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Abstract- Echo state networks (ESNs) are promising options for performing time series prediction, as they establish an 

attractive tradeoff between dynamical processing capability and simplicity in the training process. The recurrent character of 

these structures is essentially concentrated on a nonlinear processing stage known as dynamic reservoir, whereas the output 

layer – also termed readout – is allowed to assume the form of a combiner that is, as a rule, linear with respect to its free 

parameters. Recently, Butcher et al. and Boccato et al. proposed readout design paradigms – based, respectively, on Volterra 

filtering and extreme learning machines – that were shown to enhance the information extraction potential of ESNs without 

compromising the intrinsic simplicity of their training process. In this work, these approaches are comparatively analyzed, 

using different reservoir configurations, in the context of monthly streamflow series forecasting. The analysis is based on data 

from the hydroelectric plant of Furnas, covering three different periods with distinct hydrologic profiles and including the 

canonical linear approach for readout design as a benchmark. The results reveal that the aforementioned proposals may lead to 

a relevant performance improvement, thus indicating that the reservoir is not per se capable of fully exploring the nonlinear 

relationships underlying the focused data. 

Keywords- Echo State Networks, Volterra Filtering, PCA, Extreme Learning Machine, Seasonal Streamflow Series 

Forecasting 

1 Introduction 

Feedforward and recurrent artificial neural networks (ANN) have been widely used for time series forecasting in several 

application contexts (Zhang et al., 1998) (Haykin, 1999). From a purely structural standpoint, recurrent neural networks 

(RNNs) would be very natural choices for performing prediction tasks, as their dynamical character allows, in abstracto, a 

parsimonious modeling of the time evolution of a sequence of samples. Nevertheless, in practice, the training process of these 

networks can be associated with a number of challenging factors, like the menace of instability and a relatively complex 

process of calculating derivatives of a given cost function. 

In 2001, Jaeger introduced an elegant strategy for designing recurrent neural networks that established a remarkable balance 

between performance and complexity. The proposed structure, known as echo state network (ESN), is characterized by the 

presence of a RNN with fixed parameters, which corresponds to a reservoir of nonlinear dynamics, and of an adaptive linear 

output layer (Jaeger, 2001). The attractive feature of ESNs is associated with the perspective of exploiting, to a certain extent, 

the benefits of recurrence alongside with a simple training procedure, which essentially consists in finding the optimum 

coefficients of the output linear combiner in the least-squares sense. 

ESNs, along with the so-called liquid state machines (LSMs), proposed by Maass (2002), have directly contributed to the 

emergence and establishment of a new research field called reservoir computing (Lukoševičius, 2009). In this context, recent 

works have brought interesting ideas aiming to improve the ESN processing capability. For instance, Ozturk et al. (2007) 

focused on the study of the reservoir characteristics and proposed a new reservoir design method that explores the Kautz 

principle of linear systems to increase the diversity of dynamical behaviors at the reservoir, something that was quantified 

based on the concept of average entropy.  

Instead of dealing with the reservoir design issue, Butcher et al. (2010) and Boccato et al. (2011) (2012) have addressed the 

possibility of using alternative readout structures. In the former work, the output linear combiner was replaced by an extreme 
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learning machine (ELM), whereas, in the latter proposal, a Volterra filtering structure was employed together with the principal 

component analysis (PCA) technique. These readout models offer the possibility of using a nonlinear and, thus, more flexible 

processing structure to create complex nonlinear mappings. Moreover, in both cases, the task of determining the coefficients of 

the readout remains linear with respect to the free parameters, which means that, as occurs with the original ESN training 

process, an optimum solution can be obtained by means of linear regression methods. 

The aforementioned features of ESNs qualify these structures as interesting approaches to cope with monthly streamflow series 

forecasting, a very important operations research problem, especially in countries like Brazil, where the power generation is 

mostly based on hydroelectric plants. The application of ESNs to this particular problem has been firstly addressed by Sacchi 

et al. (2007), who reported promising results. In this work, we aim to expand the repertoire of analyzed ESN architectures, 

bringing the following main contributions: (i) the use of two different reservoir design methods – the original idea of Jaeger 

and that of Ozturk et al. (2007) and (ii) the application of ESNs using nonlinear readouts – the architectures proposed by 

Butcher et al. and Boccato et al. All the considered networks shall play the role of one-step ahead predictors in the context of 

three scenarios associated with the seasonal streamflow series of the Furnas Hydroeletric Plant, located in Brazil.  

