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Resumo —Paradigmas baseados em Aprendizagem de Maquina domirgesgssas mais recentes em Tradugio Automatica.
O estado-da-arte &€ baseado em implementac¢des que @epapenas de métodos estatisticos que coletam todo oochormeo
necessario de corpora paralelos. No entanto, essa fattardeecimento linguistico explicito os torna incapazesrebdelar
alguns fendmenos linguisticos. Neste trabalho, sdgados modelos que levam em conta a informacao sintateérguas en-
volvidas no processo de tradugﬁ)seguida uma proposta recente baseada no preprocessamentpora paralelos através de
analisadores sintaticos e que usa modelos de tradugdwosbos por Transdutores Aevores. S3o realizados experimentos com
o par de linguas Inglés e Portugués Brasileiro, provesdarimeiros resultados conhecidos em Traducao AufoenBstatistica
baseada em sintaxe para esse par. Os resultados mostragsapeaosta & capaz de modelar mais facilmente fendrnenus
reordenamentos de longa distancia e fornecem direciamaspara melhorias futuras na constru¢ao de modelosadadio
baseados em sintaxe para esse par.
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Abstract — Machine Learning paradigms have dominated recent reséanetachine Translation. Current state-of-the-art
approaches rely only on statistical methods that gathereadéssary knowledge from parallel corpora. However, #dk bn
explicit linguistic knowledge makes them unable to modehsdinguistic phenomena. In this work, we focus on models tha
take into account the syntactic information from the langgsinvolved on the translation process. We follow a novptagch
that preprocess parallel corpora using syntactic parsefsiaes translation models composed by Tree Transducergeie
form experiments with English and Brazilian Portugueseyigling the first known results in syntax-based Statistidathine
Translation for this language pair. These results showtthatapproach is able to better model phenomena like losgace
reordering and give directions to future improvements iiding syntax-based translation models for this pair.

Keywords —Statistical Machine Translation, Tree Transducers, Mazhearning

1. Introduction

Statistical Machine Translation (SMT) is the process afgfating from one natural language to another one usinigtitat
models and machine learning techniques [1]. In the last tyvgears, SMT has become the main research focus in Machine
Translation, mainly due to the advent of massive parall¢h devailable in the web and the improvement in computational
performance. The idea of SMT is to take advantage of this watatomatically build statistical (language and transigt
models that infer the necessary linguistic knowledge tchédtanslation process.

By improving the statistical models and training algorigymmany advances were obtained in SMT since it was first pezpos
by [2]. Current state-of-the-art SMT systems implemeneBarbased models (PB-SMT), which use phraaeghe translation
unit [3, 4]. These models do not use any explicit linguistiowledge, relying only on the implicit knowledge providegithe
corpus. In previous work, [5] performed experiments in FBTSetween Brazilian Portuguese and both English and Spanis
languages. The results presented were promising: in soperiments, the PB-SMT systems outperformed rule-basewi-ha
made systems.

However, in the last years these advances have been degrepsrely statistical changes have not brought any sigmific
improvements in translation performance. The followingraple shows a sentence in English translated to Braziliatu§aese
by a PB-SMT system, along with the reference translationentgda human specialist:

Source sentenceThe oldest poems are translated.
PB-SMT translation: O mais antigo poemas s ao traduzidos.

Reference translation: Traduzidos poemas mais antigos.

1A phrase in this context is defined as any sequence of words.
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As the example shows, the system was not able to correctlghmty-distance reorderingnd the numbeagreemenbetween
“antigo” and “poemas”. Such problems led to new approacheé3MT intended to combine statistical methods with explicit
linguistic knowledge.

Some of these approaches incorporate syntactic informbgiparsing the parallel data before building the transtatiodel.
Usually, the problem is modelled by meansSyhchronous Context-Free GrammgB&CFGs), which are an extension of Context-
Free Grammars with rules that expand symbols in two rigindhgides, one for the source language and another one for the
target language. The translation (decoding) process stsrisi using the grammar to parse the source sentence aiedeets
derivation (sequence of rule applications). Then, the sdeni@ation rules are applied in reverse order to generateémslation
in the target language. SCFG-based models appear in thatlite under different names such as Syntax-based SMT {b] an
Syntax-augmented SMT [7].

Recently, tree-based methods have been used to model sSyrBMT. These methods are able to represent the so called
Tree Languageswhich are more powerful than the string languages repteddny the SCFGs. In this work, we focus on
implementing these models and investigate how they behatt@eoEnglish-Brazilian Portuguese (en-ptBR) language pai

The remaining of this text is structured as follows:

e In Section 2, we describe Tree Languages in more detail aa@bthe most used formalisms to represent them, the Tree
Transducers.

The methods used to learn translation models based on Taesducers are explained in Section 3.

e The SMT model used in this work is defined in Section 4.

