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Abstract – Evolving fuzzy systems use data streams to continuously adapt the structure and functionality of fuzzy rule-based
models. It gradually develops the model structure and its parameters from a stream of data, which is essential when dealing
with complex and nonstationary systems. In this paper, we suggest the use of functional evolving fuzzy modeling in the form
of Takagi-Sugeno (eTS) model to forecast Brazilian government bond yields through the Nelson-Siegel function. In thiscase
the eTS adaptively estimates the parameters Nelson-Siegelfunction to perform forecasts. This is a crucial procedure for bond
portfolio management, derivatives and bonds pricing. The experiments reported here use daily data of the Brazilian National
Treasury Bills of the period from January 2007 to December 2009 for one, three, six, nine and twelve months ahead forecasting
horizons. The evolving model was compared with autoregressive and random walk models, in terms of root mean squared error.
Results indicate that eTS is a promising approach to deal with government bond yields forecasting because it gives more accurate
Nelson-Siegel parameters values than traditional approaches.

Keywords –Evolving Fuzzy Systems, Time Series Forecasting, Yield Curve and Interest Rate.

Resumo –Sistemas nebulosos evolutivos utilizam fluxos de dados paraadaptar, continuamente, sua estrutura e parâmetros em
modelos nebulosos baseados em regras. Desenvolvem gradualmente a estrutura do modelo e seus parâmetros a partir de fluxos
de dados, o que é essencial para o tratemento de sistemas complexos e não-estacionários. Neste artigo, é sugerida a utilização da
modelagem funcional nebulosa evolutiva na forma de um modelo do tipo Takagi-Sugeno (eTS) para a previsão da curva de juros
no Brasil por meio da função de Nelson-Siegel. Neste caso,o modelo eTS estima, de forma adaptativa, os parâmetros da função
de Nelson-Siegel para realizar previsões. A previsão da curva de juros é essencial para administração de portfólios baseados em
tı́tulos públicos, e na precificação de tı́tulos e derivativos. Os experimentos reportados no artigo utilizam dadosdiários das Letras
do Tesouro Nacional no perı́odo de Janeiro de 2007 a Dezembrode 2009 para horizontes de previsão de 1, 3, 6, 9 e 12 meses.
O modelo evolutivo foi comparado com os modelos autoregressivo e de passeio aleatório em termos da métrica de raiz do erro
quadrático médio. Os resultados indicam que o modelo eTS ´e uma abordagem promissora para o problema de previsão da curva
de juros, uma vez que foi capaz de proporcionar estimativas mais acuradas para os parâmetros de Nelson-Siegel em comparação
com as abordagens tradicionais.

Palavras-chave –Sistemas Nebulosos Evolutivos, Previsão de Séries-Temporais, Curva de Juros e Taxa de Juros.

1. INTRODUCTION

Term structure of government bond yields modeling is a challenging task that has attracted investors, policy makers, resear-
ches and all market participants since it provides fixed-income instruments pricing and manage the risk of bonds and derivatives.
It also allows monitoring observed and unobserved economicvariables such as the risk premium, default risk, inflation and real
activity, as well as forecasting future interest rates [1].

Yield curve forecasting is crucial for risk and bond portfolio management and for derivatives pricing. It is also used by
treasuries that manage the emission and maintain of the stock of public debit, which continuously demands an assessmentof
current and future interest rates. Moreover, investors track the performance of their portfolios against the opportunity cost of
investing in low-risk bonds and Central banks react to expected inflation and economic activity by adjusting the short rate,
thereby affecting the whole curve [2,3].

The literature related to finance, econometrics and macroeconomics have been focused term structure models, and few of
them have analyzed the out-of-sample forecasting performance. Reference [4] investigates the relationship between forward
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and future spot rates as the first study devoted to yield curvepredictability questions. More than one decade later, [5] applied
affine models for US yields forecasts and observed poor results. Recently, [2] addressed a two-stage model based on Nelson-
Siegel framework [6] to forecast the US term structure and better results were obtained when compared with competing models.
Further, [7] showed that the inclusion of no-arbitrage conditions in latent models improves the out-of-sample fit.