This work is organized as follows: Section 2 presents the echo state networks proposed by Jaeger and Ozturk et al.; Sections 3 

and 4 describe the nonlinear ESN readouts introduced by Boccato et al. and Butcher et al., respectively; the experimental 

results are reported and analyzed in Section 5, while Section 6 presents the main conclusions and future perspectives of this 

work. 

2 Echo State Networks 

Recurrent neural networks represent an important class of tools within the research field of neurocomputing due to their natural 

capability of dealing with dynamical / temporal problems. By virtue of their being endowed with feedback connections, these 

structures benefit from the emergence of an internal memory, which can be very useful to time series processing. However, 

well-known difficulties associated with standard RNN training approaches, such as the threat of reaching unstable 

configurations during the adaptation process, the difficulty of computing the derivatives of the cost function and the risk of 

converging to local optima (Haykin, 1997) pose relevant obstacles to their practical application. In this context, echo state 

networks (ESN), proposed by Jaeger (2001), represent an interesting path towards circumventing these difficulties and 

exploring the RNN structural advantages. 

The standard ESN architecture is depicted in Figure 1: 

 

 
Figure 1: Echo State Network 

The following variables are defined as:   

i-   u(n) – input vector, 
M ; 

ii- x(n) – echo states vector, 
N ; 

iii- y(n) – output of the network; 

iv- d(n) – desired output; 
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v- W
in 
– matrix of weights of the input layer, NxK ; 

vi- W – matrix of recurrences of the hidden layer, NxN ; 

vii- W
out 

– matrix of weights of the output layer, LxN . 

The vector T1)](1)()([)(  Kn,...un,ununu contains the input samples, which are transmitted to the internal neurons by 

means of linear combinations, being W
in 

the matrix with the coefficients of such combinations. The recurrent layer, usually 

referred to as dynamical reservoir, is composed of highly interconnected nonlinear processing units. The vector x(n) specifies 

the network states, i.e., the activation of the internal neurons, and is updated according to the following expression: 

))(1)(.(1)( nnn WxuWfx
in   

(1) 

where (.))(.),..(.),((.) N21 .,ffff  specifies the activation functions of the neurons within the reservoir. The network output vector 

T)](,),(),([)( 21 ny...nynyn Ly  is given by: 

))1((1)(  nn xWfy
outout  

(2) 

where (.)),(.),(.),((.) 21
out
L

outout f...ffout
f  stands for the activation functions of all neurons in the output layer. Throughout this 

work, we will assume that these activation functions are simply identity functions. 

In his pioneering work, Jaeger (2001) observed that, under certain circumstances, the network states x(n) tend to become 

asymptotically independent of the initial conditions. In other words, starting from two different initial conditions x1(0) and 

x2(0), and with the same sequence of input stimuli, the corresponding network states converge to close values. Therefore, the 

effect of the input history is preponderant in the long-term reservoir dynamical behavior, and the network is said to have echo 

states (Jaeger, 2001). Additionally, Jaeger demonstrated that the existence of echo states is closely related to specific properties 

of the reservoir weight matrix. More specifically, in the case of an ESN without output feedback and whose internal neurons 

have hyperbolic tangent activation functions, the existence of echo states is guaranteed as long as the largest absolute singular 

value of W lies within the unit circle (Jaeger, 2001).  

Since the presence of a useful memory is ensured by the echo state property, the training process of the network can be carried 

out according to the following steps (Jaeger, 2001): 

1- Create a reservoir weight matrix W with spectral radius less than or equal to one; 

2- Randomly define the input weights (W
in

), as these parameters do not affect the echo state property; 

3- Determine the optimum solution for the output linear combiner in the least-squares sense. 

By virtue of the linear character of the readout, the problem of choosing the ESN output weights can be directly solved in the 

least-squares sense, and the optimum solution can be expressed as follows: 

dxh )'(pinv  (3) 

where pinv(x’) denotes the Moore-Penrose generalized inverse of matrix x, and d is the desired signal. 

