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Abstract – This paper reviews Independent Components Analysis (ICA) and Blind Signal Separation (BSS) problems. An 

overview on the main statistical principles that guide the search for the independent components is formulated, methods for 

blind signal separation that require both high-order and second-order statistics are also illustrated. Some of the most successful 

algorithms for both ICA and BSS are derived. Experimental applications in different signal processing tasks such as passive 

sonar, nondestructive ultrasound inspection and electrical-load time series are presented. 

 

Index Terms – ICA, Blind Source Separation, Signal processing, Feature extraction.   

 

 

Introduction 

In several multidimensional signal processing problems, it is desired to find a data transformation so that their essential structure 

becomes somehow more accessible [1]. Usually there is not much information available and the search for the desired data 

representation is performed through unsupervised learning. Among the linear techniques that searches for data transformation 

we can mention Principal Component Analysis (PCA) [2], Factor Analysis (FA) [3], Independent Component Analysis (ICA)[1] 

and Blind Signal Separation (BSS) [4]. 

 The ICA model (in its linear and instantaneous version) considers that a set of N measured (observed)  signals x = [x1, 

..., xN ]
T
  is generated by a linear combination of N unknown sources s = [s1, ..., sN ]

T
 :  

Asx = ,      (1) 

where A is the N×N mixing matrix [1] (the N-dimensional vectors s and x denote, respectively, single observations of the source 

and measured signals, this notation will be used in the rest of the work). The purpose of ICA is to obtain an estimate y of the 

original source signals s using only the observed (mixed) data x. For this, an inverse linear model is assumed: 

Wxy = .      (2) 

A general principle for estimating the de-mixing matrix W can be found by considering that the components of y = [y1, ..., yN ]
T
 

are statistically independent (or as independent as possible). There are many mathematical methods used to search for statistical 

independence. Among the most applied ones (in the ICA context) we can mention the nonlinear decorrelation and the maximally 

nongaussianity [5]. In the search for independent components, high-order statistics (HOS) information is usually required. There 

are some indeterminacies in the ICA model: the order of extraction of the independent components can change and unknown 

scalar multipliers (positive or negative) may be modifying the estimated components. Fortunately these limitations are 

insignificant in most applications [1].  

The ICA model, as formulated in Equations 1 and 2, is also referred to as a Blind Signal Separation (BSS) method. 

Although ICA and BSS are closely related methods, blind separation can sometimes be achieved using only second-order 

statistics (SOS) information. This is the case when the source signals present temporal structure [4]. There exist also applications 

of ICA that do not assume a mixing model. For example, in feature extraction problems the independent components are 

estimated to reveal underlying characteristics of the data, instead of separating unknown source signals.  

In the last decades, several algorithms have been proposed for solving the ICA problem, see for reference [6, 7, 8].  

The ICA and BSS models have been applied successfully to different signal processing tasks like noise removal [9, 10, 11], 

passive sonar signal separation [12], telecommunications [13], biomedicine [14], face recognition [15, 16] and  experimental 

high-energy physics [17]. A typical signal separation application that motivated theoretical and experimental developments in 

ICA/BSS research fields is the so-called cocktail-party problem. As illustrated in Figure 1, considering that in a room there are 

two speakers (sources) talking simultaneously, and two microphones positioned in different locations, the recorded signals are 
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a linear combination of the sources (considering a simplified model where noise or sound propagation multi-path are both not 

considered).  A human being has the ability to focus attention to one person and diminish surrounding noise. However, this is 

not a trivial task for an automatic signal processing system. 

 

 

Figure 1 – Cocktail-party problem, the sound propagation paths are illustrated in dashed lines. 

A simple experimental example of ICA application (in this case through FastICA algorithm [8]) for the separation of 

two linearly mixed sinusoidal signals is illustrated in Figure 2. The problem here is to recover the sources in Figure 2-a using 

only the observed data (Figure 2-b). As it can be seen, the estimated signals (see Figure 2-c) are very similar to the source 

signals (only their sign and scaling factors are modified).  

                                                        
      (a)                                                              (b)               (c) 

Figure 2 – Application of ICA for blind signal separation, sources (a), mixed (b) and blind recovered (c) signals. 

This paper is divided as it follows.  Section 1 comprises a detailed description of the statistical independence measures 

often used to derive ICA algorithms learning rules. Section 2 details some techniques often used as a pre-processing for ICA. 

In Section 3, successful separation algorithms for both ICA and BSS are derived. Extensions of the ICA model are described in 

Section 4 and experimental results obtained from synthesized and practical application signals are illustrated in Section 5. 

Conclusions are derived in Section 6. 

 

1- Statistical Independence 

If two random variables y1 and y2 are statistically independent, the following condition (necessary and sufficient) holds [18]: 

)()(),( 2121, 2121
ypypyyp yyyy = ,     (3) 

where py1,y2 (y1, y2), py1(y1) and py2 (y2) are, respectively, the joint and marginal probability density functions (pdf) of y1 and y2. 

Equivalent condition is obtained if, for all absolutely integrable functions g(�) and h(�), the expression on Equation 4 holds:  

     )}({)}({)}()({ 2121 yhEygEyhygE =      (4) 

where E{�} is the expectation operator [1]. Very little information on the source signals statistics is available in typical blind 

signal processing problems  and so the pdfs estimation (required in Equation 3) is a very difficult task, which can be avoided 

using Equation 4. Different mathematical principles are used in ICA framework to determine whether random variables are 

statistically independent. In the following sub-sections some of these principles will be derived. 

 

1.1- Non-gaussianity Leads to Independency 

The ICA/BSS model described in Equation 1 can be re-written as: 

∑
=

=
N

j

jiji sax
1

  i=1,..,N.     (5) 
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Considering the central limit theorem [19], which may be stated as:  “The sum of two (independent) random variables 

is always closest to a Gaussian distribution than the original variables”, and Equation 5, one can see that the observed signals xi 

are formed by an averaged summation of the sources si. Thus, xi are closer to Gaussian-distributed variables than si. In other 

words, the independent components can be obtained through maximization of non-gaussianity [1]. The non-gaussianity 

principle cannot be applied if one or more source signals are Gaussian distributed. 