Section 5 tells about the decoding process, namely how thE i@btel trained is used to translate new sentences.

Experiments with the en-ptBR language pair are the focugofiéh 6.

e In Section 7 we give concluding remarks and directions faureiwork.

2. Tree Languages and Tree Transducers

A tree language is defined as a set of trees. Similarly togsteinguages, they are usually represented by a grammar or an
automata that generates and/or recognizes them. In spatsed SMT, the tree languages of interest are the ones eththyn
syntactically parsing the parallel corpus used as traidatg. These form a subtype called Regular Tree LanguagdfTL).

RTLs are related to string Context-Free Grammars in theviolig ways:

e The set of possible derivations of a CFG forms a RTL.
e The set ofyieldsof a RTL may be recognized by a CFG. The yield of a tree is thaesecg of its leaves from left to right.

The greater modelling power of tree languages comes frorfatiiéhat the reciprocal of the first item above is not truenso
RTLs cannot be represented by CFGs. Figure 1 shows an exam@eG able to model these two trees must have the rule
S — S§S. Since this rule is recursive, this CFG would result in amitdi number of trees, instead of just the two ones shown on
the figure.

A A

S S
]
b a

L— W
o—W0

Figure 1: An RTL that can not be modeled by a CFG.

In the context of SMT, theoretically we want to “translatetrae into another. Those trees are composed by the source
and target sentences with its corresponding syntactigsisalThe most widely used formalism to transform trees laedtee

TransducergTTs).
The definition of a TT is analogous to a Finite-State Transduehile the former transform strings, the latter transforees.
Following the definition proposed by [8], a TT is a quintupie A, Q, Q;, R), where:

e Y is the input alphabet (source language),
e A is the output alphabet (target language),
e () is a set of states,

e (); € Qisthe initial state,
12
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e Ris aset of rules that maps tree fragments in the input alghalfieEagments in the output alphabet.

Figure 2 shows an example of a transducer able to translkatértglish sentence shown in Sectiontlie(oldest poems are
translated to its reference in Brazilian Portuguesmfluzidos poemas mais antigo&€ach non-terminal symbol is associated
with a state, indicating that the rule can only be appliedmihe transducer is in that state. The TT of figure 2 has onlystate
(“g™). Theoretically, it could have more states but when EFe used as translation models they usally have only one.

a1l q.S — S as| QNP — NP s’ gN — N
|
VP NP the/q.l/\IP\q.VP I\@JP q.AQq.N poemas poems
| Q.ADIP  — ADJP |az!| qVP — VP
A[{\ADJ ADV \Y AUA/
|
mais antigos  oldest traduzidos are translated

Figure 2: Asetofrulesina TT

Rulea; on Figure 2 is of great interest in this work since it is ablenodel long-distance (phrase-level) reordering. While
this phenomena is easily represented in a TT, it is prokiéfor phrase-based systems since modeling all possibidegogs
is unfeasible due to exponential growth in processing ti&je Thus, to solve the problem, a PB-SMT system has to cdnstra
these reorderings by limiting the distance between phrdsésls, these constraints are motivated by syntactic stradnstead
of phrase distance.

TTs are commoly used to build translation models when syiatparsers are available in both languages, an approaetrkno
asTree-to-Treeln this work, we focus on approaches used when syntacticrimdtion is available only on one of the languages:

Tree-to-String (TTS): syntactic information is given only on the source language.
String-to-Tree (STT): syntactic information is given only on the target language.
To build translation models for these approaches, we usaitasiformalism called th&ree-to-String TTS) transducers.

2.1. Tree-to-String Transducers

While tree transducers have rules with tree fragments om &ides, TTS transducers have rules that map tree fragntents t
strings. Figure 3 shows an TTS transducer equivalent to Thef Figure 2. Notice that rule;s on the Figure 2 has been broken
into two rules. This is due to the fact that TTS transducetg bave to follow the syntactic constraints of the sourcetéoget)
language instead of both.

1! g.S —thegq.NPq.VRas:| q.NP — q.ADJP q.N as: q-N — poems

/N /N |

VP NP N ADJP poemas
Qy. q.ADJP  — oldest| as: g.v  — aretranslatethg: | q.VP — q.V
ADV  ADJ traduzidos Y

mais antigos

Figure 3: A setofrulesina TTS transducer

When using a TTS transducer in the decoding (translatiomess we are not usually interested in retrieving the riegult
tree in the target langauge, only the sentence. Becauséspittls possible to transform it into a SCFG and then use #émees
parsing algorithms used by them in decoding. When the tranesdhas only one state this transformation is straightfiodw
the rules are flattened, removing any internal syntactwrinftion. Figure 4 shows the resulting SCFG rules afteefiaty the
transducer of Figure 3.