A desired feature for the ESN dynamical reservoir is that it be capable of generating a repertoire of dynamics as rich as 

possible in order to enable an adequate approximation of the desired signal, which means that the choice of the reservoir 

weights, albeit being performed separately to the network training, has to take this aspect into account. Having this in mind, 

Jaeger proposed an interesting strategy: to create a random sparse reservoir weight matrix according to a predefined 

distribution. The idea of having sparse connections within the reservoir aims to decouple groups of neurons and, hopefully, to 

produce a diverse repertoire of dynamical behaviors. 

A different strategy, introduced by Ozturk et al. (2007), indicates that the eigenvalues of the reservoir weight matrix should be 

uniformly spread over a circle with radius R < 1. These reservoir models shall be considered in this work and are exemplified 

in (4) and (5), respectively: 
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where Ja
ijw  represents each element of Ja

W , i,j = 1,…,N, and  
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In the next section, we present an extension of the standard ESN architecture proposed by Boccato et al. (2011) (2012). 

3 Echo State Network with PCA and Volterra Filter 

As discussed in Section 1, ESNs are capable of allying the processing capability of recurrent structures to the simplicity of the 

training process of linear filters. However, these encouraging characteristics strongly depend on the reservoir design in order 

that an effective trade-off between performance and computational cost be reached.  

Interestingly, a different path has been studied: instead of resorting to more sophisticated reservoir design methods, it may be 

possible to improve the ESN performance by replacing the linear combiner at the output layer with more robust processing 

structures. This was the motivation of the work of Boccato et al. (2011) (2012), which proposed the use of a nonlinear readout 

based on the Volterra filtering structure (Haykin, 1999), which means that each network output is obtained via linear 

combinations of polynomial terms, as described in Equation (6): 
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(6) 

where )(nx
k

represents the k-th echo state in the instant n, )(ny
i

 is the i-th ESN output, ).(ih are the coefficients of the filter 

(linearly related to the output) and N is the number of echo states. This structure not only is capable of exploiting higher-order 

statistics of the network states but also preserves the simplicity of the ESN training process, as the adaptation of the output 

coefficients amounts to a least-squares problem. 

Nevertheless, as the number of echo states is increased, the number of coefficients ).(ih  grows very rapidly. Because of this 

menace, Boccato et al. (2011) employed a well-known compression technique - principal component analysis (PCA) 

(Hyvärinen et al, 2001) - to reduce the number of signals that are effectively transmitted to the output layer. Since there are 

redundancies among the echo states (Jaeger, 2001) (Ozturk et al., 2007), the use of PCA does not necessarily deteriorate the 

performance of the ESN.  

Therefore, this new architecture is capable of expanding the processing capability of the original ESN and, at the same time, of 

maintaining the key features of the ESN training process. In the context of supervised channel equalization, Boccato et al. 

(2011) reported significant performance improvements achieved with the novel ESN architecture when compared with 

conventional ESNs. These promising evidences motivated the application of such network on streamflow series forecasting.  

4 Hybrid Architecture with Echo State Network and Extreme Learning Machine 

With the purpose of improving the capability of echo state networks to create complex nonlinear mappings, Butcher et al. 

(2010) proposed a hybrid architecture characterized by the use of extreme learning machines (ELMs) at the ESN output layer 

in lieu of the traditional linear combiner. 
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Figure 2: Echo State Network with PCA and Volterra Filter 

ELMs are feedforward neural networks composed of two main structures: (i) a single hidden layer of nonlinear processing 

units, which is responsible for mapping data into high-dimensional spaces; (ii) a readout stage, which linearly combines the 

hidden neuron activations to generate the network outputs (Huang et al., 2004) (Huang et al., 2006). The distinctive feature of 

ELMs is that only the output weights are effectively adjusted with the aid of an error signal, while the hidden node parameters 

– input weights and biases – are randomly assigned. Hence, the ELM training process corresponds to the task of finding the 

optimum values of the output weights in the least-squares sense, which represents a significant simplification when compared 

to standard gradient-based learning algorithms (Huang et al., 2006). 

Interestingly, this approach is supported by theoretical results that demonstrate that the hidden node parameters can be 

arbitrarily assigned as long as the activation function is infinitely differentiable (Huang et al., 2006). In addition to this aspect, 

due to the intrinsic properties of the Moore-Penrose generalized inverse operation, the optimum solution not only minimizes 

the mean squared error but also the norm of the output weight vector, which, according to Bartlett’s standpoint (Bartlett, 1998), 

contributes in the sense of improving the generalization capability of the network. 

