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Abstract — Evolving fuzzy systems use data streams to continuouslgtatia structure and functionality of fuzzy rule-based
models. It gradually develops the model structure and itampaters from a stream of data, which is essential whenrdgali
with complex and nonstationary systems. In this paper, vegast the use of functional evolving fuzzy modeling in tharfo

of Takagi-Sugeno (eTS) model to forecast Brazilian govesninbond yields through the Nelson-Siegel function. In tdse
the eTS adaptively estimates the parameters Nelson-Sisgglon to perform forecasts. This is a crucial procedarebiond
portfolio management, derivatives and bonds pricing. Ttgeements reported here use daily data of the BrazilianoNat
Treasury Bills of the period from January 2007 to Decemb®&920r one, three, six, nine and twelve months ahead forecpast
horizons. The evolving model was compared with autoregressid random walk models, in terms of root mean squared.erro
Results indicate that e TS is a promising approach to dehlgavernment bond yields forecasting because it gives numgrate
Nelson-Siegel parameters values than traditional appesac

Keywords —Evolving Fuzzy Systems, Time Series Forecasting, Yield/€and Interest Rate.

Resumo —Sistemas nebulosos evolutivos utilizam fluxos de dadosamaptar, continuamente, sua estrutura e parametros em
modelos nebulosos baseados em regras. Desenvolvem gnaditiala estrutura do modelo e seus parametros a partir @s flux
de dados, o que & essencial para o tratemento de sistemplerose nao-estacionarios. Neste artigo, & sugeritiizngao da
modelagem funcional nebulosa evolutiva na forma de um noattetipo Takagi-Sugeno (eTS) para a previsao da curva ds jur
no Brasil por meio da fun¢ao de Nelson-Siegel. Neste aasmdelo eTS estima, de forma adaptativa, 0os parametrasgad

de Nelson-Siegel para realizar previsdes. A previsaaideade juros & essencial para administracao de pimtfbhseados em
titulos plblicos, e na precificacao de titulos e defres. Os experimentos reportados no artigo utilizam dalinsos das Letras

do Tesouro Nacional no periodo de Janeiro de 2007 a Dezemet2009 para horizontes de previsao de 1, 3, 6, 9 e 12 meses.
O modelo evolutivo foi comparado com os modelos autoreiy@ssde passeio aleatorio em termos da métrica de raizrdo er
qguadratico médio. Os resultados indicam que 0 modeloeedi®d abordagem promissora para o problema de previsaowia cu
de juros, uma vez que foi capaz de proporcionar estimatizas acuradas para os parametros de Nelson-Siegel em agapar
com as abordagens tradicionais.

Palavras-chave -Sistemas Nebulosos Evolutivos, Previsao de Séries-@eaigy Curva de Juros e Taxa de Juros.

1. INTRODUCTION

Term structure of government bond yields modeling is a ehaiing task that has attracted investors, policy makessare
ches and all market participants since it provides fixeaiine instruments pricing and manage the risk of bonds andadizgs.

It also allows monitoring observed and unobserved econwariables such as the risk premium, default risk, inflatind eeal
activity, as well as forecasting future interest rates [1].

Yield curve forecasting is crucial for risk and bond porifonanagement and for derivatives pricing. It is also used by
treasuries that manage the emission and maintain of th& sfqaublic debit, which continuously demands an assessiient
current and future interest rates. Moreover, investoisktthe performance of their portfolios against the oppdtjucost of
investing in low-risk bonds and Central banks react to etqbnflation and economic activity by adjusting the shotera
thereby affecting the whole curve [2, 3].

The literature related to finance, econometrics and maoraeuics have been focused term structure models, and few of
them have analyzed the out-of-sample forecasting perfocmaReference [4] investigates the relationship betweenard
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and future spot rates as the first study devoted to yield coredictability questions. More than one decade later, pijliad
affine models for US vyields forecasts and observed poortsesRecently, [2] addressed a two-stage model based on iNelso
Siegel framework [6] to forecast the US term structure arttebeesults were obtained when compared with competingatsod
Further, [7] showed that the inclusion of no-arbitrage dtons in latent models improves the out-of-sample fit.

