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Resumo –Paradigmas baseados em Aprendizagem de Máquina dominam aspesquisas mais recentes em Tradução Automática.
O estado-da-arte é baseado em implementações que dependem apenas de métodos estatı́sticos que coletam todo o conhecimento
necessário de corpora paralelos. No entanto, essa falta deconhecimento linguı́stico explı́cito os torna incapazes de modelar
alguns fenômenos linguı́sticos. Neste trabalho, são focados modelos que levam em conta a informação sintática das lı́nguas en-
volvidas no processo de tradução.É seguida uma proposta recente baseada no preprocessamentode corpora paralelos através de
analisadores sintáticos e que usa modelos de tradução compostos por Transdutores deÁrvores. São realizados experimentos com
o par de lı́nguas Inglês e Português Brasileiro, provendoos primeiros resultados conhecidos em Tradução Automática Estatı́stica
baseada em sintaxe para esse par. Os resultados mostram que essa proposta é capaz de modelar mais facilmente fenômenoscomo
reordenamentos de longa distância e fornecem direcionamentos para melhorias futuras na construção de modelos de tradução
baseados em sintaxe para esse par.
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Abstract – Machine Learning paradigms have dominated recent researchin Machine Translation. Current state-of-the-art
approaches rely only on statistical methods that gather allnecessary knowledge from parallel corpora. However, this lack on
explicit linguistic knowledge makes them unable to model some linguistic phenomena. In this work, we focus on models that
take into account the syntactic information from the languages involved on the translation process. We follow a novel approach
that preprocess parallel corpora using syntactic parsers and uses translation models composed by Tree Transducers. Weper-
form experiments with English and Brazilian Portuguese, providing the first known results in syntax-based StatisticalMachine
Translation for this language pair. These results show thatthis approach is able to better model phenomena like long-distance
reordering and give directions to future improvements in building syntax-based translation models for this pair.
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1. Introduction

Statistical Machine Translation (SMT) is the process of translating from one natural language to another one using statistical
models and machine learning techniques [1]. In the last twenty years, SMT has become the main research focus in Machine
Translation, mainly due to the advent of massive parallel data available in the web and the improvement in computational
performance. The idea of SMT is to take advantage of this datato automatically build statistical (language and translation)
models that infer the necessary linguistic knowledge to do the translation process.

By improving the statistical models and training algorithms, many advances were obtained in SMT since it was first proposed
by [2]. Current state-of-the-art SMT systems implement Phrase-based models (PB-SMT), which use phrases1 as the translation
unit [3, 4]. These models do not use any explicit linguistic knowledge, relying only on the implicit knowledge provided by the
corpus. In previous work, [5] performed experiments in PB-SMT between Brazilian Portuguese and both English and Spanish
languages. The results presented were promising: in some experiments, the PB-SMT systems outperformed rule-based, hand-
made systems.

However, in the last years these advances have been decreasing: purely statistical changes have not brought any significant
improvements in translation performance. The following example shows a sentence in English translated to Brazilian Portuguese
by a PB-SMT system, along with the reference translation made by a human specialist:

Source sentence:The oldest poems are translated.

PB-SMT translation: O mais antigo poemas s ão traduzidos.

Reference translation: Traduzidos poemas mais antigos.

1A phrase in this context is defined as any sequence of words.
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As the example shows, the system was not able to correctly model long-distance reorderingand the numberagreementbetween
“antigo” and “poemas”. Such problems led to new approaches in SMT intended to combine statistical methods with explicit
linguistic knowledge.

Some of these approaches incorporate syntactic information by parsing the parallel data before building the translation model.
Usually, the problem is modelled by means ofSynchronous Context-Free Grammars(SCFGs), which are an extension of Context-
Free Grammars with rules that expand symbols in two right-hand sides, one for the source language and another one for the
target language. The translation (decoding) process consists in using the grammar to parse the source sentence and retrieve its
derivation (sequence of rule applications). Then, the samederivation rules are applied in reverse order to generate the translation
in the target language. SCFG-based models appear in the literature under different names such as Syntax-based SMT [6] and
Syntax-augmented SMT [7].

Recently, tree-based methods have been used to model syntaxin SMT. These methods are able to represent the so called
Tree Languages, which are more powerful than the string languages represented by the SCFGs. In this work, we focus on
implementing these models and investigate how they behave on the English-Brazilian Portuguese (en-ptBR) language pair.

The remaining of this text is structured as follows:

• In Section 2, we describe Tree Languages in more detail and one of the most used formalisms to represent them, the Tree
Transducers.

• The methods used to learn translation models based on Tree Transducers are explained in Section 3.

• The SMT model used in this work is defined in Section 4.

• Section 5 tells about the decoding process, namely how the SMT model trained is used to translate new sentences.