To use the resulting grammar to translate new sentencegsivedise the source sentence and retrieve its derivaggnésce
of rule applications). Then, we apply the derivation rutesaverse order to generate the target sentence, as shovigura 5.
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r1:S—= (VP NP, ,the NP, VP) rq : ADJP — (mais antigos , oldest)
ro: NP — (Ny ADJP,, ADJPy Ny) | r5: V = (traduzidos , are translated)
r3 : N — (poemas , poems) re: VP — (V1 , V1)

Figure 4: Resulting SCFG after transducer flattening
English sentence analysis:

T4 =713 =72 =>7T5=>7¢=>"1

ADJP |=| ADJP N = NP = NP \% =
|
oldest oldest poems ADﬁ\I ADﬁ\I are translated
| |
oldest poems oldest poems
NP VP = S
%\
AD@\I \% the NP VP
N
oldest poems are translated AD@\I V
|
oldest poems are translated

Brazilian Portuguese sentence generation:
" = 7Tg=>7T5 => T2 =>T73=>T4

S = S = S = S = S =
AN EIVA N\ N T
VP NP VP NP VP NP VP NP VP NP
| | N | N
Y V Y N ADJP \Y, N ADJP
| | ]
traduzidos traduzidos traduzidos poemas
S
/\
VP NP
‘ /\
\Y N ADJP
| N
traduzidos poemas mais antigos

Figure 5: Translation process using a SCFG

3. Transducer Training

In SMT, a parallel corpus is used as input data for buildimgstation models. This corpus is made by a set of sentences
in the source language with its corresponding translafiotise target language. In most SMT models (including phizssed
ones), a preprocessing step calledcal alignmenis done before the actual training procedure. This aligrirains to indicate
the correspondences between words in each sentence gaire I6ishows an example of a sentence pair that is lexicédjped.

To train a translation model from this preprocessed corjpis,necessary to 1) extract translation rules and 2) irfeirt
probabilities. In phrase-based models, the rules are@gttatraight from the lexical alignment information. Feample, from
the alignment shown on Figure 6, it is possible to extraciatranslating the word “oldest” into the phrase “mais aosiy The
probabilities are usually calculated by getting the retafrequencies of each rule.
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traduzidos poemas mais antigos

N 4

;-
P EN N

N ~

the oldest pc')ems\ are translated
Figure 6: Lexical alignment example

In syntax-based SMT, another corpus preprocessing stes fadkce: the source language half (TTS models) or the target
language half (STT models) is syntactically pafsetihis result in a set of structures namaynment graphs As shown in

Figure 7, an alignment graph is composed by a lexically alijsentence pair with one of the sentences annotated with its
syntactic tree.

............. S
A
VP NP
| N
Y N ADJP

traduzidos poemas ADV ~ ADJ

N | ‘ ‘

mais antigos

-

z 1
s N

the oldest poems are translated
Figure 7: Alignment graph for the pair of sentences in Sectio

3.1. GHKM

To extract TTS rules from the alignment graphs, we use the RH#gorithm [10]. For each graph in the parallel corpus,
GHKM executes the following steps:

1. For each non-terminal symbol in the graph, annotatepigsy The span is defined as the set of reachable terminals in the
target sentence. By definition, non-aligned target terfaiage aligned to the graph root symbol.

2. For each non-terminal symbol in the graph, annotatedtsplementary spariThe complementary span is defined as the
union of the parent complementary span and each sibling span

3. Non-terminals with null intersection between its spad eomplementary span are markedrasitier nodes

4. Rules are then extracted frdinontier graphs which are non-trivial subgraphs where all its source an#f siodes are
frontier nodes or source terminals.

The alignment graph on Figure 8 shows each non-terminaltatetbwith its span and frontier nodes are marked in bold.
Only the ADV and ADJ non-terminals are not frontier sinceitispans overlap (both reach the same target word “old€eBtig.
rules extracted from this graph have already been showrgur&i3.

To obtain the rule probabilities we need to infer thestTTS transducer according to the corpus. In other words, \ed e

infer the transducef that maximizesP(T'|C), whereC is the input corpus (composed by the alignment graphs). f€his is
expanded using Bayes’ Rule, resulting in the following fafan

P(C|T) x P(T)

T = argmaz P(T|C) = argmaz 1
argm (T|0) gn PO 1)

2|n Tree-to-Tree models, both halves are parsed.
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S{the,oldest,poe'rns,a're,translated}

/\

Vp{are,translated} N P{oldest,poems}
V{are,translated} N{paems} AD‘]P{oldest}

| | T

traduzidos poemas ADV (,i4esty ADJfordest)

I
I

AN mais antigos
| - -

<_-7 N ~
s - ~

the oldest poems are translated
Figure 8: Alignment graph with spans annotated

The termP(C) is constant because the input corpus is always the samee Biilscan maximization formula, it can be
discarded:

T = argmaz P(T|C) = argmaz P(C|T) x P(T) 2
T T

This results in ayenerative processvhere we suppose that a transducer is given with probatiil”) andgenerateghe
corpus with probability?(C|T"). The termsP(T'|C), P(C|T) and P(T) are named thposterior, thelikelihood and theprior,
respectively. When we do not want to make any assumptiongtdabe best transducer we model the prior probability as an
uniform distribuition. Therefore, the terf(7") can also be discarded:

T = argmaz P(T|C) = argmaz P(C|T) 3
T T

The equation above corresponds to kieximum Likelihood Estimat@/ILE) statistical method. In GHKM, it can be proved
that to obtain the best transducer according to MLE it is ghow simply calculate relative rule frequencies accordmgs
root, similar to what PB-SMT uses. This is due to the fact thataet only theminimal rulesfrom the alignment graphs and
therefore only one derivation is considered for all aligmtrgraphs.

While it is possible to build a translation model using orig minimal rules extracted by GHKM, these rules tend to agptu
small contexts in the syntactic structure. To build robustleis, bigger rules should be taken into account. Theaitithe best
procedure would extract all rules from the corpus and théer itheir probabilities. But it is not feasible to extract pbssible
rules because they grow exponentially in graph size. Becalihis, heuristics are used to limit rule sizes.

To tackle the above problem, [11] expands GHKM in the follogvivay: after extracting minimal rules, a subset containing
only n terminal symbols on the left side is combined between themerating bigger rules. With this new rule set, it becomes
impossible to calculate MLE using only the relative freqcies because these new rules resultin more than one denvatithe
alignment graphs. Instead, the Expectation-Maximizgtitiv) algorithm is applied to obtain the probabilities. Theperiments
described in their work used 3 and 4 as valuesifor his restriction on rule size permits EM to run in polynohtiiae.

The main issue with the EM approach is that it tends to ovéréitttaining corpus. Since alignment graphs probabilites ar
calculated by a product of rule weights EM tends to give higheights to bigger rules, degenerating the transduceright |
of this problem, [12] proposes another method, where idstéinferring the best transducgt, they infer the bessequence of
derivationsS used in the generative corpus building process, modifyipggiion 2 in the following way:

S = argmaz P(S|C) = argmaz P(C|S) x P(S) 4
S S

The difference betweeit and S is crucial: while for a given transducgt many corpora could be generated, for a given
sequence, only one corpug’ is possible. If you changg even in the slightest way (like swapping two rules in the seme,
for example), then the corpys would be different. The result of this difference is that tikelihood P(C|S) can only be 1
(when the corpus is composed by the sequence) or 0 (whenat)s 8o, the inferring process is all done by the pi(s),
which is modelled as Birichlet Process (DP)nstead of a uniform distribution.

SWe define the root of a TTS rule as the root symbol of the ruke firagment.
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3.2. Dirichlet Process

The Dirichlet Process (DP) is defined as a distribution olerinfinite space of possible TTS rufesThis distribution has
the property to take into accountall TTS rules used in theeg@ive procees. Formally, the distribution of a rule adawg to its
rootr is defined as:

rule|r  ~ Groot
Gr|araP0 NDP(QT,P0(~|T)) (5)

wherePy(-|r) (thebase distributiohis a distribution over the infinite rule set withas its root and, is called theconcentration
parameterof r. Intuitively, the base distribution defines what rules asediin the generative process while the concentration
parameter controls the trend to create new rules or reugistirgy ones.

Following the procedure used by [12], instead of samplimgight from the DP distribution, we integrate over all possi
rule sequences, obtaining a conditional distribution diedithe probability of the next rule be generated. Then, ttobability
of rule; (i being the position of this rule in the sequence) accordintgtmotr; is defined as:

count(rule;) + oy, Po(rule;|r;)

(6)

P(rule|rule<i,ri, o, Po) = count(r;) + «
1 Ti

Whererzfle@ is the set of all other rules used in the generative proceiistiien, count(rule;) is the total of times thatule;
shows up inm;le<l- andcount(r;) is the total of times that a rule with roef shows up irmfle@-. If ., is equal to zero, the
formula becomes the relative frequency of the rule. Becafighis, intuitively this formula can be understood as atreta
frequency that takes into account the base distribution.

Another way to understand the DP is to consider it @amehemodel, where everytime a new rule is generated, the model
chooses one from the cache of already existent rules oresraatiew one using the base distribution. As the corpus isgece
the cache becomes bigger and the model tends to choose anétfrdhis is a phenomenon that actually occurs in natural
language: while it is always possible to use new syntaaticiires we tend to use already existent ones.