 

1.2- Nonlinear Decorrelation 

As defined in Equation 4, one way to verify statistical independence is through nonlinear decorrelation. Linear correlation is 

verified by second-order statistics, while independence requires higher-order information, which in nonlinear decorrelation 

ICA methods is introduced through nonlinear functions. 

 By definition (see Equation 4), it is necessary to verify the correlation between all possible combinations of nonlinear 

functions in order to guarantee statistical independence between two random variables [1]. In practice, estimates of the 

independent components are obtained while guaranteeing decorrelation between a finite set of nonlinear functions. For 

example, the ICA algorithm, proposed by Cichocki and Unbehauen in [5], searches for independent components while 

providing decorrelation between a hyperbolic tangent and a polynomial function applied to the input signals. 

 

1.3- High-order Cumulants 

Moments and cumulants are statistical descriptors used to characterize the nature of a random variable distribution. 

Considering a random variable y, the moment αk  and central moment µ k  of order k are defined by [20]: 

dyypyyE y

kk

k )(}{ ∫
∞

∞−
==α ,     (6) 

dyypyyE y

kk

k )()(}){( 11 ∫
∞

∞−
−=−= ααµ .       (7) 

 The first moment α1  = my  is the mean of y and the second central moment µ2 is the variance. If the random variable y 

is zero mean (or if the mean is removed: y←y - my), than for all k holds: αk =µ k . 

 Cumulants are an alternative to moments and in some cases provide simpler theoretical treatment. The cumulant κk of 

order k is defined as a function of the moments [20].  For a zero mean random variable y, the first four cumulants are:  

01 =κ ;  2

2

2 }{ ακ == yE ;  3

3

3 }{ ακ == yE ;                                                      (8) 

2

24

224

4 3}]{[3}{ αακ −=−= yEyE  

The third and fourth order cumulants are called respectively skewness (κ3) and kurtosis (κ4) [21]. Cumulants of order 

higher than four are rarely applied in practical ICA/BSS problems. Cumulants can be easily estimated from data substituting 

expectations in Equation 7 by sample means. Some interesting properties of cumulants are: 

                
Gaussian is  if 2for   ,0)(
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yky

yyyy
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kkk

>=

+=+

κ

κκκ
                 (9) 

Considering this, the gaussianity of a random variable can be estimated by cumulants of order higher than two. The 

skewness value, for example, is related to pdf symmetry (κ3=0 indicates symmetry). Spanning the interval [−2, ∞), kurtosis is 

zero for a Gaussian variable. Negative values indicate sub-gaussianity (pdf flatter than Gaussian) and positive values super-

gaussianity (pdf sharper than Gaussian) [20]. One disadvantage is that higher-order cumulants can be seriously influenced by 

outliers (observations that are numerically distant from the rest of the data). Thus, in extreme situations the kurtosis value may 

be dominated by a small number of points [21].  Some studies have been conduced with the purpose of obtaining robust 

estimation of high order cumulants [22].  

 

1.4- Information Theory Contrasts 

Information theory [23] deals with the quantification and description of information contained in a random variable. Some of 

the parameters used in information theory are usually applied to the search for independent components.  A key parameter in 

information theory is entropy, which for a discrete random variable y is defined as [24]: 
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     ∑ ===
i

ibi ayPayPyH )(log)()(                              (10)      

where ai are the possible values assumed by the variable y, and P(y = ai) is the probability that y = ai . There are a number of 

possible choices for the logarithm basis b, one commonly used is b=10, in this case, the entropy is measured in “digits”. 

Intuitively, entropy quantifies the “uncertainty” of a random variable. Entropy is also expressed by the number of bits (code 

length) needed to represent the variable. 

 Negentropy  is another information theory parameter and is computed through [23]: 

       )()()( yHyHyJ gauss −=                                (11) 

where ygauss  is a Gaussian random variable with the same mean and variance of y.   

 Both entropy and negentropy can be used as non-gaussianity measures because the Gaussian variable has maximum 

entropy between the variables of same variance [1]. The advantage of J(y) is that it is always non-negative and zero when y is 

Gaussian. Considering a blind signal processing application, a problem with the computation of J(�) and H(�) is the pdf 

estimation (see Eq. 10). To avoid this, approximations using high-order cumulants or non-polynomial functions shall be  

applied [1, 25]. Commonly used negentropy approximations will be derived in the next sub-section.   

Another statistical independence measure can be obtained through mutual information. Mutual Information                    

measures the information that can be obtained about one variable by observing another. Considering this definition, if two 

random variables are independent, their mutual information is zero. The mutual information I (y1 , y2 , ..., ym ) between m 

random variables y = [y1 , y2 , ..., ym ] is obtained through [3]: 

  ∑
=

−=
m

i

im HyHyyI
1

1 )()(),...,( y                 (12) 

Therefore, minimization of mutual information leads to statistical independence [23]. 

The Kullback-Leibler (KL) divergence is a parameter used to compare two different distributions and may be 
defined through: 

∫= dy
yP

yQ
yQPQC

y

y

yKL
)(

)(
log)(),(                 (13) 

The Kullback-Leibler divergence is always nonnegative with minimum value zero when both densities are the same.  If one 

pdf is Gaussian, maximizing CKL is equivalent to maximize non-gaussianity.  

 

1.4.1- Approximations of the Negentropy 

As from equation (11), negentropy computation requires pdf estimation, which is not always computationally affordable in 

blind signal processing problems. Considering this some approximations for J(�) will be presented here. 