In this work, we shall consider a simplified version of the model proposed by Butcher et al. (2010): here, a single ELM forms 

the readout, which receives only the reservoir dynamics to produce the network outputs, similarly to what occurs in the 

proposal of Boccato et al. (2011) (2012). Figure 3 depicts the hybrid architecture explored in this work.  

 
Figure 3: Hybrid Architecture: Echo State Network with Extreme Machine Learning 

The activation of the hidden layer neurons is determined by the following expression: 

))(()( bxWfx
hh

h  nn  (9) 

where W
h
 

xN
ext

N
 contains the input weights, b specifies the random bias of each hidden unit and f

h
(.) stands for the 

activation function of the hidden neurons. Then, the ELM outputs are obtained by means of linear combinations of the hidden 

activations, as shown in the following expression: 

)()( nn h
out

xWy   (10) 

where W
out

 contains the coefficients of such combinations. Since only the ELM output weights are adjusted, and the problem 

of obtaining the optimum solution is linear with respect to the output coefficients, the simplicity of the ESN training process is 
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preserved in the context of the hybrid architecture. 

5 Seasonal Streamflow Series Forecasting 

 

5.1 Monthly Seasonal Streamflow Series and Preprocessing 

Monthly seasonal streamflow series are non-stationary and present seasonal components that reflect the rainy and dry periods 

associated with the nearby rivers. Such components affect the performance of any predictor, linear or not (Luna and Ballini, 

2011).  Thus, it is quite useful to employ some kind of deseasonalization technique to remove the seasonal components, 

reinserting them only at the end of the forecasting process. Equation (11) displays the deseasonalization process adopted in this 

work: 

m

mmi

mi

s
z






,

,  

(11) 

where mis , are the samples of the original series )(ns , which is transformed into a new deseasonalized series )(nz  with zero 

mean and standard deviation equal to one. The average μm and the standard deviation σm of each month m are estimated by: 
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1
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(12) 
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
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m s
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1

2
, )(

1
  

(13) 

where mis , denotes the streamflow in the year yNi ,...,2,1 , and in the month 1221 ,...,,m . 

In summary, we applied the previously described ESN architectures to the forecasting of the series z(n) in training and test sets. 

At the end of the prediction process, the seasonal components are reinserted, allowing the performance assessment in the 

original domain of the streamflow series. 

5.2 Computational Results and Discussion 

The prediction scenarios involved in this Section are associated with three periods of the monthly seasonal streamflow series of 

the Furnas Hydroeletric Plant, located at the Rio Grande river, Brazil. The data samples are available on the ONS - Electric 

System National Operator – website (http://www.ons.org.br/operacao/vazoes_naturais.aspx), and we considered the monthly 

streamflow values from 1931 to 1990. The test sets are composed of the samples in the following periods: (1) 1952 to 1956 – 

(dry), whose average equals to 656,41 m³/s; 1972 to 1976 – (medium), whose average equals to 882,63 m³/s; and 1981 to 1985, 

(wet), whose average equals to 942,04 m³/s. All test periods comprise 5 years, or 60 samples, and are commonly used in this 

kind of study (Siqueira et al., 2011) due to their particular characteristics. The training set is built with all the samples available 

in the streamflow series, except those associated with the 5 years of each test set.  

Initially, the deseasonalization process described on Section 5.1 was applied to each case and, then, the average of each set was 

subtracted, before the input data was presented to the ESN. All ESN architectures were trained with two inputs, i.e., using the 

samples associated with current month and the previous one. This choice was based on preliminary experiments and attempted 

to represent a compromise between performance and parsimony. The forecasting horizon was always one step ahead.  

Based on preliminary tests, the proposal by Boccato et al. included only the first- and third-order terms of the Volterra 

expansion, and two principal components were considered in PCA. The reservoir of all architectures was designed according to 

the probability distribution described on Jaeger (2001), and the spectral radius was equal to 0.8 in the case of the reservoir 

method of Ozturk et al. (2007). With respect to the proposal of Butcher et al., the number of neurons in the ELM hidden layer 

was also defined based on preliminary tests.  

