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Abstract — This paper presents a new semi-supervised classification algorithm based on the oscillatory correlation theory. In
this approach, the dataset is converted into a network whose nodes represent the samples and the edges represent the similarity
among these samples. Each node in the network is modeled by an oscillator. The network clustering is given by the oscillators
synchronization phenomenon, whereas the separation of oscillators that represent distinct clusters is induced by a global inhibitor.
The previously labeled objects make use of the synchronization dynamics in order to propagate labels among their neighbors.
Experiments performed with the proposed approach have shown promising results in a variety of datasets. It has shown to be
capable of eventually outperforming traditional methods in the literature..
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1. Introduction

The large volume of data generated through a variety of sources is an unprecedented fact in the history of sciences. Examples
of data sources are computational simulations, internet text, biomedical signal and image analysis, genome data, just to name a
few. The area of machine learning [1-3] arose with the goal of supporting domain specialists in the task of data analysis.

In the specialized machine learning literature, it is well-known that the process of learning through machine models can be
either supervised or unsupervised. In an unsupervised learning environment, the main task is to cluster data objects according to
a given similarity measure. This process is said to be data-driven, considering that no previous knowledge regarding data labels
is necessary [1]. Supervised learning methods, on the other hand, aim at inducing concepts from previously labeled data objects,
ie, objects whose labels are known a priori. Nevertheless, supervised learning requires a considerable amount of labeled objects
in order to increase the chances of finding a satisfactory model for the problem at hand.

Generally speaking, the process of data acquisition is not computationally expensive. However, manually labeling objects
may become a costly process depending on the problem domain. There are many cases in which this cost refers not only to
computational power, but to the price of the project. For instance, the necessity of hiring domain specialists to perform the
labeling process can make the data acquisition a costly task in terms of finances. In this sense, a new learning paradigm has
emerged in machine learning, namely semi-supervised learning [4, 5], in which only a small number of labeled objects are
available for building predictive models. Thus, one does not require every object to be labeled in order to build a classifier, which
considerably reduces the cost of the process.

Several approaches have been proposed regarding semi-supervised learning. Among these approaches, network-based tech-
niques (which is the topic explored in this paper) have received increased attention in the recent years [5—14]. The main feature
of these techniques lies in the way data is represented: the network nodes represent the data objects whereas the edges represent
the distances (similarities) among objects.

Most of the network-based techniques are, in essence, transductive, which means they aim at labeling the unlabeled objects
within the training data. Hence, there is a clear need of a technique capable of dealing with new, unseen objects, and also of
incorporating them dynamically to the dataset. In [15], a new training process was proposed for semi-supervised learning, based
on the neuron synchronization within a network. In such a model, each network node (object) is represented by an Integrate&
Fire neuron, and the synchronization phenomenon among neuron groups is used to propagate labels to data objects. Even though
the results presented in [15] were considered quite satisfactory, there are three main limitations with that technique:

e The neurons are described by differential equations, thus requiring numeric integration;
e The approach does not include a stopping criterion;
e The network average degree required for a good performance is quite high.

In this paper, we propose a new semi-supervised approach based on the oscillatory correlation theory. More specifically,
we present a fast label-propagation algorithm, which was extracted from LEGION [16] (Locally Excitatory Globally Inhibitory
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Network). We show how the new approach solves the limitations observed in [15], besides being a new application of the
oscillatory correlation theory.

The remaining of this paper is organized as follows. In Section 2 we describe the LEGION model, which serves as basis to
this work. Section 3 describes the process of network construction from a dataset, as well as the proposed algorithm. Experiments
and results are presented in Section 4. Finally, Section 5 provides our main conclusions and also points to future work directions.

2. LEGION model

According to [17], investigations regarding the cerebral functions and perception organization indicate the existence of a tem-
poral correlation mechanism that acts like a representation structure (temporal coding). The temporal correlation theory defines
that an object is represented by the temporal correlation of the activity of spatially-distributed neural cells, which represent dif-
ferent features from the same object. Conversely, neural cells that represent features from distinct objects do not have correlated
activities.

A natural way of performing temporal correlation is through the use of oscillators [16]. Each oscillator may represent a set
of features (color, orientation, movement, depth, etc. [18]) in such a way that each segment (object) is represented by a set of
oscillators with synchronized activities, whereas distinct segments are represented by a set of desynchronized oscillators. This
particular temporal correlation scenario is called theory of oscillatory correlation [16]. Features are represented by oscillators
and the integration problem is solved by the synchrony or dissynchrony among neural oscillators [18].