 Negentropy can be estimated through higher-order moments as follows [26]: 

       
223 )(

48

1
}{

12

1
)( ykurtyEyJ +≈                 (14) 

 To avoid problems by using the kurtosis as a cost function (considering that this operator is not robust to outliers), 

approximations based on the maximum-entropy principle shall be applied, as proposed in [27]: 

             
2)}]({)}({[)( νGEyGEyJ −∝                 (15) 

where G is a non-quadratic function. If G does not grow too fast, more robust estimators are obtained. Some recommended 

choices are [27]: 

    )2/exp()(,coshlog
1

)( 2

21

1

1 uuGua
a

uG −−==              (16) 

a1 is some suitable constant (usually 1< a1<2). 
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2- Pre-processing for ICA/BSS 

The standard ICA model assumes a mixing system where the number of sources and observed signals are the same. Additive 

noise is not considered either. Some signal processing procedures, which will be described in the following sub-section, are 

usually applied as pre-processing steps for ICA algorithms in order to improve their performance.  

 

2.1- Principal Component Analysis  

Principal Component Analysis (PCA) [2] is a statistical signal processing technique, also known as Karhunen-Loeve 
transform, which searches for a space where the projections yi=bi xi of a zero mean random vector x (E{x} = 0) in the direction 

bi are non-correlated (second-order statistics is explored) and have maximum variance (i.e. composing an orthonormal basis). 

The principal components are ordered by their energy (variance), which is usually concentrated on a small number of 

components. 

The first direction b1, can be computed through the maximization of [1]: 

11

2

1

2

11 }){(}{)( bCbxbb x

T

i

PCA EzEF ===                  (17) 

where Cx is the covariance matrix of x and ||b1||=1. 

 PCA can also be defined as a mean square error (MSE) compression of x. The projection of x into the subspace 

spanned by the basis vectors bi is∑ =

m

i i

T

i1
)( bxb , and the MSE criterion that shall be minimized by the orthonormal basis 

becomes: 

     }||)({||
2

1

∑
=

−=
m

i

i

T

i

PCA

MSE EF bxbx                  (18) 

PCA for the vector x is equivalent to the eigenvalue decomposition of the matrix Cx [2]. Estimation of the principal 

components can also be performed through neural network models [28, 29]. 

 PCA transformation is very useful for ICA as it eliminates second-order dependencies (correlation) between the 

signals, facilitating the search for independence. After PCA, the signals present zero mean and may have unit variance through 

a whitening process.  Whitening is a linear transformation of the data x into z = Qx, such that the covariance matrix of z is the 

unity matrix:  

             I}zzE{ T =                  (19) 

 Most ICA algorithms perform better over pre-whitened data; moreover, some ICA routines require this transformation 

in order to obtain accurate estimates of the independent components. 

 PCA is also applied for dimension reduction in over-determined (when there exist more sensors than sources) 

multidimensional problems. Measured data can be projected linearly into a subspace so that the maximum amount of 

information (in least square sense) is preserved if only the more energetic components are retained. If the number of 

independent components N is known, so the N more energetic principal components shall be preserved. Dimension reduction is 

also useful to reduce noise level and prevent over-learning. 

 

2.2- Principal Discriminating Components 

Considering a supervised classification problem, signal compaction can be performed using information on the target classes. 

The Principal Components for Discrimination (PCD) algorithm was initially proposed in [30] and uses target information to 

obtain a transformation of the input signals that maximizes discrimination efficiency (class separation) and data compaction 

rate simultaneously. PCD was successfully applied as a preprocessing step for ICA in classification problem in [31, 32]. 

 

The PCD can be performed through a MLP neural network [28], which is trained to maximize class discrimination. For 

simplicity, considering a binary discrimination process, a network with a single hidden neuron, extracts the first discriminating 

component z1 (see Figure 3-a), which is defined as: 

 

                                                                                        
Tz xd ×= 11                                                                                         (20) 
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where d1=[d1,1, d2,1, …, dN,1] are the hidden neuron synaptic weights.  The training procedure may be the traditional error back-

propagation [28], using distinct target values for input signals belonging to different classes. The estimation of the next 

principal discriminating components is performed through the following procedure: 1. Add a new hidden neuron; 2. Keeping 

fixed only the previously estimated input layer weights (dashed lines in Figure 3-b), restart the training procedure; 3. Evaluate 

the discrimination efficiency; 4. Continue this procedure until there is no significant discrimination efficiency improvement by 

adding new hidden neurons. 

 

The estimated PCDs are computed through:  

 

                                                                           
T
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N

ddd

ddd
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                                                           (21) 

 

or, alternatively, in a more compact representation: z=Dx
T
 .  

  

 
Figure 3 – Neural models to estimate (a) the first PCD and (b) the k-th PCD. 

 

2.3- Noise Reduction 

ICA/BSS estimation is severely degraded in presence of additive noise. Usual algorithms perform worse as the noise level 

increases and sometimes it is not possible to obtain meaningful results [33]. In practical applications some kind of noise is 

always present. A noisy ICA model can be described through: 

nAsx +=                    (22) 

where n is the random noise vector. 

If some information on the random noise is available, such as frequency contents or statistical characteristics, it is 

strongly recommended that some appropriated signal processing procedure is performed to remove or at least reduce noise into 

acceptable levels. 

Wavelet de-noising methods have been recently applied to improve the performance of ICA/BSS algorithms [33, 34].  

Using discrete wavelet transform (DWT), a signal y(t) can be decomposed into both detail D[k] and approximation H[k] 

coefficients [35]. To achieve proper multi-resolution description, sequential decomposition levels shall be used (see Figure 4). 

The approximation signal is a smooth version of y(t), corresponding to a type of low-pass filtering, while D[n] carries high-

frequency information. The de-noising algorithm used in this work basically consists on applying a threshold Tm to the detail 

coefficients of the decomposition level m such that: 

         





>

≤
=

mmm

mm

m
TkDkD

TkD
kD

][],[

][,
][

0
                 (23) 

The wavelet noise removal, different from a standard filtering, is able to eliminate high frequency components (that are usually 

produced by noise sources) in different frequency ranges (at each decomposition level). 
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Figure 4 – Wavelet decomposition diagram. 

 

3- Algorithms 

Many algorithms have been proposed during the past years to solve the ICA/BSS problem. In this section, the attention was 

focused in some successful ICA algorithms such as Nonlinear Decorrelation [7], FastICA [8], JADE [6] and the Multiplicative 

Newton-like algorithm [36]. Approaches that explore second-order statistics (SOS) to perform blind source separation of 

temporary correlated signals [37] are also presented. 