In [8] the authors introduced a new model, namely Functi@igtal Plus Noise with an Equilibrium Correction Model (FSN
ECM), which produces very good forecasts, in terms of meaausgl forecast error, for one-month ahead horizon. The work
reported in [9] compares the FSN-ECM model with the modektigyed by [2] to forecast 12-dimensional yields for Braaili
yields for one, three, six, and twelve months horizons. Hselts suggest that the FSN-ECM produces very good forefast
short-term (one month), outperforming the benchmarkdaiviai.

Using a broad class of linear models, [1] showed that a simpplametric specification has the best predictive power for
interest rate forecasting in USA and Brazilian markets. By, the random walk model is not outperformed and it waadou
that macroeconomic variables and no-arbitrage conditiave little effect to improve the out-of-sample fit, while adncial
variable (stock index) increases the forecasting accuracy

Although the models mentioned above have acceptable peafure for term structure forecasting, they differ in accura
for short and long horizons. Autoregressive and random wadklels are well-suited for short maturities while affine misd
and extensions perform better for medium and long horizorechsting. Due to constraints, traditional statisticad acono-
metrics models have been outperformed by methodologiesdb@s computational intelligence like artificial neuralwetks,
evolutionary computing and fuzzy systems.

The purpose of this paper is to introduce the use of evolwizgy rule-based models to forecast the Brazilian yield ety
estimating the Nelson-Siegel function parameters. Theeoinof evolving fuzzy systems translates in the idea of gghself-
organization and parameter learning in fuzzy rule-basedalsd10]. Evolving fuzzy systems use data streams to cootisly
adapt the structure and functionality of fuzzy rule-basextlels. The evolving mechanism ensures greater generdlityeo
structural changes because rules are able to describe aenwhbtata samples. Evolving fuzzy rule-based models ireclud
mechanisms for rule modification to replace a less inforveatile by a more informative one [10]. Overall, evolutioragantees
gradual change of the rule base structure inheriting stratinformation. The idea of parameter adaptation of ralgecedent
and consequentis similar in the framework of evolving catio@ists systems [11], evolving Takagi-Sugeno (eTS) attereled
Takagi-Sugeno (XTS) models, and their variations [10, B2, In particular, the eTS model is a functional fuzzy modettie
Takagi-Sugeno (TS) form whose rule base and parametergaahy evolve by adding new rules with higher summarizatio
power and modifying existing rules and parameters to matctent knowledge.

In the literature related to finance and economics there earent applications of evolving fuzzy rule-based modelst Fo
instance, [14] use different evolving fuzzy structures stireate the Value-at-Risk (VaR) and compare its accuraamnag
GARCH models using the Sdo Paulo Stock Exchange data. Ttoeyesl that evolving fuzzy modeling outperforms traditibna
benchmarks for VaR estimation according to the number airfes. Similar results were found for sovereign bonds miagdel
[15]. Financial time series forecasting was addressed 6}yding an eTS model with memory for modeling and predictbn
GBP/EUR closing price data and US Gross Domestic Produat ddae authors conclude that the predictive power of eTS with
memory is higher, and its benefits can be appropriately éegpoloRecently, [17] suggested an evolving fuzzy systemdetiing
approach for fixed income option pricing. Results, basedmr emeasures and statistical tests, reveal that evolvingyf models
outperform traditional methods based on Black-Scholesetieform formula and alternative neural network approsche

The main goal of this paper is to predict the Nelson-Siegetfion parameters using an evolving Takagi-Sugeno model. T
compare eTS model accuracy two benchmarks are consideredegressive and random walk models. Actual daily dathef t
Brazilian Treasure Bonds is used to forecast the yield ctowdifferent horizons. The out-of-sample forecastingfpenance
is evaluated in terms of root mean squared error.

After this introduction, this paper proceeds as follows.ct®a 2 presents briefly the idea of evolving fuzzy rule-lshse
modeling and the evolving Takagi-Sugeno method. Next,i@e& describes the concepts of modeling and forecastifg yie
curves. Section 4 compares the performance of eTS modetsdigaitoregressive and random walk models to forecast the
Brazilian yield curves for different horizons ahead. Fipabection 5 concludes the paper, summarizing its conioha and
suggesting issues for further investigation.