Two main aspects can be established regarding the oscillatory correlation [16]. First, the synchronization of oscillators that
represent features from a same object should be established. Second, the desynchronization among groups of distinct oscillators
should be defined. One of the greatest challenge in the development of oscillatory correlation models is in the simultaneous
implementation of these antagonistic mechanisms [18].

A locally-coupled oscillators network architecture called LEGION (Locally Excitatory Globally Inhibitory Oscillator Net-
works) was proposed in [16] with the goal of establishing a formal theory of oscillatory correlation. The LEGION model has
been applied in several tasks, such as the numeric and analytic study of the coupled oscillators dynamics [16, 19], image segmen-
tation [19, 20], and object selection [21,22], just to mention a few.

The LEGION architecture, in its basic form, is comprised of three main elements: neural oscillators, local excitatory cou-
plings, and a global inhibitor. The local excitatory couplings are used to synchronize the oscillators’ groups, representing each
of the objects in the visual scene. The global inhibitor, on the other hand, is used to generate the desynchronization among the
oscillators’ groups. Hence, the network owns a local cooperation mechanism and a global competition strategy, which are two
requirements for implementing the oscillatory correlation. In its original form, the LEGION model [16, 23] is comprised of a
network of relaxation oscillators, in which each oscillator is comprised of an excitatory variable x;, and an inhibitory variable
y;, defined by Equations (1a) and (1b).

i = €(a(1 + tanh(z;/B)) — y;) (1b)

where Z; is the stimulus that is external to oscillator 4, S; is the coupling with the remaining network oscillators, € is a positive
constant with a small value, and p is the noise signal whose goal is to verify the robustness of the model and to support the
desynchronization of distinct patterns. If Z; is defined as a constant and the terms S; and p are eliminated, Equations (1a) and (1b)
form a typical relaxation oscillator.

Figure 1 presents the nullclines ' and the oscillator’s trajectory is defined by Equations (1a) and (1b), where the nullcline of z
is a cubic function and the nullcline of y is a sigmoid function. If there is an external stimulus received by an oscillator, Z; > 0,
the x and y nullclines of Equations (1a) and (1b) intersect in a single point. In this case, the oscillator state is called active
and a stable limit cycle dynamic is observed (Figure 1a). The oscillator’s periodic orbit alternates between two well-defined
phases, namely active phase and silence phase, which correspond to the phases with large and small = values, respectively (see
Figure 1a). That means that by observing only the x value it is possible to verify whether an oscillator is triggered or not. This
information is used in the derivation of the algorithm presented in Section 3.2. The transition between the two phases is much
faster than the internal movement observed in each phase, and thus the transition between the active and silence phases is called
Jjumping. Parameter o controls how much the oscillator stays in each phase. When there is not external stimulus received by the
oscillator, Z; < 0, the two nullclines from Equations (1a) and (1b) intersect in a stable fixed point in the left side of the cubic
function (see Figure 1b). In this case, the oscillator does not generate a periodic orbit and no oscillation is observed whatsoever.
However, the oscillator may be induced to oscillate through stimuli received when coupling with neighbor oscillators. In this
particular state, the oscillator is called excitable. Parameter 3 controls the sigmoid inclination. Usually, 5 is set to a near-zero
value, so the sigmoid function approximates a step function [16].

The coupling of the system represented by S; is defined by the following equation:

S; = Z wikH(x, — 0) —w.H(z —0,) (2)

kEN;

I'They define the curves when = 0 and ¢y = 0.



Learning and Nonlinear Models - Journal of the Brazilian Computational Intelligence Society, Vol. 11, Iss. 1, pp. 3-10, 2013.
(© Brazilian Computational Intelligence Society

x=0

Ll
«

Silent
Phase

x=0 Y y=0

(a) (®)

Figure 1: Dynamics of a relaxation oscillator. (a) Behavior of the oscillator in the triggered state. The trajectory is defined by a
limit cycle represented by the bold curve, and the arrows indicate the movement direction. (b) Behavior of an oscillator in the
excitable state. In this case, a fixed stable point is observed, indicated by a dot in the low left side of the figure.

where w;y, is defined as the coupling strength between oscillators ¢ and k, N; defines the interaction neighborhood of oscillator
1, represented by those oscillators that are directly connected to i. Parameter 6, is a threshold that indicates whether or not an
oscillator may affect its neighbors. Usually, 6, is selected between the active and silence phases. Variable w, defines the strength
of connection between oscillator 7 and the global inhibitor defined by z, whereas 6, is a threshold. H (v) is the Heaviside function
in which H(v) = 1ifv > 0, and H(v) = 0 otherwise.