 

3.1- Nonlinear Decorrelation / Nonlinear PCA 

As described through Equation 4, statistical independence can be achieved through nonlinear decorrelation. A problem with 

the direct application of this method is that, theoretically, all possible combinations of nonlinear functions need to be tested. 

 Approximations of the independent components are obtained by algorithms that perform nonlinear decorrelation 

between a finite number of functions. For example the Cichocki-Unbehauen algorithm [7] proposes a feedforward neural 

network, which is trained to estimate the demixing matrix W (y=Wx). The learning rule for W is [1,7]: 

     )]W(y(y)-[W TgfΛ=∆ µ                                                              (24) 

where f(.) and g(.) are nonlinear scalar functions (the authors have suggested a polynomial and a hyperbolic tangent), µ is the 

learning rate and ΛΛΛΛ is a diagonal matrix (usually ΛΛΛΛ=I). It is proved in [7] that if the learning rule in Equation 24 converges to a 

nonzero matrix W, the outputs are nonlinearly decorrelated. To perform ICA using the algorithm proposed in equation 24, the 

signals must be pre-whitened. 

 The Nonlinear Principal Component Analysis (NLPCA) [38] is an extension of Principal Component Analysis (PCA), 

and thus can be defined through a modification of equation 17, deriving the following criterion to be minimized [39]: 

     }||)({||
2

1

∑
=

−=
m

i

i

T

ii wxwgxEJ                  (25) 

where g=[g1,…gm]
T
 is a set of nonlinear functions (that needs to be specified a priori). The NLPCA criterion have been applied 

to estimate the ICA model in [39-41] and proved to be an efficient approach for this problem. Pre-whiten is also required here 

in order to NLPCA produce statistical independence. In [42], connections were established between NLPCA (for pre-whitened 

data) and other ICA criterion such as kurtosis maximization. 

A nonlinear recursive least-squares (RLS) learning rule was proposed in [43] for ICA estimation through NLPCA. 

The method is a modification of the PAST algorithm [44] used for linear PCA. Considering that z is a whitened zero-mean 

variable (y=Wz), the updates for the RLS-NLPCA learning rule are [43]: 

     ])[][(]1[ kkk zWgq =+                   (26) 

     ]1[][]1[ +=+ kkk qPh                   (27) 

              ]1[]1[]1[]1[ ++++=+ kkkk T hqhm β                  (28) 

    ])1[]1[][(
1

]1[ ++−=+ kkkk ThmPTriP
β

                  (29) 

            ]1[][]1[]1[ +−+=+ kkkk T qWzr                  (30) 

           ]1[]1[][]1[ +++=+ kkkk TrmWW                  (31) 

 The index k denotes the iteration step, the variables q, h, m, r and P are internal to the algorithm and β is a forgetting 

constant. The matrix operator Tri(.) retains only the upper triangular part of a matrix, transposes it and copies to the lower 

triangular part, resulting in a symmetric matrix. As a recursive (on-line) algorithm, this method is able to track slow statistical 

variations of the data. 
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3.2- Fast Fixed-Point Algorithms (FastICA) 

Considering the negentropy (J(y)) approximations of Equations 14 and 15, and the fact that minimizing J(y) leads to non-

gaussianity maximization and thus statistical independence, the first choice for optimization algorithm for this criterion would 

be a gradient based one [45], as it is simple to implement and present low computational requirements. A limitation of such 

algorithms is that they present slow convergence and, moreover, a bad choice of the learning rate may destroy convergence [5]. 

 The Fast Fixed-Point Algorithms so called FastICA were firstly proposed in [8] and were derived through 

approximate Newton-type iterations. Among the advantages of the method we can mention fast and more reliable convergence, 

computational simplicity and little memory requirements [5, 8].  

 Through some manipulations of Equation 15, the FastICA algorithm for estimation of one independent component is 

formulated as follows for pre-whitened data [5]: 

1. Choose an initial (random) weight vector w; 

2. Let  wxwxwxw )}('{)}({ TT gEgE −=+
; 

3. Let  ||++= w||/ww  

4. If not converged, go back to step 2. 

where g(.) in step 2 is the derivative of G(.) (see equations 14 and 15). 

 The authors suggest the use of one of the following nonlinear functions G (and their respective derivatives g) [8]:  

)tanh()(,coshlog
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where 1,21 21 ≈≤≤ aa . The characteristics of the different contrast functions are [8]: G1 is a good general purpose 

contrast function; G2 are indicated when the independent components are highly super-Gaussian; and the use of G3 is only 

justified for estimating sub-Gaussian components when there are no outliers. 

In order to estimate several independent components, some deflationary orthogonalization using, for example, the 

Gram-Schmidt method [1], must be used. Modifications on the one unit FastICA algorithm which leads to estimation of several 

components simultaneously are available in [1, 5, 8]. 

 

3.3- Tensorial Methods 

Tensors are considered as a higher dimensional generalization of matrices or linear operators [46]. Cumulant tensors are 

matrices containing the cross-cumulants. Considering this, the second order cumulant tensor is the covariance matrix (C) and 

the fourth-order tensor (T4) is formed by the fourth-order cross-cumulants cum(xi,xj,xk,xl), that for zero mean random variables 

is defined as: 

  (35)

  

 The fourth-order cumulant tensor T4 is a four-dimensional array, where each element is defined as 
qijkl=cum(xi,xj,xk,xl), the indexes i, j, k, l vary from 1 to N  (where N is the number of signals). The fourth-order cumulant tensor 

contains all fourth-order information of the data. 

 ICA tensorial methods are derived through a procedure analogous to diagonalization of covariance matrix C, which 

produces signal decorrelation [2]. As T4 is a fourth-order counterpart of C, independence can be achieved by diagonalizing T4, 

as for independent signals the only non-zero fourth-order cross-cumulants appears when i=j=k=l. Analogous to the second-

order case, diagonalization of the fourth-order tensor can be achieved through eigenvalue decomposition (EVD). 