• Experiments with the en-ptBR language pair are the focus of Section 6.

• In Section 7 we give concluding remarks and directions for future work.

2. Tree Languages and Tree Transducers

A tree language is defined as a set of trees. Similarly to string languages, they are usually represented by a grammar or an
automata that generates and/or recognizes them. In syntax-based SMT, the tree languages of interest are the ones obtained by
syntactically parsing the parallel corpus used as trainingdata. These form a subtype called theRegular Tree Languages(RTL).
RTLs are related to string Context-Free Grammars in the following ways:

• The set of possible derivations of a CFG forms a RTL.

• The set ofyieldsof a RTL may be recognized by a CFG. The yield of a tree is the sequence of its leaves from left to right.

The greater modelling power of tree languages comes from thefact that the reciprocal of the first item above is not true: some
RTLs cannot be represented by CFGs. Figure 1 shows an example: a CFG able to model these two trees must have the rule
S → SS. Since this rule is recursive, this CFG would result in an infinite number of trees, instead of just the two ones shown on
the figure.

S

S

b

S

a

S

S

a

S

b

Figure 1: An RTL that can not be modeled by a CFG.

In the context of SMT, theoretically we want to “translate” atree into another. Those trees are composed by the source
and target sentences with its corresponding syntactic analysis. The most widely used formalism to transform trees are theTree
Transducers(TTs).

The definition of a TT is analogous to a Finite-State Transducer: while the former transform strings, the latter transform trees.
Following the definition proposed by [8], a TT is a quintuple(Σ,∆, Q,Qi, R), where:

• Σ is the input alphabet (source language),

• ∆ is the output alphabet (target language),

• Q is a set of states,

• Qi ∈ Q is the initial state,
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• R is a set of rules that maps tree fragments in the input alphabet to fragments in the output alphabet.

Figure 2 shows an example of a transducer able to translate the English sentence shown in Section 1 (the oldest poems are
translated) to its reference in Brazilian Portuguese (traduzidos poemas mais antigos). Each non-terminal symbol is associated
with a state, indicating that the rule can only be applied when the transducer is in that state. The TT of figure 2 has only onestate
(“q”). Theoretically, it could have more states but when TTsare used as translation models they usally have only one.

α1: q.S

NPVP

→ S

q.VPq.NPthe

α2: q.NP

ADJPN

→ NP

q.Nq.ADJP

α3: q.N

poemas

→ N

poems

α4: q.ADJP

ADJ

antigos

ADV

mais

→ ADJP

ADV

oldest

α5: q.VP

V

traduzidos

→ VP

V

translated

AUX

are

Figure 2: A set of rules in a TT

Ruleα1 on Figure 2 is of great interest in this work since it is able tomodel long-distance (phrase-level) reordering. While
this phenomena is easily represented in a TT, it is prohibitive for phrase-based systems since modeling all possible reorderings
is unfeasible due to exponential growth in processing time [9]. Thus, to solve the problem, a PB-SMT system has to constrain
these reorderings by limiting the distance between phrases. In TTs, these constraints are motivated by syntactic structure instead
of phrase distance.

TTs are commoly used to build translation models when syntactic parsers are available in both languages, an approach known
asTree-to-Tree. In this work, we focus on approaches used when syntactic information is available only on one of the languages:

Tree-to-String (TTS): syntactic information is given only on the source language.

String-to-Tree (STT): syntactic information is given only on the target language.

To build translation models for these approaches, we use a similar formalism called theTree-to-String(TTS) transducers.

2.1. Tree-to-String Transducers

While tree transducers have rules with tree fragments on both sides, TTS transducers have rules that map tree fragments to
strings. Figure 3 shows an TTS transducer equivalent to the TT of Figure 2. Notice that ruleα5 on the Figure 2 has been broken
into two rules. This is due to the fact that TTS transducers only have to follow the syntactic constraints of the source (ortarget)
language instead of both.

α1: q.S

NPVP

→ the q.NP q.VPα2: q.NP

ADJPN

→ q.ADJP q.N α3: q.N

poemas

→ poems

α4: q.ADJP

ADJ

antigos

ADV

mais

→ oldest α5: q.V

traduzidos

→ are translatedα6: q.VP

V

→ q.V

Figure 3: A set of rules in a TTS transducer

When using a TTS transducer in the decoding (translation) process we are not usually interested in retrieving the resulting
tree in the target langauge, only the sentence. Because of this, it is possible to transform it into a SCFG and then use the same
parsing algorithms used by them in decoding. When the transducer has only one state this transformation is straightforward:
the rules are flattened, removing any internal syntactic information. Figure 4 shows the resulting SCFG rules after flattening the
transducer of Figure 3.

