMO (b) 1Err using J48

(c) 1Err using NB

Figure 9: Results in all Test Scenarios Considering 1Err measure

We can observe in these plots that all experiments using SR and RB with t = 0.7 and t = 0.9 shows the worst results when

compared to the other values of t. So, results using t = 0.7 and t = 0.9 were not considered in our hypotheses tests, described

next. Also, we can conclude, from all these graphics and analyses, that the NB base learner does not lead to very good results

when compared to the other base learners and multi-label methods on these datasets.

4.2 Hypotheses Tests

To check for a significant statistical difference among the multi-label methods, we considered different null hypotheses to

analyze the behavior of each variable t and C for RB, the behavior of t for SR, and we compared RB with the three other

methods. We executed the Wilcoxon test7 when the null hypothesis is relative to two variables — comparison of a metric using

two different variables —, and Friedman8 when the null hypothesis is relative to more than two variables. For the hypotheses

tests, we considered the results obtained using 10-fold cross-validation. Each execution of the BR and LP methods using the

three learning algorithms — J48, NB or SMO — was considered an independent execution. Also, each combination of the

three learning algorithms and the different values of t was considered different executions of the SR method, and we called

each execution SR-T0.1-J48, SR-T0.2-SMO, and so on. Finally, each combination of the three learning algorithms with the

different values of t and different numbers of classifiers C was considered an independent executions of the RB method, and we

called each execution RB-T0.1-L-J48, RB-T0.2-10L-SMO, and so on. In what follows, we describe each hypotheses test and the

obtained results.
7Wilcoxon test is a non-parametric alternative to comparison of two learning algorithms [23].
8Friedman test is a non-parametric alternative for ANOVA test [23].
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(a) RankLoss using SMO (b) RankLoss using J48

(c) RankLoss using NB

Figure 10: Results in all Test Scenarios Considering RankLoss measure
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Hypothesis H1: The results obtained for RB method are comparable considering C = |L| and C = 10|L|. The Wilcoxon

test was executed, rejecting the hypothesis with a confidence level of 95% for measures F , SubAcc, 1Err and RankLoss, and

RB considering C = |L| shows the best results to these methods and these datasets. On the other hand, considering AUCMicro

measure, the null hypothesis was also rejected, but RB considering C = 10|L| shows the best results. For all the other measures,

this null hypothesis was not rejected. Because RB considering C = 10|L| shows the best result for only one measure in 10 (ten),

and RB considering C = L shows the best result for 4 (four) measures in 10 (ten), and considering that the computational cost

of RB with C = 10|L| is much higher than RB with C = |L|, we considered that our method RB shows the best results with

C = |L| in our experimental scenarios, and used this result for RB in the following hypotheses tests.

Hypothesis H2: The SR and RB (withC = |L|) methods are comparable. The Wilcoxon test was also executed, rejecting the

null hypothesis with a confidence level of 95% for the measures Hamm, AUCMicro, 1Err and RankLoss, and the RB method

shows the best results for all this 4 (four) measures. For all the other measures, the null hypothesis was not rejected. Considering

that RB shows the best result for 4 (four) measures in 10 (ten), we considered that the RB method shows better results than SR

in our experimental scenarios, and used this result in the following hypothesis tests.

Hypothesis H3: RB with t = 0.1, t = 0.2, t = 0.3, t = 0.4 and t = 0.5 are comparable using C = |L|. In this case,

we renamed the RB method considering all values of t to make the comparison analysis more readable — RB-T01, RB-T02,

RB-T03, RB-T04 and RB-T05. The Friedman test was executed, which rejected the null hypothesis for measures Acc, F ,

SubAcc, F1Mic and F1Mac with a confidence level of 95%, and for measure 1Err with a confidence level of 90% . Figures 4.2

to 4.2 show the obtained results to Nemenyi post-hoc test for these 6 (six) measures. We can observe in these figures that the

RB method for t = 0.1 and t = 0.2 are the best ranked for all 6 (six) measures, but only considering the F measure there is

significant statistical difference. Considering these results, we established that RB with t = 0.1 and t = 0.2 give the best results,

and these values of t were selected for the following hypothesis test H3.