In [8] the authors introduced a new model, namely FunctionalSignal Plus Noise with an Equilibrium Correction Model (FSN-
ECM), which produces very good forecasts, in terms of mean squared forecast error, for one-month ahead horizon. The work
reported in [9] compares the FSN-ECM model with the model developed by [2] to forecast 12-dimensional yields for Brazilian
yields for one, three, six, and twelve months horizons. The results suggest that the FSN-ECM produces very good forecasts for
short-term (one month), outperforming the benchmarks available.

Using a broad class of linear models, [1] showed that a simpleparametric specification has the best predictive power for
interest rate forecasting in USA and Brazilian markets. However, the random walk model is not outperformed and it was found
that macroeconomic variables and no-arbitrage conditionshave little effect to improve the out-of-sample fit, while a financial
variable (stock index) increases the forecasting accuracy.

Although the models mentioned above have acceptable performance for term structure forecasting, they differ in accuracy
for short and long horizons. Autoregressive and random walkmodels are well-suited for short maturities while affine models
and extensions perform better for medium and long horizons forecasting. Due to constraints, traditional statistical and econo-
metrics models have been outperformed by methodologies based on computational intelligence like artificial neural networks,
evolutionary computing and fuzzy systems.

The purpose of this paper is to introduce the use of evolving fuzzy rule-based models to forecast the Brazilian yield curve by
estimating the Nelson-Siegel function parameters. The concept of evolving fuzzy systems translates in the idea of gradual self-
organization and parameter learning in fuzzy rule-based models [10]. Evolving fuzzy systems use data streams to continuously
adapt the structure and functionality of fuzzy rule-based models. The evolving mechanism ensures greater generality of the
structural changes because rules are able to describe a number of data samples. Evolving fuzzy rule-based models include
mechanisms for rule modification to replace a less informative rule by a more informative one [10]. Overall, evolution guarantees
gradual change of the rule base structure inheriting structural information. The idea of parameter adaptation of rulesantecedent
and consequent is similar in the framework of evolving connectionists systems [11], evolving Takagi-Sugeno (eTS) and extended
Takagi-Sugeno (xTS) models, and their variations [10, 12, 13]. In particular, the eTS model is a functional fuzzy model in the
Takagi-Sugeno (TS) form whose rule base and parameters continually evolve by adding new rules with higher summarization
power and modifying existing rules and parameters to match current knowledge.

In the literature related to finance and economics there are recent applications of evolving fuzzy rule-based models. For
instance, [14] use different evolving fuzzy structures to estimate the Value-at-Risk (VaR) and compare its accuracy against
GARCH models using the São Paulo Stock Exchange data. They showed that evolving fuzzy modeling outperforms traditional
benchmarks for VaR estimation according to the number of failures. Similar results were found for sovereign bonds modeling
[15]. Financial time series forecasting was addressed by [16] using an eTS model with memory for modeling and predictionof
GBP/EUR closing price data and US Gross Domestic Product data. The authors conclude that the predictive power of eTS with
memory is higher, and its benefits can be appropriately exploited. Recently, [17] suggested an evolving fuzzy systems modeling
approach for fixed income option pricing. Results, based on error measures and statistical tests, reveal that evolving fuzzy models
outperform traditional methods based on Black-Scholes closed-form formula and alternative neural network approaches.

The main goal of this paper is to predict the Nelson-Siegel function parameters using an evolving Takagi-Sugeno model. To
compare eTS model accuracy two benchmarks are considered: autoregressive and random walk models. Actual daily data of the
Brazilian Treasure Bonds is used to forecast the yield curvefor different horizons. The out-of-sample forecasting performance
is evaluated in terms of root mean squared error.

After this introduction, this paper proceeds as follows. Section 2 presents briefly the idea of evolving fuzzy rule-based
modeling and the evolving Takagi-Sugeno method. Next, Section 3 describes the concepts of modeling and forecasting yield
curves. Section 4 compares the performance of eTS model against autoregressive and random walk models to forecast the
Brazilian yield curves for different horizons ahead. Finally, Section 5 concludes the paper, summarizing its contributions and
suggesting issues for further investigation.

2. EVOLVING TAKAGI-SUGENO FUZZY SYSTEMS

In evolving systems, a key question is how modify the currentmodel structure using the newest data sample which ensures
greater generality of the structural changes. Evolving systems use incoming information to continuously develop their structure
and functionality through online self-organization.