2. EVOLVING TAKAGI-SUGENO FUZZY SYSTEMS

In evolving systems, a key question is how modify the curreatlel structure using the newest data sample which ensures
greater generality of the structural changes. Evolvingesyis use incoming information to continuously developrtegicture
and functionality through online self-organization.

Fuzzy rule-based models whose rules are endowed with losdéhm forming their consequents are commonly referred to as
fuzzy functional models. The Takagi-Sugeno (TS) is a tyjpds@ample of a fuzzy functional model. A particularly impeant
case is when the rule consequents are linear functions. vidieireg Takagi-Sugeno (eTS) model and its variations [1s&ane
rule-based models whose fuzzy rules are as follows:

R, : IF (z1i5T;1) AND ... AND (2, is [in) THEN y; = aio + ai1z1 + -+ + Ginpn; i=1,...,R

whereR; denotes the't fuzzy rule, R is the number of fuzzy rules,is the input vectorx = [z, 2o, . . . ,:c,,L]T, I';; denotes the
antecedent fuzzy sets= 1, ..., n, y; is the output of the'f rule, anda;; are its parameteré= 0, ..., n.
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The degree of firing of each rule is proportional to the lefatantribution of the corresponding linear model to the aller
output, for Gaussian antecedent fuzzy sets:

Tyj(x;) =e bl =1 . R and j=1,....n (1)
wherea = 4/¢? andy is a positive constant, which defines the spread of the atéetend the zone of influence of tHé i

model, andz}; is the focal point of thef' rule antecedent.
The conjunctlon of respective fuzzy sets related to a rulimée its firing level as a Cartesian product:

i =T (1) x Tig (z2) % - - m ij (x5) (2)

The TS output is obtained by weighted averaging of individules’ contributions:

R R
Y= Z Aiyi = Z Az’xZAi 3)
=1 =1
where); = (Ti/ Zle Ti), which is the normalized firing level of th&irule, 4; = [ aio a1 ... aimn }T is the vector of

parameters of thé'i linear model, and. = [ 1 27 }T is the expanded data vector.

The first subtask could be solved by subtractive clusterr®), [which is an improved version of the so-called mountain
clustering approach [19].

The clustering procedure starts with the first data poirgldisthed as the focal point of the first cluster. Its coortinare
used to form the antecedent part of the fuzzy rule using famgde Gaussian membership functions (1). Its potentiadsmed
equal to 1.

Starting from the next data point onwards the potential efrtbw data points is calculated recursively using Cauchgtfom
of first order to measure the potential:

1
Pk (Zk): 5 k:2,3,... (4)

k—1 n+1
L+ (k—il)Zt:I Z;L 1 (dJ )?

wherePk(zk) is the potential of the data poin}, calculated ink (wherez is the augmented data vectot = [27;y]), d{k =
z] — zj is the projection of the distance between two data pon’/tsa(zj) on the axis:? (x7 for j = 1,2,...,n and on the axis
yforj=n+1).

When the new data is available, they influence the potentihleocluster centers, which are respective to the focaltpaih
existing rules. The potential depends on the distance we#dl points, including the new ones. If the potential of a deta is
higher than the potential of the current cluster centeem the new data becomes a new center and a new rule is crdatesl. |
potential of a new data is higher than the potential of theentrcenters, but it is close to an existing center, then éve data
replaces the existing center. Using the potential insté#duealistance to a certain rule center only for forming the-tase result
in rules that are more informative and more compact rulebakis mechanism ensures an evolving rule-base by dynbynica
upgrading and modifying it while inheriting the bulk of thees [12]. See [10] and [12] for more details.