Hypothesis H4: The LP, BR and RB methods are comparable, considering two scenarios of RB execution: (i) C = |L|
and t = 0.1 — RB-T01-L — and (ii) C = |L| and t = 0.2 — RB-T02-L. The Friedman test was executed, rejecting the null

hypothesis with a confidence level of 95% for measures F , Hamm, SubAcc, AUCMicro, 1Err and RankLoss. Figures 4.2

to 4.2 shows the results of Nemenyi post-hoc test for these measures. In these figures, we can observe that for 3 (three) out of

6 (six) measures — AUCMicro, 1Err e RankLoss —, the BR method is better ranked, but there is not significant statistical

difference, and for 2 (two) measures — F e SubAcc — , LP shows the best results with significant statistical difference. So, RB

can show better results than BR and LP in some cases.

4.3 Correlations among Multi-label Model Predictions and Cardinality and Density of Datasets

In this section, we aim to analyze if there is some relation between the cardinality Card, inherent to each multi-label dataset,

and the measure values obtained for each multi-label learning method and each dataset, as well as if there is some relation between

the density Dens and the measure values. To compute the correlation, we considered that Card and Dens are variables, and

the correlation was calculated between each of them and each of the evaluation measures. Table 2 shows the sum of the number

of times that the correlation between Card and each evaluation measure obtained with each multi-label learning method using

SMO, J.48 and NB as base learning algorithms is high — higher than 0.7 or lower than -0.7. Similarly, Table 3 shows the sum of

the number of times that the correlation between Dens and each measure values obtained with each multi-label learning method

using SMO, J.48 and NB as base learning algorithms is high — higher than 0.7 or lower than -0.7.

We expected to find high correlation for the SubAcc measure, and Table 2 shows high correlation between SubAcc measure

and Card for all multi-label learning methods — and, in this case, the higher the Card values, the lower the SubAcc values.

Further, the same occurred with AUCmacro — high correlation with Card for all multi-label learning methods. Surprisingly,

Table 2 shows that LP, RB and SR are sensible to Card for all the other measures, except for the Hamm and 1Err measures,

what does not occur with the BR method. In all cases, the higher the Card, the worse the measurement values.

Hamm was the only one measure which exhibited high correlation with Dens for all methods and all base learners in
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Figure 11: Post-Hoc Hypothesis Test H3

Card Hamm Acc F SubAcc F1Micro AUCMicro F1Macro AUCMacro 1Err RankLoss

0/3 0/3 0/3 3/3 0/3 1/3 0/3 3/3 0/3 2/3
BR

(0.0%) (0.0%) (0.0%) (100.0%) (0.0%) (33.3%) (0.0%) (100.0%) (0.0%) (66.7%)

0/3 1/3 1/3 3/3 1/3 2/3 0/3 3/3 0/3 1/3
LP

(0.0%) (33.3%) (33.3%) (100.0%) (33.3%) (66.7%) (0.0%) (100.0%) (0.0%) (33.3%)

0/21 17/21 17/21 21/21 18/21 13/21 12/21 21/21 0/21 2/21
SR

(0.0%) (81.0%) (81.0%) (100.0%) (85.7%) (61.9%) (57.1%) (100.0%) (0.0%) (9.5%)

6/42 33/42 34/42 34/42 35/42 35/42 22/42 42/42 0/42 21/42
RB

(14.3%) (78.6%) (81.0%) (81.0%) (83.3%) (83.3%) (52.4%) (100.0%) (0.0%) (50.0%)

Table 2: Correlation Between Cardinality and Each Measure — Sum of Number of Times, Considering SMO, J.48 and NB, (and

Percentage) when Correlation is High (> 0.7 or < −0.7).