The dynamics of the global inhibitor z is defined by Equation (3).

2=¢(000 — 2) 3)

where ¢ controls the velocity in which the global inhibitor reacts to signs that come from the oscillators. oo, = 0if z; < 6,
for all i. Conversely, oo, = 1 if at least one oscillator z; > 6. In this case, if at least one oscillator exceeds the threshold, z is
stimulated and approximates 1, thus acting like an inhibitor as z exceeds 6, (Equation (2)).

Generally speaking, the network dynamics can be summarized as follows. When an oscillator is active, it triggers the global
inhibitor, which in turn sends an inhibiting signal for all the network, as described by Equations (1)-(3). Moreover, the active
oscillator also propagates its signal to its respective neighbors, which carry on with the process. Hence, the network presents a
strategy of local cooperation, whereas the inhibitor is responsible for the global competition. The global inhibitor may be seen
as a particular attention mechanism that, once active, the remaining oscillators become inactive. Nevertheless, in its original
form, the model presents a limitation regarding the maximum number of segments that can be obtained by the network [16,20].
Bearing this limitation in mind, [20] propose an image segmentation algorithm extracted from differential equations from the
LEGION model, whose essential properties are kept intact. The model proposed in this paper makes use of the same approach
used in [20], i.e., we rely on a fast algorithm for simulating the behavior of the network instead of the numeric integration of the
original oscillators.

3. Proposed Model

The LEGION model considers a local-cooperation neighborhood, Equation (2), which is responsible for the synchronization
phenomenon. The generation of this neighborhood (network generation) among the dataset objects represents the first step of the
classification process. Once the network is defined, the neural oscillators dynamics is started and the synchronization between
neighbor objects can be observed. At the same time, as described by the oscillatory correlation theory, well-separated objects
(represented by node groups) have their trajectory desynchronized by the global inhibitor. The label propagation (classifica-
tion) becomes a natural consequence of the synchronization between neighbor oscillators, in which a previously labeled node
(oscillator) propagates its label to its synchronized nodes.

The next sections present the network generation process and the algorithm extracted from the LEGION model.

3.1. Network Generation and Model Dynamics

Let a dataset be represented by a set of attribute vectors S = {s1, Sa, ..., s, } and a set of labels £ = {1, 2, ...c}, where n and ¢
represent the number of objects and classes, respectively. In the semi-supervised context, the dataset S is divided into two subsets:
the subset of previously-labeled objects S; = {s1, s2, ...s;} and the subset of unlabeled objects S,, = {s;+1,S;+2, --., Sn }. Each
object s; belonging to the set S; has an associated label [; € L.

The network generation G = (V, E) for a given dataset S consists in representing each object s; as a node v; € V, and also in
creating the set of edges E that represent the similarity among objects. Here, two approaches were used to create the adjacency
matrix: 6,,-cut, where connection happens within the radius defined by 6,, and a kNN approach where each vertex is connected
to its k-nearest-neighbor.
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The similarity function is defined by the following equation:
—d(si,s;
wij = exp <(52 SJ)) )
o

where d() defines a distance function and o controls the Gaussian width. By using the similarity function defined above, the
adjacency matrix F for the 6,,NN e kNN approaches are generated respectivelly by the following equations:

) owi ifwi > 6,
Cij = { 0 otherwise )
and

Cij = { 0 otherwise ©)

where 6,, is a threshold and & is the number of neighbors taken into account.

To avoid the existence of disconnected nodes in the 6,,NN approach, a post-processing step that connects nodes to the
network is employed. This step guarantees that every disconnected node is connected to its nearest neighbor within the network
(see Equation (7)).

eir = Wi, | arg Max Wik @)

Once generated, the network defines the local-cooperation mechanism of the model. Having in mind that the edge generation
process is conducted by a similarity function, it is easy to see that objects close to each other in a given region of the attribute
space will be strongly connected. Conversely, objects belonging to different regions in the attribute space will be connected by
a weak edge, or maybe will not be connected at all. Thus, as explained in Section 2, neighbor oscillators tend to synchronize,
whereas the global inhibitor breaks the synchrony between dissimilar groups.