To use the resulting grammar to translate new sentences, we first parse the source sentence and retrieve its derivation (sequence
of rule applications). Then, we apply the derivation rules in reverse order to generate the target sentence, as shown on Figure 5.
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r1 : S → 〈V P1 NP2 , the NP2 V P1〉 r4 : ADJP → 〈mais antigos , oldest〉
r2 : NP → 〈N1 ADJP2 , ADJP2 N1〉 r5 : V → 〈traduzidos , are translated〉
r3 : N → 〈poemas , poems〉 r6 : V P → 〈V1 , V1〉

Figure 4: Resulting SCFG after transducer flattening

English sentence analysis:

r4 ⇒ r3 ⇒ r2 ⇒ r5 ⇒ r6 ⇒ r1

ADJP

oldest

⇒ ADJP

oldest

N

poems

⇒ NP

N

poems

ADJP

oldest

⇒ NP

N

poems

ADJP

oldest

V

translatedare

⇒

NP

N

poems

ADJP

oldest

VP

V

translatedare

⇒ S

VP

V

translatedare

NP

N

poems

ADJP

oldest

the

Brazilian Portuguese sentence generation:
r1 ⇒ r6 ⇒ r5 ⇒ r2 ⇒ r3 ⇒ r4

S

NPVP

⇒ S

NPVP

V

⇒ S

NPVP

V

traduzidos

⇒ S

NP

ADJPN

VP

V

traduzidos

⇒ S

NP

ADJPN

poemas

VP

V

traduzidos

⇒

S

NP

ADJP

antigosmais

N

poemas

VP

V

traduzidos

Figure 5: Translation process using a SCFG

3. Transducer Training

In SMT, a parallel corpus is used as input data for building translation models. This corpus is made by a set of sentences
in the source language with its corresponding translationsin the target language. In most SMT models (including phrase-based
ones), a preprocessing step calledlexical alignmentis done before the actual training procedure. This alignment aims to indicate
the correspondences between words in each sentence pair. Figure 6 shows an example of a sentence pair that is lexically aligned.

To train a translation model from this preprocessed corpus,it is necessary to 1) extract translation rules and 2) infer their
probabilities. In phrase-based models, the rules are extracted straight from the lexical alignment information. For example, from
the alignment shown on Figure 6, it is possible to extract a rule translating the word “oldest” into the phrase “mais antigos”. The
probabilities are usually calculated by getting the relative frequencies of each rule.
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traduzidos poemas mais antigos

the oldest poems are translated

Figure 6: Lexical alignment example

In syntax-based SMT, another corpus preprocessing step takes place: the source language half (TTS models) or the target
language half (STT models) is syntactically parsed2. This result in a set of structures namedalignment graphs. As shown in
Figure 7, an alignment graph is composed by a lexically aligned sentence pair with one of the sentences annotated with its
syntactic tree.

S

NP

ADJP

ADJ

antigos

ADV

mais

N

poemas

VP

V

traduzidos

the oldest poems are translated

Figure 7: Alignment graph for the pair of sentences in Section 1

3.1. GHKM

To extract TTS rules from the alignment graphs, we use the GHKM algorithm [10]. For each graph in the parallel corpus,
GHKM executes the following steps:

1. For each non-terminal symbol in the graph, annotate itsspan. The span is defined as the set of reachable terminals in the
target sentence. By definition, non-aligned target terminals are aligned to the graph root symbol.

2. For each non-terminal symbol in the graph, annotate itscomplementary span. The complementary span is defined as the
union of the parent complementary span and each sibling span.

3. Non-terminals with null intersection between its span and complementary span are marked asfrontier nodes.

4. Rules are then extracted fromfrontier graphs, which are non-trivial subgraphs where all its source and sink nodes are
frontier nodes or source terminals.

The alignment graph on Figure 8 shows each non-terminal annotated with its span and frontier nodes are marked in bold.
Only the ADV and ADJ non-terminals are not frontier since their spans overlap (both reach the same target word “oldest”).The
rules extracted from this graph have already been shown in Figure 3.

To obtain the rule probabilities we need to infer thebestTTS transducer according to the corpus. In other words, we need to
infer the transducer̂T that maximizesP (T |C), whereC is the input corpus (composed by the alignment graphs). Thisterm is
expanded using Bayes’ Rule, resulting in the following formula:

T̂ = argmax

T

P (T |C) = argmax

T

P (C|T )× P (T )

P (C)
(1)

2In Tree-to-Tree models, both halves are parsed.
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S{the,oldest,poems,are,translated}

NP{oldest,poems}

ADJP{oldest}

ADJ{oldest}

antigos

ADV{oldest}

mais

N{poems}

poemas

VP{are,translated}

V{are,translated}

traduzidos

the oldest poems are translated

Figure 8: Alignment graph with spans annotated

The termP (C) is constant because the input corpus is always the same. Since it is an maximization formula, it can be
discarded:

T̂ = argmax

T

P (T |C) = argmax

T

P (C|T )× P (T ) (2)

This results in agenerative process, where we suppose that a transducer is given with probability P (T ) andgeneratesthe
corpus with probabilityP (C|T ). The termsP (T |C), P (C|T ) andP (T ) are named theposterior, the likelihoodand theprior,
respectively. When we do not want to make any assumptions about the best transducer we model the prior probability as an
uniform distribuition. Therefore, the termP (T ) can also be discarded:

T̂ = argmax

T

P (T |C) = argmax

T

P (C|T ) (3)

The equation above corresponds to theMaximum Likelihood Estimate(MLE) statistical method. In GHKM, it can be proved
that to obtain the best transducer according to MLE it is enough to simply calculate relative rule frequencies accordingto its
root3, similar to what PB-SMT uses. This is due to the fact that extracts only theminimal rulesfrom the alignment graphs and
therefore only one derivation is considered for all alignment graphs.

While it is possible to build a translation model using only the minimal rules extracted by GHKM, these rules tend to capture
small contexts in the syntactic structure. To build robust models, bigger rules should be taken into account. Theoretically, the best
procedure would extract all rules from the corpus and then infer their probabilities. But it is not feasible to extract all possible
rules because they grow exponentially in graph size. Because of this, heuristics are used to limit rule sizes.

To tackle the above problem, [11] expands GHKM in the following way: after extracting minimal rules, a subset containing
only n terminal symbols on the left side is combined between them, generating bigger rules. With this new rule set, it becomes
impossible to calculate MLE using only the relative frequencies because these new rules result in more than one derivation for the
alignment graphs. Instead, the Expectation-Maximization(EM) algorithm is applied to obtain the probabilities. The experiments
described in their work used 3 and 4 as values forn. This restriction on rule size permits EM to run in polynomial time.

The main issue with the EM approach is that it tends to overfit the training corpus. Since alignment graphs probabilites are
calculated by a product of rule weights EM tends to give higher weights to bigger rules, degenerating the transducer. In light
of this problem, [12] proposes another method, where instead of inferring the best transducer̂T , they infer the bestsequence of
derivationsŜ used in the generative corpus building process, modifying Equation 2 in the following way:

Ŝ = argmax

S

P (S|C) = argmax

S

P (C|S)× P (S) (4)

The difference between̂T and Ŝ is crucial: while for a given transducerT many corpora could be generated, for a given
sequenceS, only one corpusC is possible. If you changeS even in the slightest way (like swapping two rules in the sequence,
for example), then the corpusC would be different. The result of this difference is that thelikelihoodP (C|S) can only be 1
(when the corpus is composed by the sequence) or 0 (when it is not). So, the inferring process is all done by the priorP (S),
which is modelled as aDirichlet Process (DP)instead of a uniform distribution.

3We define the root of a TTS rule as the root symbol of the rule tree fragment.
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3.2. Dirichlet Process

The Dirichlet Process (DP) is defined as a distribution over the infinite space of possible TTS rules4. This distribution has
the property to take into account all TTS rules used in the generative procees. Formally, the distribution of a rule according to its
rootr is defined as:

rule|r ∼ Groot

Gr|αr, P0 ∼ DP (αr, P0(·|r)) (5)

whereP0(·|r) (thebase distribution) is a distribution over the infinite rule set withr as its root andαr is called theconcentration
parameterof r. Intuitively, the base distribution defines what rules are used in the generative process while the concentration
parameter controls the trend to create new rules or reusing existing ones.

Following the procedure used by [12], instead of sampling straight from the DP distribution, we integrate over all possible
rule sequences, obtaining a conditional distribution defining the probability of the next rule be generated. Then, the probability
of rulei (i being the position of this rule in the sequence) according toits rootri is defined as:

P (rulei| ~rule<i, ri, αri , P0) =
count(rulei) + αriP0(rulei|ri)

count(ri) + αri

(6)

where ~rule<i is the set of all other rules used in the generative process until then, count(rulei) is the total of times thatrulei
shows up in ~rule<i andcount(ri) is the total of times that a rule with rootri shows up in ~rule<i. If αri is equal to zero, the
formula becomes the relative frequency of the rule. Becauseof this, intuitively this formula can be understood as a relative
frequency that takes into account the base distribution.

Another way to understand the DP is to consider it as acachemodel, where everytime a new rule is generated, the model
chooses one from the cache of already existent rules or creates a new one using the base distribution. As the corpus is generated,
the cache becomes bigger and the model tends to choose one from it. This is a phenomenon that actually occurs in natural
language: while it is always possible to use new syntactic structures we tend to use already existent ones.