Consequent parameters estimation in eTS models can béotmaesl into a least squares problem. Rewriting the equation
(3) in an equivalent vector expressiomofve have:

y=1"0 (5)
whered = [AT, AT, ..., AT} is a vector composed of the linear model parameters; Az, Aozl ..., AR:UQT}T is a
vector of the inputs that are weighted by the normalizedditavels of the rules [12].
Let (x{,yk), k =1,...,N, aset of input-output data with siZ€, we have the vector of linear model parametethat
minimizes the objective function:
N
J=3"(yx— 016)” 6)
k=1
wheregy, = [ A1 (zn)zl, Xo(ze)xl, ... Ag(aw)2l, }T, T = [ 1 af ]T. Equation (6) is estimated using the
recursive least squares algorithm:
Or = Or—1 + Bror (yk - éf)g@kq) (7)

Bi_101¢} Br—1 E—1
1+ ¢f By_1¢r Y

1According to [12], large values af leads to averaging, and too small values to over-fitting, alslues of € [0.3;0.5] can be recommended.

By = Bj—1 — N (8)
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The initial conditions aref, = 0 and By = QI, whereQ is a large positive numbef, is the identity matrix, and3 is a
(n+1) x (n+1) dispersion matrix. [12] proposed a weighted average of isfgetision and parameters of the remainihigules
to estimate the respective dispersions and parameters okth( R + 1)th rule. When a new rule is added to the rule-base, the
weighted average of the parameters of the other rules detesrthe new rule parameters since the weights are the niaadal
firing levels of the existing rules;. Then, parameters of the old rules are inherited from theipus step as:

R N N T
Or = A{(kq) AQT(kfl) Ag,(kq) A{R+1)k} 9)

- R .
whereA 1), = > i Midik—1.
Dispersion matrices are reset as follows:

’)/211 - ')/ZlR(n+1) 0 0
S R(n oo YER(ADRM 0 0

By — Y R(O +1)1 0 Y&HR( +5)R( +1) Q 0 (10)
0 0 0 0 Q

whereY;; is co-variance matrix element &£ j = [1, R x (n + 1)]) andy = ((R? + 1)/R?) is a coefficient. For more details
about online recursive estimation of consequent parasefesTS models see [12].

3. MODELING AND FORECASTING YIELD CURVES

In this section we recall the key ideas related to the yieldreumodeling, including the relationships among the main
theoretical constructs: the discount curve, the forwargdeand the yield curve, as well as its forecasting.

3.1 Yield Curve Modeling

Let P, (r) denote the price of a-period discount bond, i.e., the present value at tiroE$ 1 receivabler periods ahead, and
let y; (7) denote its continuously compounded zero-coupon nomirgd yo maturity. According to the yield curve we obtain
the discount curve as:

P; (1) = 779D (11)
and from the discount curve, the instantaneous (homineldia rate curve is obtained:
—P, (1)
ft (T) Pt (7_) ( )
We can write the relationship between the yield to maturnity the forward rate:
1 T
ye (1) = —/ fe (u) du (13)
T Jo

which implies that the zero-couponyield is an equally-vheid average of forward rates. Given the yield curve or fodvwairve,
we can price any coupon bond as the sum of the present valtetsicd coupon and principal payments [2].

As yield curves, discount curves and forward curves are bsérved in the markets, they must be estimated from observed
bond prices. In this paper, we use Nelson-Siegel functifarai [6], which is a convenient and parsimonious three-congmt
exponential approximation. According to this model, thenard rate curve is given by:

fe (T) = Bio + Bare ™7 + Baphe M7 (14)

The forward rate curve proposed by [6] is a constant plus aieag function, which is a polynomial times and exponential
decay term and is a popular mathematical approximatiortimmcThe corresponding yield curve is written as follows:

1-— 6_)“7— 1— e—AtT
AeT AeT

The parameters;, f2: and 83, are interpreted as long-term, short-term and medium-tenmponents, respectively and,
according to [2] they may also be interpreted in terms oflleslepe and curvature. Expression (15) means that the gigice
converges t@;; as maturity increases, while it convergesip + 82: as maturity decreases to present time. The paramgters
and 33, control the possible presence of a hump in the yield curveciipally, \; determines the position (time) of the hump,
while 53, determines its magnitude and direction [20]. Note that 51, + [2; and\; should obviously be positive, whilg,
should have an upper bound, e.g. 30 y&ars

2|n this work, we suppose that the well-know Nelson-Siegélcive is well-suited to our purpose, i.e., forecastingjolhis a consensus in the related
literature.
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To estimate a zero-coupon yield curve, one would ideallyzese-coupon bonds traded in the interest rate market anaseho
the parameter§;, A\,i = 1,2,3 so as to minimize an error measure between the observealitained from the market) and
fitted (i.e. calculated from the yield curve) yields or pgceHence we have a non-linear function due to thgarameter. In
general, [2, 3, 6] fix the\ parameter to obtain a linear function for the correspongirey However, here we estimate the function
considering all the parameters, using the non-linear Egpsares methodology (for details see [21]).