 Using tensorial methods for ICA are theoretically simple, but computing EVD of four-dimensional matrices by 

ordinary algorithms requires a very large amount of memory and may be computationally prohibitive in some cases. In order to 

},{},{},{},{},{},{},,,{),,,( lijkljkilkjilkjilkji xxExxExxExxExxExxExxxxExxxxcum −−−=
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avoid this limitation, methods like FOBI (Fourth-Order Blind Identification) [47] and JADE (Joint Approximate 

Diagonalization of Eigenmatrices) [6] were proposed in the literature. The last one will be described in the next sub-section 

and is considered to be the most successful ICA tensorial method [1]. A connection between Tensorial methods and FastICA 

for kurtosis absolute value maximization is established in [1]. 

  

3.3.1- JADE 

JADE algorithm proposes an approximate method for diagonalization of T4. Considering that the ICA model for pre-whitened 

data is satisfied:  

                    WsBAsBxz ===  ,                  (36) 

where B is the whitening matrix. In this case the cumulant tensor of z has a special structure and its eigenmatrices are 

described through [1]: 

           
T

mmwwM =  ,                   (37) 

where m=1,…,N and wn are the rows of W.  

 JADE algorithm uses the linear transformation Fij applied to M (mkl is an element of M):  

     ∑=
kl

lkjiklji xxxxmF ),,,cum()(M                                                         (38) 

 In JADE, a set of different matrices Mi, i=1,…,k is taken and the purpose is to searches for a matrix W that makes 
T

iFQ WMW )(= as diagonal as possible (one option for the Mi is to use the eigenmatrices of the cumulant tensor as they carry 

all the relevant information from the cumulants) [1]. The diagonality of matrix Q can be measured through the sum of the 

squares of off-diagonal elements. 

  

3.4- Multiplicative Newton-Like Algorithm 

A multiplicative ICA algorithm was proposed by Akuzawa and Murata in [48]. Using the kurtosis as cost function, this method 

applies second-order optimization (through the Newton method [32,45]) in the search for independent components (instead of 

first-order gradient iterations used in most of ICA algorithms).  

 This algorithm does not require pre-whitening and thus operates directly over the data. Some experimental results 

obtained in [49, 50] indicate that Akuzawa’s algorithm overperforms both FastICA and JADE in the presence of Gaussian 

noise. 

 The purpose here (similar to other ICA algorithms) is to find a linear transformation C: y=Cx (where  

x = [x1, ... , xN]
T
 and y = [y1, ... , yN]

T 
), which, maximizes the independence between the components of y. The following steps 

are executed during the iteration: 

1. Chose Co (initial de-mixing matrix) and ∆o (N x N);   

2. Evaluate the iteration step: Ct = exp(∆t-1)Ct-1; 

3. Evaluate the cost function at Ct using a second-order expansion around Ct-1; 

4. ∆t  Is chosen as a saddle point of the cost function; 

5. Back to step 2 until convergence. 

 More details on how the step 4 is executed can be found in [48]. Modifications on this method are proposed in [49] in 

order to reduce the computational cost by substituting the pure-Newton optimization by quasi-Newton iterations.  

 Comparing to FastICA or JADE, Akuzawa’s algorithm is slower (even in its modified quasi-Newton version), and 

thus its application is not justified in noiseless mixtures. Otherwise, if high noise levels are present or when the problem is 

over-determined (i.e. number of sources is smaller than observations), the multiplicative algorithm shall present better 

separation performance. 

 

3.5- Algorithms for Blind Source Separation of Time Structured Signals 

The algorithms derived so far consider that the source signals are mutually independent random variables (no temporal 

structure was assumed). In many applications, however, the sources are time-dependent signals instead of random variables. In 

contrast to the standard ICA model, in which the samples have no particular order, when dealing with time structured signals, 
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the samples cannot be shuffled as they present temporal structure. Additional information, obtained for example from 

autocovariances, can be applied to derive ICA algorithms that do not use the non-gaussianity principle and therefore can be 

applied to Gaussian signals (if they are correlated over time) [1].  

 One way to estimate the independent components of time series is to consider that data auto-covariances and cross-

covariances are different from zero. All these statistics for a given time lag can be grouped in the time-lagged covariance 

matrix [51, 52]: 

               (39)  

where: x(t)=[x1(t),…,xk(t)]
T
 is the mixed signals vector (for zero delay) and x(t-τ) is the mixed signal vector for the time delay 

τ (τ=1,2,3,…). 

 Here, second order statistics (contained in the covariance matrix) is applied for blind source separation, instead of 

high-order information. The motivation for using covariances is that for two independent signals yi(t) and yj(t) the cross-

covariance matrix is zero for all time delays:   

                               for i≠j           (40) 

                                                                                                 

Considering now k time structured signals, it is equivalent to say that the covariance matrix of  y(t)=[y1(t),…,yk(t)]
T is diagonal 

for all τ if the signals are independent (note that if the covariance matrix is zero only for τ=0, the signals are said to be 

uncorrelated). The observed signals x(t) shall be made independent by searching for a matrix W (y(t)=Wx(t)) such that the 

estimated sources y(t) are uncorrelated for all time-delays.  

 There exists some algorithms in the literature that explore temporal structure of data in order to perform blind signal 

separation, among them we can mention AMUSE (Algorithm for Multiple Unknown Signals Extraction) [53] and SOBI 

(Second-Order Blind Identification) [54]. As it is not always possible (due to computational limitations) to verify all possible 

combinations of time-delays, practical algorithms usually verify a limited number of τ values.  

 AMUSE algorithm is based on the diagonalization of the covariance matrix for only one specific time delay τo. 

Considering that the observed signals x(t) are pre-whitened, generating the variables z(t), the de-mixing matrix W is obtained 

through eigenvalue decomposition of [ ]Tzzz CCC )(
2

1_

τττ += , for τ =τo. The method can perform efficient signal separation 

only if the eigenvalues are distinct, which do not occurs frequently. This problem can be attenuated by searching for a proper 

time-delay which produces distinct eigenvalues. 