The base distribution defines what kind of rules will appear in the resulting transducer. Since bigger rules tend to overfit the
corpus, this distribution is defined in a way that it gives greater probabilites to smaller rules. To achieve this, it is modelled as
another generative process in the following way:

• Tree (left side) probability:

1. If the node is not aPart-of-Speech(POS) tag, expand it inton children, wheren is sampled from a geometric
distribution with parameterβchild. If the node is a POS tag, expand it deterministically into 1 child.

2. Choose the generated symbol according to a uniform distribution over all symbols (non-terminals and terminals).

3. For each non-terminal generated, choose to expand it or not, according to a parameterβexpand. Return to step 1 for
each expanded symbol.

• String (right side) probability:

1. Generatem terminal symbols, wherem is sampled from a geometric distribution with parameterβterm.

2. Generate each terminal symbol according to a uniform distribution over all terminal symbols.

3. Generate the string non-terminals one at a time, putting it in one of the available positions according to a uniform
distribution over all available positions.

Rule probability is then calculated by multiplying the treeand string probabilites. Figure 9 shows an example of how this
calculation is made.

3.3. Gibbs sampling

Using a DP prior, we could apply EM to maximize Equation 4. Butthis would require the enumeration of all possible
derivations and, as explained in Section 3.1, this is unfeasible due to exponential growth. The solution proposed by [12] is to
sample from the possible derivations using a procedure calledGibbs sampling.

The Gibbs sampling works by changing one of the modelvariableswhile keeping the other variables constant. In the
transducer inference problem, the variables are the node spans defined by GHKM. The idea is to iteratively change those spans,
aiming to maximize Equation 4 and find the best transducer.

The sampler visits each frontier node in each alignment graph in the corpus in random order. For each of these nodes, it
finds what are all its possible spans and choose one of them to be the new span (it can be the same as before). This choice is
made in proportion to the resulting posteriors of each span.To find which are the possible spans for a given node, some rules are
considered:

4For a generalized explanation about the DP, we refer the reader to Appendix A in [13].
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TTS rule: q.S

NPVP

→ the q.NP q.VP
Parameters:
βchild = 0.5, βexpand = 0.5, βterm = 0.5, N = 5, T ′ = 10

Calculation:
P (tree) = Pgeom(2|βchild)×

1

N
× (1− βexpand)×

1

N
× (1− βexpand)

P (tree) = 0.25× 0.2× 0.5× 0.2× 0.5 = 0.0025
P (string) = Pgeom(1|βterm)× 1

T ′
× 1

2
× 1

3

P (string) = 0.5× 0.1× 0.5× 0.333 = 0.08325
P (rule) = P (tree)× P (string) = 2.08125e−05

Figure 9: Example of rule probability calculation according to a base distribution.N is the number of non-terminal symbols and
T ′ is the number of terminal symbols. In this example they are arbitrarily set to 5 and 10, respectively. In a realistic setting,N
would be defined by the symbols used in the syntactic parser and T ′ by the languages’ vocabulary.

1. The root node span must cover all words in the target sentence.

2. The span of a node must be a subspan of his parent node.

3. The span of a node must contain all span of its children.

4. Spans of sibling nodes can not overlap.

Figure 10 shows an example where the sampler is visiting the node NP and evaluating its possible spans (in this case, there
are two of them). Each one defines two different TTS rules, shown on Figure 11. The sampler then defines which span will be
chosen according to the posterior of each resulting transducer.

In theory, to calculate each posterior it would be necessaryto take into account the probabilities of each rule in all the
alignment graphs. But the sampler does not need the true posterior values, only theirproportion. So, the sampler only uses the
probabilities of the rules inferred by the possible spans, since all the other rules do not change. In the example shown onFigure
10, the sampler chooses the span according to the following values:

P (span = span1) = P (r11)× P (r12)

P (span = span2) = P (r21 × P (r22) (7)

where:

• span1 andspan2 are the two possiblespansfor the node, shown on Figure 10.

• r11 andr12 are the two TTS rules implied byspan1, shown on Figure 11.

• r21 andr22 are the two TTS rules implied byspan2, also shown on Figure 11.

4. SMT model

To use a trained TTS transducer to translate new sentences weneed to insert it into a SMT model. In SMT, the translation
task is defined as an optimization process: the goal is to find the best target translation̂t that maximizes the probabilityP (t|s),
wheres is the source sentence. Following previous works in discriminative SMT modeling [4,14], we use a log-linear model to
defineP (t|s):

t̂ = argmax
t

P (t|s) = argmax
t

exp

K∑

k=1

λkhk(t, s) (8)

In this model, thehk(t, s) terms representfeature functionsthat may take into account: the source sentence, the target
candidate translation or both. Theλk terms in equation 8 are the functionscoefficients. In our experiments, we use the following
feature functions (similar to the ones used by [14]):

• P (s|t): translation model, based on a TTS transducer.