The base distribution defines what kind of rules will appeahie resulting transducer. Since bigger rules tend to avbei
corpus, this distribution is defined in a way that it givesagee probabilites to smaller rules. To achieve this, it igleited as
another generative process in the following way:

o Tree (left side) probability:

1. If the node is not @art-of-Speec{POS) tag, expand it inta children, wheren is sampled from a geometric
distribution with parametef.;;;4. If the node is a POS tag, expand it deterministically intdnildc

2. Choose the generated symbol according to a uniform loligioin over all symbols (non-terminals and terminals).

3. For each non-terminal generated, choose to expand ittpaceording to a parametét,pq.q. Return to step 1 for
each expanded symbol.

e String (right side) probability:

1. Generaten terminal symbols, wherg: is sampled from a geometric distribution with parametgf., .
2. Generate each terminal symbol according to a unifornibligton over all terminal symbols.

3. Generate the string non-terminals one at a time, puttingane of the available positions according to a uniform
distribution over all available positions.

Rule probability is then calculated by multiplying the trad string probabilites. Figure 9 shows an example of hos thi
calculation is made.

3.3. Gibbs sampling

Using a DP prior, we could apply EM to maximize Equation 4. Bhis would require the enumeration of all possible
derivations and, as explained in Section 3.1, this is uilféemdue to exponential growth. The solution proposed by [§20
sample from the possible derivations using a procedured@&llbbs sampling

The Gibbs sampling works by changing one of the modeiableswhile keeping the other variables constant. In the
transducer inference problem, the variables are the natesgtefined by GHKM. The idea is to iteratively change thosasp
aiming to maximize Equation 4 and find the best transducer.

The sampler visits each frontier node in each alignmenttgmaghe corpus in random order. For each of these nodes, it
finds what are all its possible spans and choose one of them tioebnew span (it can be the same as before). This choice is
made in proportion to the resulting posteriors of each sparfind which are the possible spans for a given node, soms anée
considered:

4For a generalized explanation about the DP, we refer thesreéadhppendix A in [13].
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TTS rule: g.S — the g.NP q.VH
Parameters:

A ﬁchild = 0.5, ﬁezpand = 0.5, ﬁterm = 0.5, N = 9, T =10
VP NP

Calculation:

P(tree) Pgeom(2|ﬁchzld) X L X ( ﬁezpand) % X (1 - Bewpand)

(tree —025X02X05X02X05—00025
P(string) = Pgeom(1|Bterm) X 77 X 3 X %
P(string) = 0.5 x 0.1 x 0.5 x 0.333 = 0.08325
P(

rule) = P(tree) x P(string) = 2.08125¢~%°

Figure 9: Example of rule probability calculation acco@lin a base distributionV is the number of non-terminal symbols and
T’ is the number of terminal symbols. In this example they abétrarily set to 5 and 10, respectively. In a realistic seffiv
would be defined by the symbols used in the syntactic pargEFahy the languages’ vocabulary.

1. The root node span must cover all words in the target seaten
2. The span of a node must be a subspan of his parent node.
3. The span of a node must contain all span of its children.

4. Spans of sibling nodes can not overlap.

Figure 10 shows an example where the sampler is visiting tlde NP and evaluating its possible spans (in this case, there
are two of them). Each one defines two different TTS ruleswshon Figure 11. The sampler then defines which span will be
chosen according to the posterior of each resulting trazesdu

In theory, to calculate each posterior it would be necessamgake into account the probabilities of each rule in all the
alignment graphs. But the sampler does not need the truermostalues, only theiproportion So, the sampler only uses the
probabilities of the rules inferred by the possible spaimgesall the other rules do not change. In the example showkigure
10, the sampler chooses the span according to the follovdhges:

P(span = spany) = P(ri1) X P(ri2)
P(span = spany) = P(ra1 X P(rag) @)

where:
e spani andspans are the two possiblspandgor the node, shown on Figure 10.
e r1; andrio are the two TTS rules implied bypan,, shown on Figure 11.

e o1 andrqs are the two TTS rules implied bypans, also shown on Figure 11.

4. SMT model

To use a trained TTS transducer to translate new sentencesedeto insert it into a SMT model. In SMT, the translation
task is defined as an optimization process: the goal is to fiedest target translatidrthat maximizes the probabiliti (¢|s),
wheres is the source sentence. Following previous works in disodtive SMT modeling [4, 14], we use a log-linear model to

defineP(t|s):
K

t= argmaz P(t]s) = argmaz esz)\khk (t,s) (8)
k=1
In this model, theh (¢, s) terms represerfeature functionghat may take into account: the source sentence, the target
candidate translation or both. Thg terms in equation 8 are the functiotsefficientsin our experiments, we use the following
feature functions (similar to the ones used by [14]):

e P(s]t): translation model, based on a TTS transducer.

e P(t): a ngram-based target language model used to determineutireeyl of the candidate translation. Ngram-based
language models are considered state-of-the-art for SMT [1

e length(t): the length of the target candidate translation.

e rules(t, s): the total number of rules used when translating the seatenc
18
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span:

S{the,oldest,poems,are,translated}

/\

N P{oldest,poe?ns}

VP{are,translated}
| T T

N{poems} ADJ P{oldest}

T

poemas ADV {oldest} ADJ{oldest}

h |
* N > ~ ! . .
mais antigos

V{are,translated}

traduzidos

NS

~
N ~
N N . _

N
N

-
N -
N ~

I

I

|

)

I

I

»

-

P [
>

- N ~
-7 N
[P ~

the oldest poems are translated

span:

S{the,oldest,poems,are,translated}

/\

""" Np{the,oldest,pomns}

VP{are,translated}- :
N{poems} AD‘]P{oldest}
traduzi“dos poemas ADV {145ty ADJfordesty

I

h N > ~ ! . .
. mais antigos
' .

V{are,transl(ﬂed}

the oldest poems are translated

Figure 10: Possible spans for a node visited by the Gibbslesnpthis case the NP node. The second span implies amadigh
between the node and the word “the” which before was aligrifdtive root node, according to GHKM output.

span:
r11: g.S —theg.NPqg.VRr12:| q.NP — q.ADJPqg.N
VQP @JP
span:
T91: g.S —g.NPQg.VPra:| q.NP — theq.ADJP g.N
VQP I\@D‘]P

Figure 11: TTS rules implied by the spans of Figure 10

e lex(t|s): lexical weight with respect to the target sentence.

e lex(s|t): lexical weight with respect to the source sentence.
The lexical weight is a feature function which tries to moldelv good each word in a TTS rule translates into its corrediman
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string in the rule. It is defined by the following formula:
count(t, s)
lex(t|s) = =————"— 9
6:17( |S) Zt/ Count(ﬁl,s) ( )

wheret’ means every possible target word aligned witfrhe count values are gathered from the lexical alignmethigrraining

corpus.
To obtain the\;, values we use Minimum Error-Rate Training (MERT) [15]. Th&RIT algorithm uses a validation corpus
(which should be different from the training corpus) witfierence translations and infag, values that minimizes a given error

metric. For our experiments, we use BLEU [16] as the errorimet

5. Decoding

In the decoding process we flatten the TTS rules and trandgfanto a SCFG, as explained in Section 2.1. If the SMT model
is composed only by the translation model, it is possiblerandlate new sentences by just parsing the input senteimg us
the best derivation. But our model is composed by sever@difedunctions which should be considered when finding tret be
translation. In this case, it is easier for the decoder tofiimgls all possible derivations for the input sentence atiogrto the
translation model, building anslation foresor hypergraph17, 18].

A translation forest is a compact representation of all jpbsslerivations for a source sentence. Each rule appbicas
represented by amyperedgewhich is an edge that starts in many nodes (#ilenodes) and ends in one node (theadnode).

Since some derivations have common rules, these are “cesgatéinto one hyperedge, as shown on Figure 12.

S

NP
/I’\\\\\\\\iz
NP Np NP
Det N \:/ Det N P Det N
|
0 homem viu a estrela com 0 telescopio

Figure 12: A translation forest representing two possitdevations. The dotted hyperedge shows one derivationenthié
dashed hyperedge shows another one. Solid hyperedgespmmos to rules common to both derivations.

Each node in a translation forest has a probability. The dercthernrescoreseach node according to the log-linear model. If
itis a head node of an hyperedge, the calculation also tak@atount the probabilities of the hyperedge tail nodesemthere
is more than one hyperedge, only the bigger value is corsig@rhich corresponds to best derivation until theBach node is
rescored by the decoder in a bottom-up process. When itesdbk root, the best derivation is obtained and the targétisee

is generated.
5This process is analogous to the Viterbi algorithm used taintthe best derivation.
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The forest building process is relatively faét((:®), wheren is the source sentence size) but the rescoring processtends
be very slow due to the additional features used in the logali model. To tackle this issue, a number of heuristics sed to
prune the forest when the rescoring process takes placendbieused are theeam searcii3] and thecube prunind19].

6. Experiments

To evaluate how TTS transducers behavelirptBRand ptBR-entranslation, four experiments were performed using the
PesquisaFAPESP corgusWe used the corpus version 1, composed by 646 articles aB87 %entence pairs in English and
Brazilian Portuguese For training, validation (via MERT) and testing purposes,broke the corpus in sets of 80%, 10%, 10%,
respectively.

We also used the additional tools:

e Berkeley Parsér[20, 21] and LX-Pars@{22] for parsing theenandptBRtraining sentences, respectively.

Berkeley Alignet® [23] for corpus lexical alignment.

e Moses! toolkit [24] for experiments with PB-SMT models and céewolkit [25] for decoding with GHKM models.

SRILM?3 [26] for building the ngram-based language models.

BLEU [16] and NIST [27] metrics to evaluate the results andtstrapping todf* [28] to assess statistical difference. All
the results presented in this paper are statistical sigmificonsidering a confidence level of 95%.