 An adaption of the eigenvalue decomposition method is proposed in SOBI algorithm [54] in order to allow 

simultaneous diagonalization of several matrices. Using this joint-diagonalization procedure, the separation matrix W is 

obtained considering several delayed covariance matrices and thus more robust results are obtained when compared to 

AMUSE. 

 More recently, some works [55, 56] had dedicated attention to second order signal separation, as this principle 

revealed to be very useful in the convolutive mixture case, which will be addressed in section 4.1. 

 

4- Extensions to standard ICA/BSS models 

In some practical applications, the standard ICA/BSS model (see Equations 1 and 2) do not describe properly the problem. For 

a more realistic application-dependent modeling, information on noise, multiple propagation paths or some sort of nonlinear 

shall be considered. In the following sub-sections extensions to the standard ICA/BSS models are illustrated.  

 

4.1- Multi-channel Blind Deconvolution 

The multi-channel convolutive blind source separation (CBSS) is also referred as a blind source separation of convolutive 

mixtures and consists of an extension of the basic instantaneous ICA model (see Eq. 1 and 2) in order to consider the existence 

of multiple propagation paths in the mixing system. This model better describes some acoustic, seismic, wireless 

communications and medical applications, where signal propagation is performed in a multipath environment. A M-tap mixing 

system can be described as: 

           

                         (41) 
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where ( )kh np ',  are attenuation coefficients of each path until the p-th sensor. The sources estimates can be expressed in terms 

of separation filters ',nqw whose aim is to invert the mixture system: 

  

             (42) 

 The CBSS task slightly differs from the Multichannel Blind Deconvolution (BD) one. While BD algorithms aim to 

preserve the time structure of the signals, in CBSS methods, distorted versions of the sources are allowed. In digital 

communications, only BD techniques can be used. When the sources are acoustic signals, we can accept some distortion. Let 

si(n) be the n-th sample of the i-th source and yj(n) the n-th sample of the j-th estimate. If  yj estimates the i-th source, the 

objective of BD and CBSS algorithms is to get [57]: 

 

(43) 

      (44) 

 

where cj accounts for the scaling ambiguity and cj,k for the filtering ambiguity (for more details, see [58]). In this work, we do 

not focus in BD algorithms for convolutive mixtures, nor in channel identification techniques. In  BSS methods there is a  

scaling ambiguity because of our ignorance about the dynamic level of the sources. As a result, our estimates, even in 

successful cases, are (approximately) scaled versions of the original sources. Our ignorance also implies that we cannot 

determine the order of the independent components and, for example, the third estimate can be a scaled version of the first 

source. The numbering of the sources is an arbitrary procedure, and the BSS algorithm cannot discover our labeling. 

 There are two main approaches for the CBSS problem: in the time [59-61] and in the frequency-domain [62-67]. 

Concisely, time-domain algorithms frequently use non-trivial extensions of ICA cost functions and they tend to present higher 

computational costs and less distortions and artifacts (estimation errors). A promising time-domain algorithm is the one 

presented in [59], which will be explained below. 

 Although frequency-domains methods are faster than their time-domain counterparts, they often introduce artifacts in 

their estimates. They rely on convolution-product duality between time and frequency domains, which permit us to handle each 

frequency bin as an instantaneous mixture. This simple idea has three serious problems: i) in the STFT transform, the 

convolution must be circular and not linear, as usual; ii) the scaling ambiguity can change the power of each bin in a different 

manner (producing a significant distortion) and iii) the permutation ambiguity is able to exchange bins between estimates. 

 The first problem can be attenuated by zeroing (in the time-domain) the final part of each separation filter. This 

procedure can also alleviate the permutation problem. The second problem can be handled by the minimum distortion principle 

[68], while for the last one, an envelope correlation [62, 63], a direction of arrival [64, 65] or a hybrid approach [66] were 

proposed. One successful frequency-domain algorithm was presented in [67] and will be detailed later. 

 

4.1.1 – Time-Domain CBSS 

The method presented in [55] will be explained here. This method separates nonstationary and nonwhite sources (such as voice 

and music) using only second order statistics. Let L be the separation filters length, D the number of time-lags considered for 

the correlations ( LD ≤≤1 ) and P ( DP ≥ ) the length of output signals blocks used as a basis for the estimates of short-time 

correlations. The m-th block taken for processing can be placed in a matriz U:  

 

(45) 

 

 

And the q-th output block can be written as: 

 

 

(46) 

So, defining: 

  (47) 
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(50) 

 

 

 The defined cost function (a generalization of what was proposed in [69]) has roots in a general information-

theoretical approach [70] and is written as: 

 

 (51) 

 

where ),( miβ , the learning factor, allows us to use on-line or off-line iterations (using only the blocks where ( ) 0, ≠miβ ). 

The natural gradient of ( )mℑ w.r.t. W can be expressed as: 

 

(52) 

where the bdiag(.) operator, acting on a partitioned block matrix consisted of several matrices, sets all submatrices on the off-

diagonals to zero. For example, in N = 2 and determined case, we have: 

 

(53) 

 The Sylvester matrix W update is ( )mmm W)1(W)(W ∆+−= µ . After updating, we get the first line of each 

)(mWpq matrix to reconstruct the qpw , filters and then we construct again ( )mW . There are other methods to obtain the 

filters from matrix ( )mW  that can be more intuitive or more specific (case-sensitive); see [71] for more details. In order to 

reduce the computational cost, filter banks can be used [72]. 

 

4.1.2 – Frequency-Domain CBSS 

The CBSS method described in [67] is fast and usually has good performance. It begins by windowing the mixtures, using the 
Hanning window of length K and shift length of K/4. Then, the STFT transform is applied and each bin becomes an 

instantaneous mixture. Let 
)(k

W be the separation matrix of the k-th bin and
( )k

iy be the estimate of the i-th source at k-th bin. 