• P (t): a ngram-based target language model used to determine the fluency of the candidate translation. Ngram-based
language models are considered state-of-the-art for SMT [1].

• length(t): the length of the target candidate translation.

• rules(t, s): the total number of rules used when translating the sentence.
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span1:
S{the,oldest,poems,are,translated}

NP{oldest,poems}

ADJP{oldest}

ADJ{oldest}

antigos

ADV{oldest}

mais

N{poems}

poemas

VP{are,translated}

V{are,translated}

traduzidos

the oldest poems are translated

span2:
S{the,oldest,poems,are,translated}

NP{the,oldest,poems}

ADJP{oldest}

ADJ{oldest}

antigos

ADV{oldest}

mais

N{poems}

poemas

VP{are,translated}

V{are,translated}

traduzidos

the oldest poems are translated

Figure 10: Possible spans for a node visited by the Gibbs sampler, in this case the NP node. The second span implies an alignment
between the node and the word “the” which before was aligned with the root node, according to GHKM output.

span1:

r11: q.S

NPVP

→ the q.NP q.VPr12: q.NP

ADJPN

→ q.ADJP q.N

span2:

r21: q.S

NPVP

→ q.NP q.VP r22: q.NP

ADJPN

→ the q.ADJP q.N

Figure 11: TTS rules implied by the spans of Figure 10

• lex(t|s): lexical weight with respect to the target sentence.

• lex(s|t): lexical weight with respect to the source sentence.

The lexical weight is a feature function which tries to modelhow good each word in a TTS rule translates into its corresponding
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string in the rule. It is defined by the following formula:

lex(t|s) =
count(t, s)∑
t′ count(t

′, s)
(9)

wheret′ means every possible target word aligned withs. The count values are gathered from the lexical alignment inthe training
corpus.

To obtain theλk values we use Minimum Error-Rate Training (MERT) [15]. The MERT algorithm uses a validation corpus
(which should be different from the training corpus) with reference translations and inferλk values that minimizes a given error
metric. For our experiments, we use BLEU [16] as the error metric.

5. Decoding

In the decoding process we flatten the TTS rules and transformit into a SCFG, as explained in Section 2.1. If the SMT model
is composed only by the translation model, it is possible to translate new sentences by just parsing the input sentence using
the best derivation. But our model is composed by several feature functions which should be considered when finding the best
translation. In this case, it is easier for the decoder to first finds all possible derivations for the input sentence according to the
translation model, building atranslation forestor hypergraph[17,18].

A translation forest is a compact representation of all possible derivations for a source sentence. Each rule application is
represented by anhyperedge, which is an edge that starts in many nodes (thetail nodes) and ends in one node (theheadnode).
Since some derivations have common rules, these are “compressed” into one hyperedge, as shown on Figure 12.

o homem viu a estrela com o telescópio

Det N V Det N P Det N

NP NP NP

PP

NP

VP

S

Figure 12: A translation forest representing two possible derivations. The dotted hyperedge shows one derivation while the
dashed hyperedge shows another one. Solid hyperedges corresponds to rules common to both derivations.

Each node in a translation forest has a probability. The decoder thenrescoreseach node according to the log-linear model. If
it is a head node of an hyperedge, the calculation also take into account the probabilities of the hyperedge tail nodes. When there
is more than one hyperedge, only the bigger value is considered, which corresponds to best derivation until then5. Each node is
rescored by the decoder in a bottom-up process. When it reaches the root, the best derivation is obtained and the target sentence
is generated.

5This process is analogous to the Viterbi algorithm used to obtain the best derivation.
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The forest building process is relatively fast (O(n3), wheren is the source sentence size) but the rescoring process tendsto
be very slow due to the additional features used in the log-linear model. To tackle this issue, a number of heuristics are used to
prune the forest when the rescoring process takes place. Themost used are thebeam search[3] and thecube pruning[19].

6. Experiments

To evaluate how TTS transducers behave inen-ptBRandptBR-entranslation, four experiments were performed using the
PesquisaFAPESP corpus6. We used the corpus version 1, composed by 646 articles and 17.397 sentence pairs in English and
Brazilian Portuguese7. For training, validation (via MERT) and testing purposes,we broke the corpus in sets of 80%, 10%, 10%,
respectively.

We also used the additional tools:

• Berkeley Parser8 [20,21] and LX-Parser9 [22] for parsing theenandptBRtraining sentences, respectively.

• Berkeley Aligner10 [23] for corpus lexical alignment.

• Moses11 toolkit [24] for experiments with PB-SMT models and cdec12 toolkit [25] for decoding with GHKM models.

• SRILM13 [26] for building the ngram-based language models.