This behavior is strongly related to the task of unsupervised data clustering, since no information regarding labels has been
taken into account so far. Therefore, two requirements should be considered in order to adapt the LEGION model to a semi-
supervised setting: i) the network should properly represent the dataset, i.e., strongly connected objects should supposedly belong
to the same class; and ii) as the network is generated, if two neurons are oscillating, there is a high probability that the objects
associated to these neurons belong to the same class. It is worth mentioning that, for a successful semi-supervised classification
application, some assumptions should be taken into consideration. For instance, the proposed model relies on the smoothing and
clustering assumptions [4,5,24].

The classification process occurs alongside the clustering process. Every time a given oscillator ¢ that represents a previously-
labeled object is triggered (x; > 6,), the state of each neuron j belonging to the neighborhood of i is modified according to
Equation (2). If neuron 7, stimulated by neuron ¢, reaches the LK region and is triggered (see Figure 1a), the object represented
by neuron j automatically inherits the label belonging to neuron :. In other words, the synchronization process is responsible for
both the clustering process and the label propagation task within the network.

The next section presents the algorithm extracted from the LEGION model for semi-supervised data classification.

3.2. Proposed Algorithm

The numeric integration of a network with many oscillators is quite costly in terms of computational resources, as previously
stated in Section 2. Hence, we follow the same approach proposed in [20], in which an algorithm is extracted from the equations
that model the LEGION network. This algorithm keeps intact the main existing properties of the model’s numeric simulation,
and it further allows networks with many oscillators to be simulated within acceptable execution time. Moreover, the algorithm
explicitly defines a stopping criterion, which is an important feature that cannot be directly derived from the original model based
in differential equations.

For the implementation of this algorithm, the following simplifications were performed:

o If all oscillators are inactive (silence phase, near the LK region), the oscillator nearest to LK is selected for being triggered
and become active;

o If the full signal received by an oscillator (considering the neighbors and global inhibitor signals) exceeds 6., this oscillator
becomes active in a single step;

e If no inactive oscillator is able to be triggered, all active oscillators return to the silence phase in a single step. This scenario
occurs when all oscillators that were stimulated by the same pattern have already been triggered.

Note that the = value is enough for indicating whether or not an oscillator is in the active phase (triggered). Algorithm 1
defines the semi-supervised classification model proposed in this work.

The silence phase can be described as being the region between the leftmost point of = and the region delimited by LK (see
Figure 1a). The network oscillators are initially set to the silence phase according to the following methodology: first, the region
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Algorithm 1 Label Propagation Algorithm

Set Parameters
Define Connections (Section 3.1)
Set Oscillators to the Silence Phase
Select Neuron for Pulsing (Alg. 2)
repeat
for all neuron 7 do
ifz;(t) = RK e z(t) > z(t — 1) then
x;(t) = x;(t — 1) (oscillator stays in the active phase)
elseif z;(t) = RK e z(t) < z(t — 1) then
z;(t) = LC (oscillator returns to the silence phase)
z(t) =z2(t—1)
if (z(t+1)=0) (there are no more neurons in the active phase) then
Select Next Neuron (Alg. 2)
end-if
else
Compute coupling S; regarding neuron 7 (Eq. (2))
if S; > 0 (Excited Neuron) then
zi(t+1) = RK
z(t+1)=2(t)+1
l; = ClasseAtiva (the object associated to neuron 7 is labeled with the active class - see Alg. 2)
else
z;(t + 1) = z;(t) (neuron stays in the silence phase)
end-if
end-if
end-for
until All neurons have pulsed

that represents the silence phase is divided into two parts according to the = values. Every oscillator representing an unlabeled
object is randomly initialized in the leftmost part of the silence phase (away from LK), whereas the oscillators representing
labeled objects are positioned randomly in the right side of the silence phase (near LK). This approach allows the oscillators that
represent labeled objects to be the first to become active. Algorithm 2 presents the strategy for selecting neurons to pulse.

Algorithm 2 Selection Algorithm.