6.1. GHKM vs. PB-SMT

We first compared the models generated by GHKM with PB-SMT et&dr he results, presented in Table 1 show that GHKM
models are outperformed by current state-to-the-art nsddddoth language pair directions. This decrease in pediooa was
mainly due to spurious phrase reorderings made by GHKM, asisin the following example, where the phrase “variosfas)
was wrongly reordered to the middle of the sentence:

Source sentenceseveral factors contribute towards the complexity of the process , in
any language .

Reference: varios fatores contribuem para a complexidade de o processo , em qualquer
idioma .
PB-SMT hypothesis: varios fatores contribuir para a complexidade de o processo , em

gualquer linguagem .

GHKM hypothesis: contribuir para a complexidade de o processo de v arios fatores ,
em qualquer linguagem .

Table 1: Results from comparing GHKM and PB-SMT models

| BLEU | NIST
GHKM-TTS en-ptBR| 0.2745] 7.2783
PB-SMT en-ptBR__| 0.3898] 8.7376
GHKM-TTS ptBR-en| 0.0946| 3.8034
PB-SMT ptBR-en | 0.4001| 9.1309

6PesquisaFAPESP corpus is composed by a selection of aifiicla the Pesquisa FAPESP scientific magazitip(/revistapesquisa.fapesp.
br/ )

7Available atwww.nilc.icmc.usp.br/lacioweb

8Available atcode.google.com/p/berkeleyparser

9Available atlxcenter.di.fc.ul.pt/tools/pt/conteudo/LXParser.htm

10Available atcode.google.com/p/berkeleyaligner

Available atwww.statmt.org/moses

12pyailable atcdec-decoder.org

L3pvailable atwww.speech.sri.com/projects/srilm

14pvailable atprojectile.sv.cmu.edu/research
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6.2. TTSvs. STT

In Table 1, the BLEU and NIST scores are very similar for batiguage pair directions when using PB-SMT models but
very different when using GHKM models: scores fitBR-erare much lower. Since the main difference between eachtidinec
is the parser used (Berkeley fen-ptBRand LX-Parser foptBR-en we also made experiments using GHKM to build STT
models and therefore changing the parser used in each pair.

Results presented in Table 2 confirm that the parser indeea $@rious impact on the model performance: scoresfqtBR
were much lower when using the LX-Parser. The example behows the same sentence from the first experiment but evdluate
in respect to the TTS or STT approach:

Source sentence:several factors contribute towards the complexity of the pr ocess
in any language

Reference: varios fatores contribuem para a complexidade de o processo ,
em qualquer idioma

TTS hypothesis: contribuir para a complexidade de o processo de v arios fatores ,
em qualquer linguagem

STT hypothesis: alguns contribuir para a complexidade de os fatores de o proc esso de o
brasil , in any language

The transducer generated by the STT approach in this caspbesus rules (like the one which added the word “brasifijf a
lower lexical coverage (observed by the untranslated gHiiasany language”).

Table 2: Results from comparing TTS and STT approaches

| BLEU | NIST
GHKM-TTS en-ptBR| 0.2745| 7.2783
GHKM-STT en-ptBR| 0.0872| 3.1267
GHKM-TTS ptBR-en| 0.0946| 3.8024
GHKM-STT ptBR-en| 0.1739| 6.1405

6.3. Language model influence

The previous experiments for then-ptBRdirection used th@tBR portion of PesquisaFAPESP for training the language
model. To investigate how more robust language models imgp@&HKM results, we also performed experiments using the
CETENFolha corpu8. This corpus is composed of 1.597.807 Brazilian Portugses¢éences extracted from “Folha de Sao
Paulo” newspaper.

Table 3 brings the scores obtained when using each languadel in GHKM and PB-SMT. As expected, both translation
models improved when using CETENFolha to train the languagédel but the improvement in GHKM is larger than the one
for PB-SMT. We credit this to the reordering power of GHKMh& it allows a more diverse set of candidate translations fo
language model disambiguation, unlike PB-SMT models.

Table 3: Results from comparing PesquisaFAPESP and CETIBNES language models

| BLEU | NIST
GHKM-TTS en-ptBR with PesquisaFAPESP0.2745| 7.2783
GHKM-TTS en-ptBR with CETENFolha 0.3132| 7.7660
PB-SMT en-ptBR with PesquisaFAPESP | 0.3898| 8.7376

PB-SMT en-ptBR with CETENFolha 0.4220| 9.0958
Difference GHKM-TTS 0.0387| 0.4877
Difference PB-SMT 0.0322| 0.3582

The bigger language model provided by CETENFolha helpedaegnt the spurious reorderings occurred in the first experi
ment. Using the same example shown in Section 6.1, we ndiaert this case the phrase “varios fatores” was not reedier

Source sentence:several factors contribute towards the complexity of the process , in any
language .