Fuzzy rule-based models whose rules are endowed with local models forming their consequents are commonly referred to as
fuzzy functional models. The Takagi-Sugeno (TS) is a typical example of a fuzzy functional model. A particularly important
case is when the rule consequents are linear functions. The evolving Takagi-Sugeno (eTS) model and its variations [12] assume
rule-based models whose fuzzy rules are as follows:

Ri : IF (x1 is Γi1) AND ... AND (xn is Γin) THEN yi = ai0 + ai1x1 + · · ·+ ainxn; i = 1, . . . , R

whereRi denotes the ith fuzzy rule,R is the number of fuzzy rules,x is the input vector,x = [x1, x2, . . . , xn]
T , Γij denotes the

antecedent fuzzy sets,j = 1, . . . , n, yi is the output of the ith rule, andail are its parameters,l = 0, . . . , n.
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The degree of firing of each rule is proportional to the level of contribution of the corresponding linear model to the overall
output, for Gaussian antecedent fuzzy sets:

Γij(xj) = e−α||xj−x∗

ij ||
2

; i = 1, . . . , R and j = 1, . . . , n (1)

whereα = 4/ϕ2 andϕ is a positive constant, which defines the spread of the antecedent and the zone of influence of the ith

model1, andx∗ij is the focal point of the ith rule antecedent.
The conjunction of respective fuzzy sets related to a rule defines its firing level as a Cartesian product:

τi = Γi1 (x1)× Γi2 (x2)× · · · × Γin (xn) =

n
⋂

j=1

Γij (xj) (2)

The TS output is obtained by weighted averaging of individual rules’ contributions:

y =
R
∑

i=1

λiyi =
R
∑

i=1

λix
T
e Ai (3)

whereλi =
(

τi/
∑R

j=1 τi

)

, which is the normalized firing level of the ith rule,Ai =
[

ai0 ai1 . . . ain
]T

is the vector of

parameters of the ith linear model, andxe =
[

1 xT
]T

is the expanded data vector.
The first subtask could be solved by subtractive clustering [18], which is an improved version of the so-called mountain

clustering approach [19].
The clustering procedure starts with the first data point established as the focal point of the first cluster. Its coordinates are

used to form the antecedent part of the fuzzy rule using for example Gaussian membership functions (1). Its potential is assumed
equal to 1.

Starting from the next data point onwards the potential of the new data points is calculated recursively using Cauchy function
of first order to measure the potential:

Pk (zk) =
1

1 + 1
(k−1)

∑k−1
t=1

∑n+1
j=1 (djlj)

2
, k = 2, 3, ... (4)

wherePk(zk) is the potential of the data pointzk calculated ink (wherez is the augmented data vectorzT = [xT ; y]), djlk =

zjl − zjk is the projection of the distance between two data points (zjl e zjk) on the axiszj (xj for j = 1, 2, . . . , n and on the axis
y for j = n+ 1).

When the new data is available, they influence the potential of the cluster centers, which are respective to the focal points of
existing rules. The potential depends on the distance to alldata points, including the new ones. If the potential of a newdata is
higher than the potential of the current cluster centers, then the new data becomes a new center and a new rule is created. If the
potential of a new data is higher than the potential of the current centers, but it is close to an existing center, then the new data
replaces the existing center. Using the potential instead of the distance to a certain rule center only for forming the rule-base result
in rules that are more informative and more compact rule-base. This mechanism ensures an evolving rule-base by dynamically
upgrading and modifying it while inheriting the bulk of the rules [12]. See [10] and [12] for more details.

Consequent parameters estimation in eTS models can be transformed into a least squares problem. Rewriting the equation
(3) in an equivalent vector expression ofy we have:

y = ψT θ (5)

whereθ =
[

AT
1 , A

T
2 , . . . , A

T
R

]T
is a vector composed of the linear model parameters;ψ =

[

λ1x
T
e , λ2x

T
e , . . . , λRx

T
e

]T
is a

vector of the inputs that are weighted by the normalized firing levels of the rules [12].
Let

(

xTk , yk
)

, k = 1, . . . , N , a set of input-output data with sizeN , we have the vector of linear model parametersθ that
minimizes the objective function:

J =

N
∑

k=1

(

yk − φTk θ
)2

(6)

whereφk =
[

λ1 (xk)x
T
ek λ2 (xk)x

T
ek . . . λR (xk)x

T
ek

]T
, xek =

[

1 xTk
]T

. Equation (6) is estimated using the
recursive least squares algorithm:

θ̂k = θ̂k−1 +Bkφk

(

yk − φTk θ̂k−1

)

(7)

Bk = Bk−1 −
Bk−1φkφ

T
kBk−1

1 + φTkBk−1φk
, k = 1, . . . , N (8)

1According to [12], large values ofϕ leads to averaging, and too small values to over-fitting also, values ofϕ ∈ [0.3; 0.5] can be recommended.
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The initial conditions are:̂θ0 = 0 andB0 = ΩI, whereΩ is a large positive number,I is the identity matrix, andB is a
(n+1)× (n+1) dispersion matrix. [12] proposed a weighted average of the dispersion and parameters of the remainingR rules
to estimate the respective dispersions and parameters of the new(R+ 1)th rule. When a new rule is added to the rule-base, the
weighted average of the parameters of the other rules determines the new rule parameters since the weights are the normalized
firing levels of the existing rulesλi. Then, parameters of the old rules are inherited from the previous step as:

θ̂k =
[

ÂT
1(k−1) ÂT

2(k−1) . . . ÂT
R(k−1) ÂT

(R+1)k

]T

(9)

whereÂ(R+1)k =
∑R

i=1 λiÂik−1.
Dispersion matrices are reset as follows:

Bk =

















γΣ11 . . . γΣ1R(n+1) 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γΣR(n+1)1 . . . γΣR(n+1)R(n+1) 0 . . . 0
0 0 0 Ω . . . 0
. . . . . . . . . . . . . . . 0
0 0 0 0 . . . Ω

















(10)

whereΣij is co-variance matrix element (i = j = [1, R× (n+ 1)]) andγ = ((R2 + 1)/R2) is a coefficient. For more details
about online recursive estimation of consequent parameters of eTS models see [12].

3. MODELING AND FORECASTING YIELD CURVES

In this section we recall the key ideas related to the yield curve modeling, including the relationships among the main
theoretical constructs: the discount curve, the forward curve and the yield curve, as well as its forecasting.

3.1 Yield Curve Modeling

LetPt (τ) denote the price of aτ -period discount bond, i.e., the present value at timet of $ 1 receivableτ periods ahead, and
let yt (τ) denote its continuously compounded zero-coupon nominal yield to maturity. According to the yield curve we obtain
the discount curve as:

Pt (τ) = e−τyt(τ) (11)

and from the discount curve, the instantaneous (nominal) forward rate curve is obtained:

ft (τ) =
−P

′

t (τ)

Pt (τ)
(12)

We can write the relationship between the yield to maturity and the forward rate:

yt (τ) =
1

τ

∫ τ

0

ft (u) du (13)

which implies that the zero-coupon yield is an equally-weighed average of forward rates. Given the yield curve or forward curve,
we can price any coupon bond as the sum of the present values offuture coupon and principal payments [2].

As yield curves, discount curves and forward curves are not observed in the markets, they must be estimated from observed
bond prices. In this paper, we use Nelson-Siegel functionalform [6], which is a convenient and parsimonious three-component
exponential approximation. According to this model, the forward rate curve is given by:

ft (τ) = β1t + β2te
−λtτ + β3tλte

−λtτ (14)

The forward rate curve proposed by [6] is a constant plus a Laguerre function, which is a polynomial times and exponential
decay term and is a popular mathematical approximation function. The corresponding yield curve is written as follows:

yt (τ) = β1t + β2t

(

1− e−λtτ

λtτ

)

+ β3t

(

1− e−λtτ

λtτ
− e−λtτ

)

(15)

The parametersβ1t, β2t andβ3t are interpreted as long-term, short-term and medium-term components, respectively and,
according to [2] they may also be interpreted in terms of level, slope and curvature. Expression (15) means that the yieldcurve
converges toβ1t as maturity increases, while it converges toβ1t + β2t as maturity decreases to present time. The parametersλt
andβ3t control the possible presence of a hump in the yield curve. Specifically,λt determines the position (time) of the hump,
while β3t determines its magnitude and direction [20]. Note thatβ1t, β1t + β2t andλt should obviously be positive, whileλt
should have an upper bound, e.g. 30 years2.