 To avoid the permutation problem, a multidimensional cost function is used. The update of each element of 
)(k

W can 

be written as: 

(54) 
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where [ ]⋅E  is the statistical average operator and 
( )kϕ  is a multidimensional score function defined as 

( ) ( )( )
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2
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)(1

∑
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=
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k

i

k

iK

ii

k

y

y
yy Kϕ . This equation can be exposed in a matricial form, that leads to the well-known update: 

(55) 

 

After convergence, we use the MD Principle [68] in each matrix 
( )k

W : 

(56) 

 

where the diag operator zeroes the matrix off-diagonals elements. The MD Principle atenuates the scaling ambiguity. If we 

suppose that 
( ) ( ) )(1 kkk

HDW
−≈  , where 

( )kD  is a diagonal matrix that contains scaling coefficients, the MD Principle gives  

us [ ] ( ) [ ] )(1)()(1 kkkk HHdiagWWdiag −− ≈ , where we have a reasonable scaling (not an arbitrary one). As a final procedure, 

we apply the inverse STFT-transform to get the estimates. 

 

4.2- Nonlinear ICA/BSS 

In problems where there exists some sort of nonlinear phenomena during the signal mixing process, the linear ICA model may 

present poor results [73]. A more general formulation considers that the measured signals x (where each sample are formed by a 

nonlinear instantaneous mixing model: 

(s)x F=                   (57) 

where F(.) is a R
N
→ R

N
  nonlinear mapping (the number of sources is assumed to be equal to the number of observed signals) 

and the purpose is to estimate an inverse transformation G : R
N
  → R

N
 :  

(x)y G=                   (58) 

so that the components of y are statistically independent. If G = F
 −1

  the sources are perfectly recovered [74].  

A characteristic of the Nonlinear ICA problem is that the solutions are nonunique [74]. If y1 and y2 are independent 

random variables, it is easy to prove that f (y1) and g(y2), where f (.) and g(.) are differentiable functions, are also independent. 

So, it is clear that, without some restrictions, there is an infinite number of solutions for the inverse mapping G in a given 

application. The nonlinear blind source separation is a more restrictive problem as its purpose is to estimate the original source 

signals from their nonlinear mixed version. Nonlinear BSS cannot be achieve without some prior information on the mixing 

model or sources. A complete investigation on the uniqueness of nonlinear ICA solutions can be found in [75]. NLICA 

algorithms have been recently applied in different problems such as speech processing [76] and image denoising [77].  A 

complete review on nonlinear ICA/BSS theory, algorithms and applications can be found in [78]. 

 

5- Experimental Applications 

In this Section are presented some experimental applications of ICA/BSS algorithms in different signal processing tasks such 

passive sonar signal detection, feature extraction in ultrasound inspection, information retrieval in time series, convolutive 

blind signal separation of music signals and NLICA for feature extraction in experimental high-energy physics.  

 

5.1- Passive Sonar Signal Detection 

In passive sonar [79, 80], a hydrophone array shall be used to examine the acoustic waves received from different directions. 

The acquired signals are used by experienced operators to verify if an important target is within the system reach. This 

procedure is time demanding and susceptible to human failure. A particular limitation in passive sonar systems is that the 

signals are immerse in huge background noise (generated from several underwater acoustic sources). Another problem that 

may appear is the cross-channel interference from different targets in adjacent directions (bearings) of the hydrophone array.  

 Signal processing techniques such as DEMON (Demodulation of Envelope Modulation on Noise) and LOFAR (Low 

Frequency Analysis and Recording) [79] are usually applied to enhance the signal of interest and reduce, as much as possible, 

( ) ( )[ ] )(1 .diag kkk
WWW

−←

( )[ ]{ }WYYEIWW
Tϕµ −+←
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the background noise. DEMON is a narrowband analysis which aims at identifying the number of shafts and shafts rotation 

frequency of the target propeller. Figure 5 shows a block diagram of the classical DEMON analysis. 

 

Figure 5 - Diagram of classical DEMON analysis. 

 In a given direction (bearing) the acoustic signal is bandpass filtered (selecting only the frequency range of interest to 

characterize the target propeller cavitation noise, which goes from hundreds to thousands of RPM). In the following, signal is 

squared (as in traditional AM demodulation) and TPSW [79] algorithm is applied to reduce the background noise. Finally, 

short-time FFT (Fast Fourier Transform) reveals frequency-domain information.  

 The work [81] illustrates how ICA can be applied to reduce both the cross-channel interference and the background 

noise in passive sonar signal processing. The DEMON plots for two adjacent bearings are illustrated in the top of Figures 6-a 

and 6-b, respectively for direction 190o and 205o. The main frequency components of 190° signal (FA=148 RPM and its 

multiples) are mixed together with information from the 205° direction (FB=119 RPM). The same problem is observed in the 

signal measured at bearing 205°. It was also observed that both signals (190° and 205°) are contaminated by FC=305 RPM, 

which is probably related to the submarine self-noise 

 ICA (through JADE algorithm) was applied in the frequency-domain to estimate the independent components which 

generated the DEMON signals at directions 190
o
 and 205

o
. The independent DEMON plots are illustrated in the bottom of 

Figures 6-a and 6-b (respectively for directions 190
o
 and 205

o
). It can be observed that cross-channel interference and the 

background noise level were reduced in approximately 4 dB and 5 dB, respectively. 

 

              (a)            (b) 

Figure 6 - DEMON plots for directions (a) 190o and (b) 205o. Top: measured data; Bottom: after ICA, extracted from [77]. 

 

5.2- Feature Extraction in Ultrasound Inspection of Pipeline Welded Joints 

Non-destructive testing is used as an important tool to ensure industrial equipment reliability. Among the main available 

methods, ultrasound inspection is usually applied to identify weld defects. Pulse-echo ultrasound testing consists on using a 

transducer, coupled to the object to be analyzed, to emit an acoustic signal (in the ultrasound frequency range). The ultrasound 

signal propagates inside the object and reflects (producing echoes) every time it reaches interfaces, discontinuities and every 

variation present inside the material. These echoes are recorded as they reach back the transducers. A main limitation of this 

method is that the diagnosis is usually performed by experienced operators, by looking at the measured signals. This procedure 

is time consuming and susceptible to human failure.  