L5Available atwww.linguateca.pt/cetenfolha
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Reference: varios fatores contribuem para a complexidade de o processo , em qualquer
idioma .

PesquisaFAPESP hypothesiscontribuir para a complexidade de o processo de
varios fatores , em qualquer linguagem .

CETENFolha hypothesis: varios fatores que contribuem para a complexidade de o processo |,
em qualquer | ingua .

6.4. GHKM vc. Gibbs sampling

Finally, we also compared the models extracted from plaitK@Hnd the one with spans modified by a Gibbs sampler. Our
hypothesis is that running the sampler results in bettaistagion models. In this experiment, we used a subset ofr#i@ng
corpus with 40 words or le$% This resulted in a corpus with about 10300 sentences.

The parameters used in our experiments are the same use@]byhé& concentration parameterwas set to 100000, the
base distribution parametess, pand, Beniia andBeermn Were all set to 0.5 and 300 iterations were made by the sanipierlast
iteration was used to extract the TTS rules.

The results shown on Table 4 confirms our hypothesis for thetBR direction. In the case of the ptBR-en direction, the
BLEU scores were higher but the NIST scores were lower. Aigfidboth differences are statistically significant, it it passible
to infer conclusions because of this divergence on the score

Table 4: Results from comparing GHKM and Gibbs sampling algms
| BLEU | NIST
GHKM-TTS-40 en-ptBR| 0.2037| 5.7239
Gibbs-TTS-40 en-ptBR | 0.2079| 5.7521
GHKM-TTS-40 ptBR-en| 0.1013| 3.7845
Gibbs-TTS-40 ptBR-en | 0.1031| 3.7726

Comparing the hypotheses generated by plain GHKM and thesGbmpler for the en-ptBR direction, we noted that the
rules extracted by the sampler had more discerning powehefvto do a long-distance reordering. The sentence belowssho
an example of a spurious reordering made by plain GHKM thatav@ided by the Gibbs sampler.

Source sentenceprecision in diagnosis

Reference: precis ao em o diagn ostico

GHKM hypothesis: em o diagn ostico de a precis ao
Gibbs hypothesis: a precis ao de o diagn ostico

6.5. Discussion

Our experiments have given evidence that GHKM models aretalido long-distance reorderings that the PB-SMT models
were unable to do, as shown on the example sentences givensalbsections above. The lower scores obtained when cimgpar
the GHKM and the state-of-the-art models show that the forane actually doingoo manyreorderings, even when they are
not necessary. We believe that the GHKM models by itselvasaddake into account enough context to prevent those sjpsirio
reorderings, even though TTS transducers have the powepteinthese contexts. We propose two solutions to tackle this
problem:

¢ Improve the GHKM algorithm by changing the alignment grapéfore rule extraction. We use a generative model based
on a Dirichlet Process and a Gibbs sampler to modify the grapt extract rules with bigger contexts. We have shown that
better models are achieved this way for the en-ptBR diradiigd results are still unconclusive for the ptBR-en diratti

e Use language models trained on bigger corpora. One possiblee of the spurious reorderings made by the GHKM
models is its ability to generate a more diverse set of hyggishin the decoding process when comparing to the state-of-
the-art. More robust language models can help to allevieddgsue by having more power to select correct reorderings

Another conclusion obtained by our experiments is thatyinéegtic parser used when preprocessing the parallel sdrgue
a large influence in translation performance. There hava beme discussion in the literature about which approacls(@iT
STT) is better when building translation models and our lteghow that this decision should take into account thelaiviz
parsers for the language pair of choice. For the en-ptBRUageg pair, current state-of-the-art parsers for Englist te give
better translation models in either translation direction

16This restriction was due to the Gibbs sampler implememaized
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7. Conclusions and Future Work

In this paper we presented the first experiments carried pUETS and STT translation between English and Brazilian
Portuguese using tree transducers. The results obtaimsdthiat those models have potential to improve the statiefart
since they are able to model long-distance reordering legty@irases. Better translation and language models mayldéab
deal with the spurious reorderings issue encountered.

The analysis shown in this paper leads to interesting futesearch directions. In particular, we believe that puguine
following points may lead to substantial improvements:

Parser influence: Since the syntactic parser has a large influence in traoslgg&rformance, it could be an interesting work
to investigate in deeper which parser features improveehalting translation models. This investigation couldiéa
modified or specialized parsers for SMT.

Refined features: There is a current tendency in SMT for purely discriminativedels. [29] presents a model with more than
10.000 fine-grained features. Another research direcsitm éombine this approach with the use of syntactic infoionat

Bigger corpora: Recently, [30] published a new version of PesquisaFAPE8R,more than 180.000 sentences. Redoing the
experiments shown in this paper with this new version is anahextension of this work.
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