2In this work, we suppose that the well-know Nelson-Siegel [6] curve is well-suited to our purpose, i.e., forecasting, which is a consensus in the related
literature.
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To estimate a zero-coupon yield curve, one would ideally usezero-coupon bonds traded in the interest rate market and choose
the parametersβi, λ, i = 1, 2, 3 so as to minimize an error measure between the observed (i.e.obtained from the market) and
fitted (i.e. calculated from the yield curve) yields or prices. Hence we have a non-linear function due to theλ parameter. In
general, [2,3,6] fix theλ parameter to obtain a linear function for the correspondingβi’s. However, here we estimate the function
considering all the parameters, using the non-linear leastsquares methodology (for details see [21]).

3.2 Forecasting yield curve level, slope and curvature

In this paper, we consider the approach addressed by [2] for yield curve forecasting. The main idea is to model and forecast
the Nelson-Siegel factors as univariate AR(1) process. TheAR(1) models can be viewed as natural benchmarks determineda
priori: the simplest great workhorse autoregressive models [2]. The yield forecasts based on underlying univariate AR(1) factor
specifications are:

ŷt+h/t (τ) = β̂1,t+h/t + β̂2,t+h/t

(

1− e−λ̂t+h/tτ

λ̂t+h/tτ

)

+ β̂3,t+h/t

(

1− e−λ̂t+h/tτ

λ̂t+h/tτ
− e−λ̂t+h/tτ

)

(16)

where
β̂i,t+h/t = ĉi + γ̂iβ̂it i = 1, 2, 3, (17)

λ̂t+h/t = d̂i + α̂iλ̂t (18)

ĉi andγ̂i as well asd̂i andα̂i are obtained by regressinĝβit andλ̂t on an intercept and̂βi,t−h andλ̂t−h, respectively3.
Differently from [2], we consider theλ parameter as time variant because, according to [20], the results are improved and

it is not a good proxy for the Brazilian bonds market fix this parameter by observing the fixed-income market behavior. Thus,
forecasting the yield curve is equivalent to forecasting{β̂1t, β̂2t, β̂3t, λ̂t}.

A random walk model was also chosen for comparison purposes because it provides good results for short-term forecasts. In
this case, the forecast is always “no change”, that is:

ŷt+h/t (τ) = yt (τ) (19)

In this paper we estimate the values of{β̂1t, β̂2t, β̂3t, λ̂t} using evolving Takagi-Sugeno modeling. As in [2] we consider
the parameters following an AR(1) process. The first lag of each variable{βit, λt} for i = 1, 2, 3 was considered as an input
to the eTS model, when the output is theh-month-ahead forecast of the parameters, i.e.,{β̂i,t+h, λ̂t+h}. Using the parameters
forecast we evaluate the Nelson-Siegel function forecastsfor different horizons, considering the proposed eTS modeland the
benchmarks, AR(1) and random walk models.

4. RESULTS AND DISCUSSION

In this section we present the fit of the well established Nelson-Siegel model and forecast its parameters using the autoregres-
sive model as proposed by [2], and the random walk model to compare their performance against the evolving fuzzy rule-based
method, i.e., eTS suggested here. We begin by describing thedata.

4.1 Data Stream

The data stream was composed by daily series of the BrazilianTreasuries Bonds, more specifically, we consider the National
Treasury Bills (LTN -Letras do Tesouro Nacional), which yields are determined (fixed rate) upon purchase andthe form of
payment is upon maturity. These are one of the most liquiditybond traded in the Brazilian bonds market. We cover the period
from January 2007 to December 2009, composing a sample with 5,321 observations, taken from ANBIMA (Brazilian Financial
and Capital Markets Association). The data was partitionedinto two subsets. The first one, from January 2007 to December
2008 was used to estimate daily the Nelson-Siegel function parameters{β1t, β2t, β3t, λt}, i.e., composing our in-sample base
and resulting in a time series of cross sections. Finally, the out-of-sample data starts in January 2009 and finish in December
2009, used for forecasting purposes.