Find j among every oscillator in the silence

phase, such that x;(t) > zx(t)Vk

zj(t+1)=RK

Zt+1)=1

if ) € L then
ActiveClass = l; (Variable ActiveClass represents the class of the selected neuron, which will be propagated to the neurons that are
excited by it)

else
ActiveClass = I; (arg min;er, d(i, §)) (If the selected neuron is not associated to an object belonging to the labeled set s; ¢ S;, variable
ActiveClass receives the label associated to the nearest labeled neuron 4 to j)

end-if

for all % in the silence phase do
Tp(t+1) = zx(t) + (LK — z;(t))

end-for

By analyzing the equations that describe the LEGION model, several parameters need to be set. However, these parameters
present well-established values and do not need to be modified during the experiments. Hence, parameter o, which is used to
configure the network that represents the dataset, is the only parameter that needs to be tuned specifically for each dataset.

4. Computer Experiments

This section presents the experiments performed with our model and their respective results. To implement our model, the
iGraph package was taken into account [25]. This package provides several functions for generating and manipulating networks.

The experiments were divided in two parts. First, a toy dataset was used to illustrate the classification process. Second,
several datasets proposed and analyzed in [5] were considered. The use of those datasets was quite interesting, as it allowed
for a direct comparison of the model with several other techniques discussed in [5]. It is worth pointing out that all LEGION
parameters were held constant: 6, = 0.0, 8, = 0.5 e W, = 0.2. The threshold 6,, = 0.1 (Eq. (5)) was also held constant. The
parameter o (Eq. (4)) was always adjusted to obtain a network with average degree (k) ~ 3 for the 6,,-cut approach. To the kNN
approach, k was held constant at 10. These values were obtained through empirical study from diverse datasets.
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Figure 2: Experiment with synthetic data set. a) original dataset, b) dataset with only 5 % of labeled data, c) classification result.

The first experiment was performing with a synthetic dataset containing 1000 samples equally divided into two classes. Figure
2(a) shows the original dataset. Only 5% of the labels associated with randomly selected samples are preserved (see Figure 2(b)).
The result of the classification is illustrated in Figure 2(c), which achieved a classification rate of approximately 96% for a set of
200 runs. For each run, the subset of pre-labeled samples was generated randomly. Assuming the illustrative purpose of this first
experiment, only the 6,,-cut approach was applied to generate the graph.

The following experiments were conducted with datasets studied in [5]?. Table 1 provides a brief description of the main
characteristics of these datasets.

Table 1: Datasets from [5]

Dataset | Class Dimension  Samples Type
g241c 2 241 1500

g241n 2 241 1500 synthetic
Digitl 2 241 1500 synthetic
USPS 2 241 1500 real
COIL 6 241 1500 real
BCI 2 117 400 real
TEXT 2 11960 1500 real

In order to compare the results to those published in [5] and [15], the same methodology was adopted in this work, i.e., the
experiments were divided into two batteries: first, only 10 examples of each dataset were labeled, while in the second battery 100
samples of each dataset were labeled. For each dataset, we used the same 12 folds (divisions) provided by [5], allowing a fair
comparison of methods. The results obtained by the proposed model were compared with the best, the worst and the average of
the results published in [5] and [15]. It is important to mention that in [5] the standard deviation is omitted and only the average
of the 12 runs is presented. Thus, no further statistical analysis could be performed to see if the difference is significant or not
between the models.

Table 2: Results with 10 labeled examples in 6,,cut networks. The table presents the average precision and the standard deviation
obtained in the proposed model, the average accuracy of the model presented in [15] and average, the best and the worst results
of the techniques studied in [5].

Dataset Our model [15] Average Worst Best
g241c 55.95(3.30)% - 59.54% 50.41% 77.24%
g2241n 56.78(2.89)% - 55.84% 49.37% 81.27%

Digitl 76.42(5.79)% - 85.05% 69.40% 94.56%
USPS 80.51(3.55)% 80.65% 80.88%  74.64% 83.93%
COIL 35.50(4.41)% 36.83% 35.83% 32.50% 45.46%
BCI 51.26(2.83)% 51.03% 50.69%  49.64% 52.05%
TEXT | 60.88(5.16)% 79.77%  62.713% 54.68% 72.85%