3.2 Forecasting yield curve level, slope and curvature

In this paper, we consider the approach addressed by [2]dtt gurve forecasting. The main idea is to model and fortecas
the Nelson-Siegel factors as univariate AR(1) process. AREL) models can be viewed as natural benchmarks deternained
priori: the simplest great workhorse autoregressive mo@3l The yield forecasts based on underlying univariat¢1ARactor
specifications are:

R « R 1— 6—5\t+h/t7' R 1— e—;\t+;L/tT 5 .
Uernyt (T) = Brpgnse + Bopgnye | ———————— | + Bajpqnye | ——————— —e "1/t (16)
)\t+h/t7' )\t+h/t7
where . A
6'L,t+h/t = é’i + &iﬁit 1= 1) 27 3) (17)
5\t+h/t =d; + di\ (18)

¢; and?; as well asl; anda; are obtained by regressiig. and)\; on an intercept and; ;_, and\;_;, respectivel§.

Differently from [2], we consider the. parameter as time variant because, according to [20], thdtseare improved and
it is not a good proxy for the Brazilian bonds market fix thisgraeter by observing the fixed-income market behavior. Thus
forecasting the yield curve is equivalent to forecastifg, fa:, B3¢, At}

A random walk model was also chosen for comparison purpasesuse it provides good results for short-term forecasts. |
this case, the forecast is always “no change”, that is:

?Qt+h/t (1) =y: (1) (19)

In this paper we estimate the values{gf,;, 32¢, 5s:, \: } using evolving Takagi-Sugeno modeling. As in [2] we conside
the parameters following an AR(1) process. The first lag ehesriable{s;;, \:} for ¢ = 1,2, 3 was considered as an input
to the eTS model, when the output is thenonth-ahead forecast of the parameters, {@.Hh, 5\t+h}. Using the parameters
forecast we evaluate the Nelson-Siegel function foredastdifferent horizons, considering the proposed eTS maael the
benchmarks, AR(1) and random walk models.

4. RESULTS AND DISCUSSION

In this section we present the fit of the well established dlelSiegel model and forecast its parameters using theegres-
sive model as proposed by [2], and the random walk model tqpementheir performance against the evolving fuzzy rulestias
method, i.e., eTS suggested here. We begin by describirdptiae

4.1 Data Stream

The data stream was composed by daily series of the BraZilasuries Bonds, more specifically, we consider the Nation
Treasury Bills (LTN -Letras do Tesouro Nacional), which yields are determined (fixed rate) upon purchasetaedorm of
payment is upon maturity. These are one of the most liquitlityd traded in the Brazilian bonds market. We cover the derio
from January 2007 to December 2009, composing a sample y@#1i®bservations, taken from ANBIMA (Brazilian Financial
and Capital Markets Association). The data was partitianegtwo subsets. The first one, from January 2007 to December
2008 was used to estimate daily the Nelson-Siegel functimameterd 51+, B2t B3¢, A+ }, i.€., composing our in-sample base
and resulting in a time series of cross sections. Finally,aht-of-sample data starts in January 2009 and finish in iDeee
2009, used for forecasting purposes.

4.2 Fitting the Nelson-Siegel function

As discussed previously, we fit the yield curve using the dlelSiegel model as in equation (15). We estimated the paesme
0: = {1, Pat, B, A} Dy nonlinear least squares for each dayHowever, we do not fix\; at a prespecified value, which is
more convenient since there is no rule in how to choose aroppipted value for this parameter.