4.2 Fitting the Nelson-Siegel function

As discussed previously, we fit the yield curve using the Nelson-Siegel model as in equation (15). We estimated the parameters
θt = {β1t, β2t, β3t, λt} by nonlinear least squares for each dayt. However, we do not fixλt at a prespecified value, which is
more convenient since there is no rule in how to choose an appropriated value for this parameter.

3In this way, the factors are directly regress att + h on factors att, which is a standard method of coaxing least squares into optimizing the relevant loss
function,h-month-ahead RMSE, as opposed to the usuall-month-ahead RMSE [2].
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The values of the parameters are chosen so as to minimize an error measure between the observed and fitted yields. Denoting
byPj the bond prices, obtained from the market, the goal is to minimize the error functionE:

minE = min
N
∑

j=1

(

Pj − P̂j

)2

(20)

whereP̂j , j = 1, . . . , N , is the fitted price of thejth bond in aN bond sample, according to the constraints−βi ≤ 0, i = 1, 2, 3
andτ − 30 ≤ 0.

Since the solution of an optimization problem depends largely on the starting point, we determine the start values for the
parameters according to [20]:

β1 =
1

M

M
∑

i=1

yi, β2 = ys − β1, β3 = 0, λ = 1 (21)

whereM refers to the bond with the longest maturity, ands is the rate related to the bond with the shortest horizon.
According to this methodology, we obtain a time series of estimates of{β̂1t, β̂2t, β̂3t, λ̂t}4. In Table 1 we present statistics

for the estimated parameters.

Tabela 1: Descriptive Statistics for the Nelson-Siegel Function Estimated Parameters.

Parameter Mean Std. Dev. Minimum Maximum ρ̂ 1 ADF1

β̂1,t 0.07065 0.04667 2.2e10−12 0.12649 0.9117 −2.5665

β̂2,t 0.03624 0.04673 2.4e10−14 0.12426 0.9255 −3.4094

β̂3,t 0.10777 0.08888 1.9e10−07 0.45142 0.8655 −3.6683

λ̂t 3.53627 6.57317 0.0260054 29.9996 0.8616 −5.2345
1ρ̂ represents the sample autocorrelation and ADF the augmented Dickey-Fuller unit root test statistics.

Observing the autocorrelations of the four parameters, we can see that thêβ2,t factor is the most persistent, followed byβ̂1,t,
β̂3,t andλ̂t, respectively. Furthermore, the augmented Dickey-Fullertests suggest that the level factor,β̂1,t, may have a unit root,
and the other ones does not5.

4.3 Out-of-Sample Forecasting Performance of the Nelson-Siegel Function Parameters

We forecast the Nelson-Siegel factors using univariate AR(1) and random walk processes and an evolving Takagi-Sugeno
fuzzy model. For eTS model we consider as input the parameters {β1t, β2t, β3t, λt} in t and as output the parameters int + h,
that is the same idea as in autoregressive model AR(1)6.

An accurate approximation to yield-curve dynamics should not fit only well in-sample, but it is more important forecast well
out-of-sample, since is essential for decision making process in risk management. Therefore, we perform in this work models’
evaluation based on out-of-sample forecasting, considering one, three, six, nine and twelve months ahead horizons. The data base
from January 2007 to December 2008 was used to estimated the Nelson-Siegel parameters according to nonlinear least squares
method and them obtain the factors time series. Then, the forecasts were compared with the factors estimated considering actual
data for the period from January 2009 to December 2009.

The eTS model adopted the following values:Ω = 750 andϕ = 0.6. These are the only parameters of the eTS algorithm
needs to be chosen by the user. We variate these parameters and verified that the results are not very sensitive to theΩ parameter
but, the variation ofϕ affects the accuracy significantly. The number of rules fromeTS model obtained byβ1,t, β2,t, β3,t andλt
parameters estimation were, respectively,4, 3, 6 and5 rules. The parameterβ3,t requires the highest number of rules to describe
its behavior in comparison with the other ones and,β2,t parameter resulted in the lowest number of rules.

To determine the accuracy of each model’s estimates, we examine Root Mean Squared Error (RMSE):

RMSE =

√

√

√

√

(

1

N

) N
∑

t=1

(

θt − θ̂t

)2

(22)

whereθ represents the factors{β1t, β2t, β3t, λt} obtained by actual market data,θ̂ the factors for the models considered andN
the sample size.