• BLEU [16] and NIST [27] metrics to evaluate the results and bootstrapping tool14 [28] to assess statistical difference. All
the results presented in this paper are statistical significant considering a confidence level of 95%.

6.1. GHKM vs. PB-SMT

We first compared the models generated by GHKM with PB-SMT models. The results, presented in Table 1 show that GHKM
models are outperformed by current state-to-the-art models in both language pair directions. This decrease in performance was
mainly due to spurious phrase reorderings made by GHKM, as shown in the following example, where the phrase “vários fatores”
was wrongly reordered to the middle of the sentence:

Source sentence:several factors contribute towards the complexity of the process , in
any language .

Reference: vários fatores contribuem para a complexidade de o processo , em qualquer
idioma .

PB-SMT hypothesis: vários fatores contribuir para a complexidade de o processo , em
qualquer linguagem .

GHKM hypothesis: contribuir para a complexidade de o processo de v ários fatores ,
em qualquer linguagem .

Table 1: Results from comparing GHKM and PB-SMT models

BLEU NIST

GHKM-TTS en-ptBR 0.2745 7.2783
PB-SMT en-ptBR 0.3898 8.7376
GHKM-TTS ptBR-en 0.0946 3.8034
PB-SMT ptBR-en 0.4001 9.1309

6PesquisaFAPESP corpus is composed by a selection of articles from the Pesquisa FAPESP scientific magazine (http://revistapesquisa.fapesp.
br/ )

7Available atwww.nilc.icmc.usp.br/lacioweb
8Available atcode.google.com/p/berkeleyparser
9Available atlxcenter.di.fc.ul.pt/tools/pt/conteudo/LXParser.htm l

10Available atcode.google.com/p/berkeleyaligner
11Available atwww.statmt.org/moses
12Available atcdec-decoder.org
13Available atwww.speech.sri.com/projects/srilm
14Available atprojectile.sv.cmu.edu/research
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6.2. TTS vs. STT

In Table 1, the BLEU and NIST scores are very similar for both language pair directions when using PB-SMT models but
very different when using GHKM models: scores forptBR-enare much lower. Since the main difference between each direction
is the parser used (Berkeley foren-ptBRand LX-Parser forptBR-en) we also made experiments using GHKM to build STT
models and therefore changing the parser used in each pair.

Results presented in Table 2 confirm that the parser indeed has a serious impact on the model performance: scores foren-ptBR
were much lower when using the LX-Parser. The example below shows the same sentence from the first experiment but evaluated
in respect to the TTS or STT approach:

Source sentence:several factors contribute towards the complexity of the pr ocess ,
in any language .

Reference: vários fatores contribuem para a complexidade de o processo ,
em qualquer idioma .

TTS hypothesis: contribuir para a complexidade de o processo de v ários fatores ,
em qualquer linguagem .

STT hypothesis: alguns contribuir para a complexidade de os fatores de o proc esso de o
brasil , in any language .

The transducer generated by the STT approach in this case hasspurious rules (like the one which added the word “brasil”) and
lower lexical coverage (observed by the untranslated phrase “in any language”).

Table 2: Results from comparing TTS and STT approaches

BLEU NIST

GHKM-TTS en-ptBR 0.2745 7.2783
GHKM-STT en-ptBR 0.0872 3.1267
GHKM-TTS ptBR-en 0.0946 3.8024
GHKM-STT ptBR-en 0.1739 6.1405

6.3. Language model influence

The previous experiments for theen-ptBRdirection used theptBRportion of PesquisaFAPESP for training the language
model. To investigate how more robust language models improve GHKM results, we also performed experiments using the
CETENFolha corpus15. This corpus is composed of 1.597.807 Brazilian Portuguesesentences extracted from “Folha de São
Paulo” newspaper.

Table 3 brings the scores obtained when using each language model in GHKM and PB-SMT. As expected, both translation
models improved when using CETENFolha to train the languagemodel but the improvement in GHKM is larger than the one
for PB-SMT. We credit this to the reordering power of GHKM, since it allows a more diverse set of candidate translations for
language model disambiguation, unlike PB-SMT models.

Table 3: Results from comparing PesquisaFAPESP and CETENFolha as language models

BLEU NIST

GHKM-TTS en-ptBR with PesquisaFAPESP0.2745 7.2783
GHKM-TTS en-ptBR with CETENFolha 0.3132 7.7660
PB-SMT en-ptBR with PesquisaFAPESP 0.3898 8.7376
PB-SMT en-ptBR with CETENFolha 0.4220 9.0958

Difference GHKM-TTS 0.0387 0.4877
Difference PB-SMT 0.0322 0.3582

The bigger language model provided by CETENFolha helped to prevent the spurious reorderings occurred in the first experi-
ment. Using the same example shown in Section 6.1, we notice that in this case the phrase “vários fatores” was not reordered:

Source sentence:several factors contribute towards the complexity of the process , in any
language .