3In this way, the factors are directly regresstag h on factors at, which is a standard method of coaxing least squares inimiging the relevant loss
function, h-month-ahead RMSE, as opposed to the uswmabnth-ahead RMSE [2].
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The values of the parameters are chosen so as to minimizeamezasure between the observed and fitted yields. Denoting
by P; the bond prices, obtained from the market, the goal is tommize the error functio:

N
min K = minz (Pj — Pj)Q (20)

j=1

where]f’j,j =1,..., N, is the fitted price of thg*" bond in alV bond sample, according to the constrainfs < 0,i = 1,2, 3
andr — 30 < 0.

Since the solution of an optimization problem depends Igrge the starting point, we determine the start values fer th
parameters according to [20]:

M
1
51:M§ym fa=ys—PB1, P3=0, A=1 (21)
whereM refers to the bond with the longest maturity, and the rate related to the bond with the shortest horizon.

According to this methodology, we obtain a time series afeates of{31;, B2:, B3, A: }*. In Table 1 we present statistics
for the estimated parameters.

Tabela 1: Descriptive Statistics for the Nelson-Siegeldtionm Estimated Parameters.

Paramete] Mean | Std. Dev.| Minimum | Maximum]| 5! | ADF!

Bt 0.07065 | 0.04667 | 2.2¢10712 | 0.12649 | 0.9117 | —2.5665
B2,t 0.03624 | 0.04673 | 2.4e107 1 | 0.12426 | 0.9255 | —3.4094
Bs,t 0.10777 | 0.08888 | 1.9¢107°7 | 0.45142 | 0.8655 | —3.6683
At 3.53627 | 6.57317 | 0.0260054 | 29.9996 | 0.8616 | —5.2345
1/ represents the sample autocorrelation and ADF the augchBitkey-Fuller unit root test statistics.

Observing the autocorrelations of the four parameters,amesee that thégyt factor is the most persistent, followed Byt

Bw and)\,, respectively. Furthermore, the augmented Dickey-Ftaists suggest that the level fact,éf,t, may have a unit root,
and the other ones does hot

4.3 Out-of-Sample Forecasting Performance of the Nelsonie®jel Function Parameters

We forecast the Nelson-Siegel factors using univariateldRd random walk processes and an evolving Takagi-Sugeno
fuzzy model. For eTS model we consider as input the paraseter, 52, O3, At} in t and as output the parametersia h,
that is the same idea as in autoregressive model AR(1)

An accurate approximation to yield-curve dynamics showldfih only well in-sample, but it is more important forecastiiv
out-of-sample, since is essential for decision making ggedn risk management. Therefore, we perform in this worlets
evaluation based on out-of-sample forecasting, consigeme, three, six, nine and twelve months ahead horizoresd@ta base
from January 2007 to December 2008 was used to estimatedetiseriNSiegel parameters according to nonlinear leastsgua
method and them obtain the factors time series. Then, tleedsts were compared with the factors estimated consipaciual
data for the period from January 2009 to December 2009.

The eTS model adopted the following valués:= 750 andy = 0.6. These are the only parameters of the eTS algorithm
needs to be chosen by the user. We variate these parametessrdied that the results are not very sensitive to(d@arameter
but, the variation ofy affects the accuracy significantly. The number of rules fedfs model obtained b ¢, 82 +, 83+ and\;
parameters estimation were, respectivély, 6 and5 rules. The parametélk; ; requires the highest number of rules to describe
its behavior in comparison with the other ones afd, parameter resulted in the lowest number of rules.

To determine the accuracy of each model’s estimates, weiardRoot Mean Squared Error (RMSE):

1) & -\ 2
RMSE = <N>Z(9t9t) (22)

t=1

wheref represents the factof$;, 52+, Ost, A+ } Obtained by actual market datathe factors for the models considered axid
the sample size.

In Table 2 we compare the eTS model out-of-sample foreaastisults from Nelson-Siegel parameters to those compgtito
i.e., univariate AR(1) and random walk processes, for nitgarof 1, 3, 6, 9 and 12 months.