 An automatic neural diagnostic system for natural gas pipeline welded joints was proposed in [82]. The available 

signatures were analyzed by experience operators and labeled as defect (37 signals) and non-defect joints (58 signals). The 

ultrasound signatures were used (after a smoothing preprocessing step which includes low-pass filtering and down-sampling) 

to feed a supervised neural classifier (multi-layer perceptron architecture) [28]. In [83] it was shown that depending on 

underlying data characteristics, the application of ICA as a preprocessing step for classification problems may improve the 

discrimination efficiency.  Considering this, as illustrated in Figure 7, ICA (through FastICA algorithm) was applied here to the 

ultrasound signatures aiming at extracting discriminant features of the data. As illustrated in Table 1, the neural network 

trained using the independent features produced higher discrimination efficiency (~+5%) if compared to a similar network 

trained directly with the smoothed ultrasound signatures. In this particular problem, the non-defect signatures were used as 
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targets to be detected and false alarm means classifying a defect joint as non-defect one. Considering this, false alarm is not 

acceptable as it means that, in practice, a bad joint would be classified as a good one. So, the classifiers decision threshold 

were adjusted to produce the highest probability of detection (PD) possible while maintaining zero probability of false alarm 

(PF). 

 

Figure 7 – Diagram of the signal processing chain. 

Table 1 – Performance comparison between different discriminators. 

 Neural Network Neural Network + ICA 

Highest PD for PF=0% 89.47 % 94.74 % 

 

5.3- Information Retrieval in Time Series 

Parallel time series may present underlying common factors that can better describe the process represented by these series. In 

the work [84] ICA was applied to electrical load time series aiming at data quality monitoring. Electrical load and daily 

temperature data from an European energy provider (East-Slovakia Power Distribution Company) [85] were used. Electrical 

load data (in MW) was recorded in a 30 minutes period from January 1
st
 1997 to January 31

st
 1999 and the mean daily 

temperature information covers the same period.  

 The system proposed in [84] comprises a cascaded signal processing chain composed by ICA,  a pre-processing block 

(which analyzes tendencies, periodicity and stationarity) and a neural network (to model the series and predict the future 

samples). The daily temperature and peak-load time series are illustrated in Figure 8-a (respectively at top and bottom). After 

applying ICA, the time-series illustrated in Figure 8-b were obtained. It was observed that the structure of the electrical load 

series was concentrated in a small number of components (most independent components are non-structured and model only 

noise), allowing a more accurate modeling by the neural networks.   

 The performance obtained through the data quality monitoring system with and without applying ICA (SOBI 

algorithm) was compared by computing the mean absolute percentage error (MAPE), which is defined as: 

                                                                        100
ˆ

1

×
−

= ∑
=

T

i i

ii

x

xx

T

1
(%) MAPE  ,                                                             (59) 

where 
ix  , 

ix̂  and T are respectively the time signal, its prediction and the applied time-window. It was observed that the 

MAPE computed in the prediction of the daily peak-load time series was reduced from 7.03% (without ICA) to 2.46% (with 

ICA). 

 

              (a)        (b) 

Figure 8 – (a) Measured time-series and (b) independent components, daily temperatures (top) and peak-load (bottom), 

extracted from [80]. 

 



Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 10, Iss.1, pp. 51-69, 2012. 

  © Sociedade Brasileira de Redes Neurais (SBRN) 
 

66 

 

5.4- Multi-channel Blind Separation of Musical Signals 

The performance evaluation of CBSS algorithms usually uses SIR (signal-interference ratio), SAR (signal-artifact ratio) and 

SDR (signal-distortion ratio) computations (the last two ones are more important when frequency-domain algorithms are used). 

For more details, see [86]. Using 24000 samples of two musical signals (sampled at 8 kHz) with mixture filters lengths equal to 

8 and identical separation filters lenghts, 500 off-line iterations and ( ) 500/10, 1−=miβ (see Equation 49). Figure 9 

ilustrates the SIR evolution obtained for a time-domain CBSS algorithm.  An average SIR above 20 dB was obtained, a good 

result for convolutive separation. 

 In a different experiment, using two voice signals (a female and a male speaker) with sampling frequency of 8 kHz 

and (random) mixtures filters of length 32, we applied the Frequency-Domain algorithm of section 4.2.2 (with K = 128). The 

signals time length is 10 s. The performance  evaluations parameters are presented in Table 1. The low values of SAR and 

SDR are typical of frequency-domain algorithms. Fig. 10 shows spectrograms of original sources, mixtures and estimates for  

4 s of signals. Note that low frequency regions (where most of the energy is concentrated) reveals good separation of both 

sources. The high frequency regions were emphasized, because the MD Principle does not resolve completely the scaling 

ambiguity. 

Table 2 – Objective evaluations (in dB) of frequency-domain CBSS algorithm. 

Measurement Estimate 1 Estimate 2 

SIR 10,33 13.22 

SAR 3,90 5.49 

SDR 2,70 4.64 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Average SIR evolution (in dB) of time-domain CBSS algorithm. 

 

Figure 10 – Spectrograms of original sources (first line), mixtures (second line) and estimates (third line) of frequency-domain 

CBSS algorithm. 
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6- Conclusions 

This paper describes the independent component analysis in its theoretical aspects, algorithms and applications. The statistical 

principles used to guide the search for independent components, such as non-gaussianity maximization and nonlinear 

decorrelation, are derived. The most commonly applied pre-processing steps (PCA and noise reduction) used to obtain more 

accurate estimates of the independent components are illustrated. Among the numerous algorithms proposed in the literature 

for solving the ICA problem, some popular ones (like FastICA and JADE) were derived in this paper. Extensions to the 

standard (linear and instantaneous) ICA model, such as the convolutive mixtures and nonlinear ICA paradigms are also 

discussed. The ICA model proved to be very useful in a great number of signal processing applications like blind signal 

separation, feature extraction, interference removal and information retrieval. Experimental results illustrate some of the 

benefits of applying ICA in challenging real-world applications such as passive sonar, ultrasound inspection, time-series data 

quality monitoring, blind separation of musical signals and high-energy physics. 
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