In Table 2 we compare the eTS model out-of-sample forecasting results from Nelson-Siegel parameters to those competitors,
i.e., univariate AR(1) and random walk processes, for maturities of 1, 3, 6, 9 and 12 months.

4In order to obtain these estimates we only have considered the period from January 2007 to December 2008.
5The critical values for rejection of hypothesis of a unit root are−3.4518 at the1% level,−2.8704 at the5% level, and−2.5714 at the10% level.
6The data base in eTS was normalized on the interval[0, 1].
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Tabela 2: RMSE out-of-sample for 1, 3, 6, 9 and 12-months-ahead forecasting results.

Parameters Models 1month 3 months 6 months 9 months 12 months

AR(1) 0.0025 0.0197 0.0099 0.0248 0.1142

β̂1,t RW 0.0066 0.0202 0.0279 0.0533 0.1087
eTS 0.0014 0.0041 0.0148 0.0241 0.1135

AR(1) 0.0097 0.0014 0.0915 0.0247 0.0113

β̂2,t RW 0.0101 0.0129 0.0642 0.0231 0.0540
eTS 0.0078 0.0023 0.0686 0.0222 0.0439

AR(1) 0.0195 0.0444 0.4072 0.0917 0.0232

β̂3,t RW 0.0548 0.1715 0.4191 0.8003 0.3050
eTS 0.0065 0.1630 0.3327 0.1159 0.1984

AR(1) 6.9789 7.8187 17.523 3.7070 0.5511

λ̂t RW 16.211 27.095 22.459 25.699 3.9291
eTS 7.1899 7.2456 16.979 4.8536 1.7159

Random Walk for all months-ahead forecasting results, reported in Table 2, showed the highest error in terms of RMSE
compared with eTS and autoregressive models. eTS model, in general, reveals better predictability performance than AR(1)
method for short, medium and long term horizons. However, for long term horizons, AR(1) model performed slightly betterthan
the eTS model in forecasting the curvature parameter, i.e.,β3,t.

In Figure 1 we selected fitted (model-based) yield curves foreTS and AR(1) models and compared with the curves obtained
by actual market data. Clearly the estimated curves by eTS model are more capable of replicating the yields from the market.
Furthermore, AR(1) works better with long term horizons, confirming the results described in [2]. Despite of that, eTS model
showed good results also dealing with all horizons forecasting.
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Figura 1: Fitted curves for selected dates (for short, 3 months, and long, 9 months, horizons), together with actual yields.

5. CONCLUSION

Takagi-Sugeno rule-based fuzzy models are a well established tool to deal with complex systems and the concept of evolving
fuzzy systems use data streams to continuously adapt their structure and functionality. Evolving fuzzy rule-based models deal
with rule modification to assemble a rule base that is more informative to the data samples, because evolution induces gradual
change of the rule base structure inheriting structural information. In this paper we addressed the use of evolving Takagi-
Sugeno (eTS) model to Brazilian yield curve forecasting. Term structure of interest rate forecasting is crucial for bond portfolio
management, derivatives pricing and enable investors, policy makers and analysts to describe the market expectationsabout the
future of interest rates as well as inflation and level of economic activity.

We introduced an approach which is a means to predict the parameters of the Nelson-Siegel [6] function with an eTS model.
The eTS model is a Takagi-Sugeno rule-based model form whoserule base and parameters continually evolve by adding new
rules with higher summarization power updating existing rules and parameters. For comparison purposes, we also addressed the
methodology introduced in [2] which considers the Nelson-Siegel parameters time series as an autoregressive process AR(1),
and a random walk model. The models were evaluated in terms ofroot mean squared error for one, three, six, nine and twelve
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months ahead forecasting horizons using daily series of theBrazilian National Treasury Bills for the period from January 2007
to December 2009.

According to the out-of-sample forecasts, the results obtained suggest that eTS model works well in Nelson-Siegel factors
forecasting, which means more accurate estimates for short, medium and long term horizons. For all horizons, the randomwalk
method displayed the highest errors, and the autoregressive model reveals better results for medium maturities when compared
with eTS model. Further work shall include the application of statistical tests and residual analysis to evaluate the performance
of the models.
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