4In order to obtain these estimates we only have consideeegdtiod from January 2007 to December 2008.
5The critical values for rejection of hypothesis of a unittrace —3.4518 at the1% level, —2.8704 at the5% level, and—2.5714 at the10% level.
6The data base in eTS was normalized on the intdfual].
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Tabela 2: RMSE out-of-sample for 1, 3, 6, 9 and 12-monthsdffierecasting results.

Parameterg Models | Imonth| 3 months| 6 months| 9 months| 12 months
AR(1) 0.0025 0.0197 0.0099 0.0248 0.1142
Bl,t RW 0.0066 0.0202 0.0279 0.0533 0.1087
eTS 0.0014 0.0041 0.0148 0.0241 0.1135
AR(1) | 0.0097 0.0014 0.0915 0.0247 0.0113
BQ,t RW 0.0101 0.0129 0.0642 0.0231 0.0540
eTS 0.0078 0.0023 0.0686 0.0222 0.0439
AR(1) | 0.0195 0.0444 0.4072 0.0917 0.0232
BS,t RwW 0.0548 0.1715 0.4191 0.8003 0.3050
eTS 0.0065 0.1630 0.3327 0.1159 0.1984
AR(1) 6.9789 7.8187 17.523 3.7070 0.5511
At RwW 16.211 27.095 22.459 25.699 3.9291
eTS 7.1899 7.2456 16.979 4.8536 1.7159

Random Walk for all months-ahead forecasting results, nteddn Table 2, showed the highest error in terms of RMSE
compared with eTS and autoregressive models. eTS modeéniergl, reveals better predictability performance thar{ldR
method for short, medium and long term horizons. Howevelgiog term horizons, AR(1) model performed slightly bettean
the eTS model in forecasting the curvature parameter/eg.,

In Figure 1 we selected fitted (model-based) yield curveg1® and AR(1) models and compared with the curves obtained
by actual market data. Clearly the estimated curves by eT@&hare more capable of replicating the yields from the marke
Furthermore, AR(1) works better with long term horizonshfioning the results described in [2]. Despite of that, eTSielo
showed good results also dealing with all horizons foréiegst

Yield Curve on 3/06/2009 Yield Curve on 9/29/2009
T T T T

0.1 T 0 T

—AR()

| | | | |
15 0 5 10 15 2 3 3
Maturity (in work days) Maturity (in work days)

Figura 1: Fitted curves for selected dates (for short, 3 mrénd long, 9 months, horizons), together with actuatigiel

5. CONCLUSION

Takagi-Sugeno rule-based fuzzy models are a well estadligiol to deal with complex systems and the concept of ewglvi
fuzzy systems use data streams to continuously adapt theitiwe and functionality. Evolving fuzzy rule-based ratsddeal
with rule modification to assemble a rule base that is morermétive to the data samples, because evolution inducdsiaira
change of the rule base structure inheriting structuralrmftion. In this paper we addressed the use of evolvingdiaka
Sugeno (eTS) model to Brazilian yield curve forecastingnistructure of interest rate forecasting is crucial fordportfolio
management, derivatives pricing and enable investorgpwlakers and analysts to describe the market expectailoms the
future of interest rates as well as inflation and level of exnit activity.

We introduced an approach which is a means to predict thendeas of the Nelson-Siegel [6] function with an eTS model.
The eTS model is a Takagi-Sugeno rule-based model form whibsdase and parameters continually evolve by adding new
rules with higher summarization power updating existingswand parameters. For comparison purposes, we also additbe
methodology introduced in [2] which considers the Nelsieg8l parameters time series as an autoregressive pro€g4s3, A
and a random walk model. The models were evaluated in termzobinean squared error for one, three, six, nine and twelve
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months ahead forecasting horizons using daily series dBtheilian National Treasury Bills for the period from Janp2007
to December 2009.

According to the out-of-sample forecasts, the resultsinbthsuggest that eTS model works well in Nelson-Siegebfact
forecasting, which means more accurate estimates for,shedium and long term horizons. For all horizons, the randak
method displayed the highest errors, and the autoregeessidel reveals better results for medium maturities whenpeoed
with eTS model. Further work shall include the applicatiéistatistical tests and residual analysis to evaluate thi®peance
of the models.
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