Tables 1 to 3 present the performance of the ESNs based on the Mean Square Error (MSE) and Mean Absolute Error (MAE), 

considering an average of 20 independent simulations, with respect to both the training and test sets, in real and deseasonalized 

domains, where N is the number of echo states and Next the number of neurons in the hidden layer of the ELMs, to the hybrid 

architecture. 

http://www.ons.org.br/download/biblioteca_virtual/publicacoes/dados_relevantes_2010/0603_producao_origem.html
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where d(n) is the observed data, y(n) is the output of the network and Ns the number of samples. 

Table 1: Mean Absolute Error  and Mean Square Error for series FURNAS 1952/1956 

ESN N/Next MSE 

(10
4
) 

MAE 

(10
4
) 

MSE 

deseas 

MAE 

deseas 

MSE (10
4
) 

train 

MAE (10
4
) 

train 

MSE deseas 

train 

MAE deseas 

train 

Jaeger 15 7.3308 186.1698 0.2985 0.4379 10.9855 212.5689 0.6020 0.5432 

Ozturk 25 7.2037 180.3335 0.2823 0.4320 10.8298 207.9432 0.5692 0.5241 

Boc.+Jaeg. 30 5.4968 165.7800 0.2491 0.4198 11.1337 216.2583 0.5831 0.5491 

Boc. +Ozt. 80 5.5751 164.4064 0.2471 0.41403 10.8662 212.8069 0.5632 0.5404 

Jaeg. +ELM 10/40 4.4674 149.2833 0.2214 0.3914
 

10.1403
 

205.4675
 

0.5362
 

0.5253
 

Ozt. +ELM 7/50 4.8742 152.8290 0.2139 0.3760 10.4620 205.0174 0.5356 0.5184 

 

Table 2: Mean Absolute Error  and Mean Square Error for series FURNAS 1972/1976 

ESN N/Next MSE 

(10
4
) 

MAE 

(10
4
) 

MSE 

deseas 

MAE 

deseas 

MSE (10
4
) 

train 

MAE (10
4
) 

train 

MSE deseas 

train 

MAE deseas 

train 

Jaeger 15 6.6845 183.1000 0.4068 0.4995 11.1632 207.8543 0.5761 0.5179 

Ozturk 25 7.5629 192.9986 0.4330 0.5300 10.3911 203.2150 0.5643 0.5148 

Boc.+Jaeg. 30 7.0115 180.3267 0.3838 0.4917 11.1091 214.4129 0.5803 0.5421 

Boc. +Ozt. 80 6.5607 171.5009 0.3603 0.4686 10.7798 211.2429 0.5602 0.5339 

Jaeg. +ELM 5/50 5.0143 159.4289 0.3758 0.4635
 

10.2798
 

206.7741
 

0.5178
 

0.5176
 

Ozt. +ELM 7/60 6.0904 182.9762 0.4293 0.5238 10.1119 200.9086 0.5333 0.5105 

 

Table 3: Mean Absolute Error  and Mean Square Error for series FURNAS 1981/1985 

ESN N/Next MSE 

(10
4
) 

MAE 

(10
4
) 

MSE 

deseas 

MAE 

deseas 

MSE (10
4
) 

train 

MAE (10
4
) 

train 

MSE deseas 

train 

MAE deseas 

train 

Jaeger 110 25.3856 339.6919 1.6505 0.9090 6.6726 166.7190 0.30821 0.4223 

Ozturk 100 23.1586 339.3481 1.6114 0.9158 7.2630 173.4588 0.32943 0.4378 

Boc.+Jaeg. 120 22.8347 341.3128 1.6265 0.9164 8.5571 186.8554 0.38152 0.4662 

Boc. +Ozt. 60 23.1160 347.8526 1.6342 0.9294 8.8430 189.3176 0.38931 0.4701 

Jaeg. +ELM 100/60 22.4578 346.8280 1.7028 0.9425
 

7.7406
 

181.8424
 

0.36621
 

0.4617
 

Ozt. +ELM 10/40 24.1913 352.2593 1.7842 0.9635 8.2486 185.5712 0.38012 0.4678 

Finally, the ANOVA Friedman’s test was used to check whether the approaches actually provided different results (Luna and 

Ballini, 2011). The p-values achieved were: 6.52336e-009, for the period 1952/1956; 2.88366e-007 for 1972/1986; and 0.0975 

to 1981/1985. This indicates that the prediction performances are, indeed, different or, in other words, that the prediction 

method directly affects the overall results. 