Tables 2 and 3 depicts the results obtained by our method using the 6,,-cut approach. Those tables also present the results
shown obtained in [5] and [15]. Analyzing the results, we can see that the proposed model produced results close to the average
of [5]. Similar results were obtained with the kNN approach, as shown in Tables 4 and 5. Although the proposed model has
not achieved better results than the best techniques, the results are compared to the average of several techniques. It means,
the model is able to perform semi-supervised classification in different contexts. Furthermore, as mentioned at the beginning of
the section, the average degree of the network required for application of the technique is much lower than the model proposed

2 Available online at http: //www.kyb.tuebingen.mpg.de/ssl-book
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Table 3: Results with 100 labeled examples in 6,,-cut networks. The table presents the average precision and the standard
deviation obtained in the proposed model, the average accuracy of the model presented in [15] and average, the best and the
worst results of the techniques studied in [5].

Dataset Our model [15] Average Worst Best

g241c 59.72(2.25)% - 7291% 55.95% 86.51%
g241n 62.51(1.61)% - 7232% 56.79%  95.05%
Digitl 94.16(1.38)% - 96.21% 93.85% 97.56%

USPS 91.370097M% 84.77% 93.13% 90.23% 95.32%
COIL 81.02(1.83)% 81.49%  80.05% 71.29% 90.39%
BCI 55.17(1.71%  64.07%  58.36% 52.11% 66.75%
TEXT | 69.1000.98)% 9434% 73.88% 67.17% 76.91%

in [15], (k) = 3 for the 6,,-cut approach and k = 10 for the kNN approach versus (k) ~ 25. The networks taken into account
by our model are more sparse than those treated in [15], thus , the manipulation of the network becomes more efficient. This fact
associated with the algorithm which does not require numerical integration, allows the treatment of larger datasets.

Table 4: Results with 10 labeled examples in NN networks. The table presents the average precision and the standard deviation
obtained in the proposed model, the average accuracy of the model presented in [15] and average, the best and the worst results
of the techniques studied in [5].

Dataset Our model [15] Average Worst Best
g241c 55.84(3.39)% - 59.54% 50.41% 77.24%
g241n 56.79(2.90)% - 55.84% 49.37% 81.27%

Digitl 75.69(6.83)% - 85.05% 69.40% 94.56%
USPS 80.53(3.55)% 80.65% 80.88%  74.64% 83.93%
COIL 34.93(3.86)% 36.83% 35.83% 32.50% 45.46%
BCI 51.092.39% 51.03% 50.69%  49.64% 52.05%
TEXT | 60.55(4.94)% 79.77%  62.73% 54.68% 72.85%

Table 5: Results with 100 labeled examples in ANN networks. The table presents the average precision and the standard
deviation obtained in the proposed model, the average accuracy of the model presented in [15] and average, the best and the
worst results of the techniques studied in [5].

Dataset Our model [15] Average Worst Best

g241c 59.62(2.39)% - 7291% 5595% 86.51%
g241n 62.65(1.67)% - 7232% 56.79%  95.05%
Digitl 93.90(1.35)% - 96.21% 93.85% 97.56%

USPS 91.21(0.93)% 80.65% 93.13% 90.23% 95.32%
COIL 80.90(1.98)% 36.83%  80.05% 71.29% 90.39%
BCI 55.06(1.74)% 51.03% 58.36% 52.11% 66.75%
TEXT | 69.27(1.07)% 79.77% 73.88% 67.17% 76.91%

Another advantage of our model compared to the one proposed in [15] is the existence of a stopping criterion. In this model,
simply wait until all the oscillators have pulsed once.

5. Conclusions

This paper proposes a new model for semi-supervised classification based on the oscillatory correlation theory. Amidst the
main contributions, the following can be highlighted: i) a new application of the oscillatory correlation theory, ii) the proposed
model showed competitive classification accuracy in comparison to state-of-art techniques, iii) the model has solved some of the
limitations observed in [15], and iv) in contrast to the current graph-based models, the proposed model is dynamic, it does not
require a new learning process when a new instance is inserted into the dataset. In these situations, the proposed model requires
only a new iterations in order to acomodate the new samples.

As future work, we intend to investigate in deep the reasons why the model achieved low accuracies for some datasets
considered in this work. Moreover, we also intend to apply the model in dynamic datasets and specific areas of problems, such
as interactive segmentation of images.
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