Dens Hamm Acc F SubAcc F1Micro AUCMicro F1Macro AUCMacro 1Err RankLoss

3/3 1/3 1/3 0/3 1/3 1/3 1/3 1/3 0/3 1/3
BR

(100.0%) (33.3%) (33.3%) (0.0%) (33.3%) (33.3%) (33.3%) (33.3%) (0.0%) (33.3%)

3/3 0/3 1/3 0/3 1/3 0/3 1/3 1/3 1/3 0/3
LP

(100.0%) (0.0%) (33.3%) (0.0%) (33.3%) (0.0%) (33.3%) (33.3%) (33.3%) (0.0%)

21/21 0/21 0/21 0/21 0/21 7/21 0/21 14/21 7/21 7/21
SR

(100.0%) (0.0%) (0.0%) (0.0%) (0.0%) (33.3%) (0.0%) (66.7%) (33.3%) (33.3%)

42/42 8/42 7/42 8/42 6/42 28/42 0/42 23/42 21/42 28/42
RB

(100.0%) (19.0%) (16.7%) (19.0%) (14.3%) (66.7%) (0.0%) (54.8%) (50.0%) (66.7%)

Table 3: Correlation Between Density and Each Measure — Sum of Number of Times, Considering SMO, J.48 and NB, (and

Percentage) when Correlation is High (> 0.7 or < −0.7).
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Figure 12: Post-Hoc Hypothesis Test H4

all experimentation scenarios. In fact, observing Figures 4.1, 4.1 and 4.1, there are not many overlaps between the curves,

except considering Medical and GenBase datasets, and both have Dens values very similar — 0.028 and 0.064, respectively.

Surprisingly, the lower the Dens, the better the Hamm results. Other measures show some correlation with the RB method, but

it is more sparse — AUCmicro, AUCmacro, 1Errr and RankLoss.

4.4 Analysis of C Lower than |L|

To analyze values of C when it is lower than L for the RB method, we realized experiments with RB using t = 0.2, the

J.48 base learning algorithm and values of C in the set {0.1|L|, 0.3|L|, 0.5|L|, 0.7|L|, 0.9|L|}. We want to analyze if there is

improvement in the measure values when C increases. For this analysis, we also calculated Pearson correlation between the

number of constructed models and the measurement values obtained. Figure 13 shows the correlation values from the measures’

perspective, and Figure 14 shows the correlation values from the datasets’ perspective. In both figures, correlations (bars) bellow

the bottom dot line indicate high negative correlations, i.e., the higher the number of models, the lower the measure value;

correlations (bars) above the upper dot line indicate high positive correlations, i.e., the higher the number of models, the higher

the measure value.

Figure 13 shows that, except for Yeast and Scene datasets, Hamm decreases when increasing the number of models, and

Emotions, GenBase, Enron and Medical datasets have higher numbers of labels than Yeast and Scene (Table 1). Also,AUCmicro,

1Err and RankLoss are measures that shows better results when incrementing the number of C in RB. The other measures in

general have improvements when increasing C, but there is some exceptions.

Figure 14 shows that the Emotions dataset is impacted positively on increasing C because correlation is negatively high

for Hamm, 1Err and RankLoss, as it should be. On the other hand, for the Yeast dataset there is a negative impact when

increasing C. The other datasets have mixed positive and negative impacts.
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Figure 13: Correlation Values from Measure Perspective.

Figure 14: Correlation Values from Dataset Perspective.
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5 Conclusions and Future Work

In this work, we propose a method for construction of multi-label classifiers, named RB — Random-Bagging. The RB

method is based on the simple SR method for multi-label problems and on the Bagging method for combination of classifiers.

The method was implemented using the Mulan library and the Weka tools, on Java language. 6 (six) datasets were used as

benchmarks to evaluate our proposed method, as well as to evaluate the SR method, and to compare both methods to LP and BR,

benchmark methods used for multi-label learning. We could observe that RB shows better results than the other methods — BR,

LP and SR — considering some evaluation measures used for multi-label classifiers.

Correlation measurements obtained in this work indicate that methods that take into account Card and Dens may lead to

better results when multi-label datasets with high values of Card and very low values of Dens are available, since in general the

correlation occurs when the results are worse for increment of Card values and/or decrement of Dens values.

In our experiments we could also observe that, in general, there are many positive gains when approximating the number of

base classifiers of RB to the number of labels existing in a dataset. We believe that this occurs because in this case all labels

may occur in some training dataset. On the other hand, turning the number of models of RB very large does not bring a high

improvement to the method that justifies the computational cost. So, RB using number of models equals to the number of labels

of the dataset could be a default choice.

In future work, we intend to investigate methods to construct multi-label classifiers reducingDens to induce better classifiers.

Also, we also intend to investigate further the relation between the measures Dens and Card and the performance of the

classifiers.
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