The results presented in Tables 1, 2 and 3 lead to the following important observations. Firstly, there are cases in which there is 

no direct correspondence between the best values of MSE and MAE. Secondly, achieving the best results in the deseasonalized 

domain does not necessarily mean that, in the real domain, i.e., when the deseasonalization is reverted, the best performance is 

obtained as well. This problem is intrinsic to the prediction of this kind of series and occurs because of the deseasonalization 

process treats equally months with different standard deviations. With respect to the reservoir design methods, the obtained 

results do not indicate a clear preference in this task for the proposals of Jaeger or of Ozturk et al.  

The classical ESN models of Jaeger and of Ozturk et al., in general, presented better results in the training set when compared 

with the architecture of Boccato et al., and with the architecture from Butcher et al. in the 81/85 test set. However, this 

observation does not hold for the test sets. We have checked the possibility of overfitting, but a reduction in the number of 

neurons within the reservoir tends to deteriorate the overall results of these classical ESNs.  
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It is possible to observe in Tables 1 to 3 that the introduction of nonlinear output layers – a Volterra Filter along with PCA or an 

ELM – led to a reduction in the error on the test sets – in all cases in the real domain, and in two out of three in the 

deseasonalized domain. This means that, albeit the best results with respect to the training set were obtained with the classical 

ESN approaches, the ESNs using nonlinear readouts were capable to absorb, in a balanced way, the characteristics of the time 

series, extracting the essential information of the training set without compromising the generalization capability.  

It is also important to notice that the approach from Boccato et al. required a higher number of internal neurons, which 

suggests that it is necessary to use more echo states to attain a sufficiently adequate compression without losing a significant 

amount of information about the input signal. The number of principal components assumed small values in order to impose a 

parsimonious situation to the network. The architecture from Butcher et al. presented the best overall results, and, in most of 

the cases, we employed more neurons in the ELM hidden layer than in the ESN reservoir. 

Based on all these observations, it is possible to affirm that the obtained results show the benefits achieved with the 

introduction of a more flexible output layer in the time series prediction. Aiming to illustrate the performance of each network, 

Figures 4 to 9 exhibit the original streamflow series along with the best predicted values, both in real and deseasonalized 

spaces. 

  
(a) (b) 

Figure 4: Best performance for series FURNAS 1952/1956 in deseasonalized (a) and real (b) spaces - Training 

 

  
(a) (b) 

Figure 5: Best performance for series FURNAS 1952/1956 in deseasonalized (a) and real (b) spaces - Test 
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(a) (b) 

Figure 6: Best performance for series FURNAS 1972/1976 in deseasonalized (a) and real (b) spaces - Training 

 

  
(a) (b) 

Figure 7: Best performance for series FURNAS 1972/1976 in deseasonalized (a) and real (b) spaces - Test 

 

  
(a) (b) 

Figure 8: Best performance for series FURNAS 1981/1985 in deseasonalized (a) and real (b) spaces - Training 
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(a) (b) 

Figure 9: Best performance for series FURNAS 1981/1985 in deseasonalized (a) and real (b) spaces - Test 

6 Conclusion 

This work presented a comparative study of the application of different architectures of echo state networks (ESNs) to seasonal 

streamflow series forecasting, covering proposals from Jaeger, Ozturk et al, Boccato et al. and Butcher et al., of which the last 

two are characterized by the use of nonlinear readouts. The main motivation underlying the application of ESNs to this 

problem is the perspective of combining the advantages of a recurrent structure to a training process that is kept as simple as 

possible. 

The work performed a prediction study for three different periods of the monthly seasonal streamflow series from Furnas 

Hydroelectric Plant, always aiming at an estimate one step ahead. It showed that that the proposals of Boccato et al. and 

Butcher et al. brought effective performance gains both in the real and the deseasonalized domains. In essence, this means that 

the introduction of a nonlinear readout leads to a more effective use of the higher-order information present in hydrological 

time series.  Hence, nonlinear output layers should be considered as relevant options to solve problems of this kind using 

ESNs, with the caveat that the training process must always be suitably conceived.  

As perspectives for future work, we indicate: a) the application of the various ESN paradigms to prediction tasks with a time 

horizon transcending the single-step case; b) the use of a vaster repertoire of hydrological time series; c) investigations about 

improvements in the deseasonalization process, thereby enhancing the correlation between the deseasonalized and real 

domains.  
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