15Available atwww.linguateca.pt/cetenfolha
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Reference: vários fatores contribuem para a complexidade de o processo , em qualquer
idioma .

PesquisaFAPESP hypothesis:contribuir para a complexidade de o processo de
vários fatores , em qualquer linguagem .

CETENFolha hypothesis: vários fatores que contribuem para a complexidade de o processo ,
em qualquer l ı́ngua .

6.4. GHKM vc. Gibbs sampling

Finally, we also compared the models extracted from plain GHKM and the one with spans modified by a Gibbs sampler. Our
hypothesis is that running the sampler results in better translation models. In this experiment, we used a subset of the training
corpus with 40 words or less16. This resulted in a corpus with about 10300 sentences.

The parameters used in our experiments are the same used by [12]: the concentration parameterα was set to 100000, the
base distribution parametersβexpand, βchild andβterm were all set to 0.5 and 300 iterations were made by the sampler. The last
iteration was used to extract the TTS rules.

The results shown on Table 4 confirms our hypothesis for the en-ptBR direction. In the case of the ptBR-en direction, the
BLEU scores were higher but the NIST scores were lower. Although both differences are statistically significant, it is not possible
to infer conclusions because of this divergence on the scores.

Table 4: Results from comparing GHKM and Gibbs sampling algorithms
BLEU NIST

GHKM-TTS-40 en-ptBR 0.2037 5.7239
Gibbs-TTS-40 en-ptBR 0.2079 5.7521
GHKM-TTS-40 ptBR-en 0.1013 3.7845
Gibbs-TTS-40 ptBR-en 0.1031 3.7726

Comparing the hypotheses generated by plain GHKM and the Gibbs sampler for the en-ptBR direction, we noted that the
rules extracted by the sampler had more discerning power of when to do a long-distance reordering. The sentence below shows
an example of a spurious reordering made by plain GHKM that was avoided by the Gibbs sampler.

Source sentence:precision in diagnosis

Reference: precis ão em o diagn óstico

GHKM hypothesis: em o diagn óstico de a precis ão

Gibbs hypothesis: a precis ão de o diagn óstico

6.5. Discussion

Our experiments have given evidence that GHKM models are able to do long-distance reorderings that the PB-SMT models
were unable to do, as shown on the example sentences given in the subsections above. The lower scores obtained when comparing
the GHKM and the state-of-the-art models show that the former are actually doingtoo manyreorderings, even when they are
not necessary. We believe that the GHKM models by itselves donot take into account enough context to prevent those spurious
reorderings, even though TTS transducers have the power to model these contexts. We propose two solutions to tackle this
problem:

• Improve the GHKM algorithm by changing the alignment graphsbefore rule extraction. We use a generative model based
on a Dirichlet Process and a Gibbs sampler to modify the graphs and extract rules with bigger contexts. We have shown that
better models are achieved this way for the en-ptBR direction but results are still unconclusive for the ptBR-en direction.

• Use language models trained on bigger corpora. One possiblecause of the spurious reorderings made by the GHKM
models is its ability to generate a more diverse set of hypothesis in the decoding process when comparing to the state-of-
the-art. More robust language models can help to alleviate this issue by having more power to select correct reorderings.

Another conclusion obtained by our experiments is that the syntactic parser used when preprocessing the parallel corpus have
a large influence in translation performance. There have been some discussion in the literature about which approach (TTS or
STT) is better when building translation models and our results show that this decision should take into account the available
parsers for the language pair of choice. For the en-ptBR language pair, current state-of-the-art parsers for English tend to give
better translation models in either translation direction.

16This restriction was due to the Gibbs sampler implementation used
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7. Conclusions and Future Work

In this paper we presented the first experiments carried out on TTS and STT translation between English and Brazilian
Portuguese using tree transducers. The results obtained show that those models have potential to improve the state-of-the-art
since they are able to model long-distance reordering between phrases. Better translation and language models may be able to
deal with the spurious reorderings issue encountered.

The analysis shown in this paper leads to interesting futureresearch directions. In particular, we believe that pursuing the
following points may lead to substantial improvements:

Parser influence: Since the syntactic parser has a large influence in translation performance, it could be an interesting work
to investigate in deeper which parser features improve the resulting translation models. This investigation could lead to
modified or specialized parsers for SMT.

Refined features: There is a current tendency in SMT for purely discriminativemodels. [29] presents a model with more than
10.000 fine-grained features. Another research direction is to combine this approach with the use of syntactic information.

Bigger corpora: Recently, [30] published a new version of PesquisaFAPESP, with more than 180.000 sentences. Redoing the
experiments shown in this paper with this new version is a natural extension of this work.
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