Learning and Nonlinear Models - Revista da Sociedade Brasileira de Red Neurais (SBRN), Vol. 1, No. 2, pp. 103-121, 2003
(© Sociedade Brasileira de Redes Neurais

Wheeled Mobile Robot Control Using Sliding Modes and Neural Networks

Vinicius M. de Oliveira, Edson R. de Pietj Walter F. Lages
vinicius@ieee.org, edson@das.ufsc.br, w.fetter@iege.o
! Department of Mathematics, Federal University of Rio Gend
Av. ltalia, km 8 s/n, 96201-900, Rio Grande, RS, Brazil
2Department of Automation and Systems, Federal Univerdi§amta Catarina
CP 476, 88040-900, Floriapolis, SC, Brazil
3Electrical Engineering Department, Federal UniversitRaf Grande do Sul
Av. Oswaldo Aranha, 103, 90035-190 Porto Alegre, RS, Brazil

Abstract

The complete model of a mobile robot can be divided into kinematics aradrigs To take advantage from this
fact, a combined controller of a sliding mode kinematic controller with a neneslvork computed-torque dynamic
controller is proposed. The proof of stability is based on the Lyapunargh€oncerning with Brockett's theorem,
the kinematic controller fulfills the requirements and the robot can be stabilizaddesired posture. Experimental
real-time results are presented.

1 Introduction

A few years ago the termobotics was used to remember only robotic manipulator due to its widespread application
in industry. Nowadays this term also brings to mind service robots, alsorkaswnobile robots.

Mobile robots can be applied in a large variety of applications. The mostaggaitations are mail delivering,
bomb disposal, helping physical deficient (e. g. wheelchairs) [1p2}ia exploration [3] and inhospitable environ-
ment (such as volcanoes) and in underwater activities (e. g. petrobequipragion, substituting divers in dangerous
tasks) [4]. Besides that, there are some application of autonomous g@ilietes in the reduction of traffic congest,
pollution and accidents caused by human inability.

Due to this wide variety of mobile robots applications, the control of such systtarts to play an important role
in technical literature. In the opposite of the commonly used robotic manipulatotsile robots are nonholonomic
systems, i. e., they have constraints that cannot be integrated. For mdiate vath differential drive it is possi-
ble to consider the kinematics isolated from the dynamics, while analysing ttesy3he majority of technical
work consider only the control of the kinematics of the system, once theotmmimic constrainsts are kinematic
constraints [5, 6, 7, 8].

When controlling a mobile robot you can intend the robot tracks a desirgtttivey, the robot moves toward a
desired posture (desired position and orientation) or the robot tracksired trajectory parking in a desired location.
Brockett has shown that to park a nonholonomic mobile robot in a referneosture it is necessary to apply a non-
smooth or time-variant feedback control law, i. e., the system is not stathinddth a smooth time-invariant feedback
control. Thus, the researchers focused their works to develop neottechniques to overcome this limitation.

Once the control challenge is in the kinematics of the robot, the dynamicstwassidered to design control laws.
Some kinemaitc control techniques are: fuzzy control [9], discontingousrol [10], time-variant state feedback
control [11, 12] and predictive control [13, 14]. Some techniquestdrol the dynamics of the system are linearizing
feedback [15], backstepping [16], adaptive linearizing contro] §hd neural networks [18, 19].

Nowadays, when implementing mobile robots, there are some problems relatatdevittathematical modelling
of the kinematics and of the dynamics, some difficulties to estimate the orientatiotheupdsition of the robot,
some complexity in the control design and also when planning a path to bedradheen executing computational
simulation the robot models require a special attention, because if these ramaltsurate, the parameters will not
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require to be adjust (or at least they will be approximate) when used ie#éhemvironment, and the result will be, or
should be, very close that obtained in the simulation environment.

Another problem to be considered when executing a practical experiggoncerned with the information avail-
able from the robot. While in simulation all variables involved are available aady to be used at any instant,
in practice, it is possible to have only some variables available. To deal witk igtimation of the variables not
available is indicated.

As the mobile robot navigates autonomously, it is necessary to the robatdidddge of its actual position and
orientation to execute the task in a safe way, avoiding to get lost. To havefthisation is necessary to apply some
methods to estimate the position and orientation, using for that special daviteassencoders, sonars, video camera,
digital compass, GPS and others.

Differently of [20], this work presents a kinematic control loop basedlmling modes technique and a dynamic
control loop based on neural network technique. The task imposed tmblo¢ is to move torward a reference
posture (origin of the system), and the control law satisfies the restrictameshby Brockett. The neural network
is choosen due to its capability tearn and to the fact the accurate measurement of the parameters involved in the
dynamics is very difficult.

2 Mobile Robot Modelling

The mobile robot used in this work (see figure 1) is a circular platform witlhdels, with 2 of them mounted on
the same axle with a DC motor attached to each one [21]. This is a differertial-tsbot. See [6] for some insights
on structural properties of this class of robot.

Yc

Xc

Cast-wheel

Traction wheel

X

Figure 1: Configuration of the wheels of the mobile robot.

A mobile robot system having andimensional configuration spa€avith generalized coordinatés= [q; - - - g]”
and withm constraints can be described as follows [18], [22]:

M(q)G + Vmd + F(4) + 74 = B(q)7 — ATA 1)

whereM(q) € R™*" is the inertia matrix (symmetric and positive definit¥),,(¢,¢) € R™*" is the centripetal

and coriolis terms matrixi'(q) € R™*! is the friction terms;y,; denotes bounded unknown disturbances including

unstructured unmodeled dynamics. The maBifg) € R"™*" is the input transformation matrix, € R"*! is the

input vector,A (q) € R™*™ is a matrix related with the constraints akg R™*! is the vector of restriction forces.
Considering the time-independence of all kinematic equality constraints anerita:

Ag)g=0 )
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Let S(q) be a full rank matrixXn — m) belonging to the null space &7 (¢), such that:

ST (q)AT(q) =0 3)
Based on 2 and 3 its possible to find aiit) € R, such that, for alt:
q=S(q)n(t) (4)

wheren is a column vector with the linear and angular velocities as its elements.

The system 1 will be now transformed into a suitable representation to thelpetspective. By differentiating 4
and replacing the result in 1, then pre-multiplying®Y(q) and using 2 and 3 it is possible to eliminate the constraint
matrix A7 (¢)\, resulting in:

sT™MS#h + ST(MS + V,,S)n+ STF + 877, = STBr (5)

Which can be rewritten as: - -
M+ Vun+F+7T4=7 (6)
whereM(q) € R™™" is the inertia matrix (symmetric and positive definitd),,(q,¢) € R"*"is the centripetal

and coriolis terms matrixf'(v) € R"*! is the friction terms7,; denotes bounded unknown disturbances including
unstructured unmodeled dynami@ss the input vectorB is a constant nonsingular matrix that depends on geometric

parameter of the robot). The mat and the norm of thé/,,, are bounded and the matiM — 2V, is skew-
symmetric.

3 Sliding Mode Controller

The purpose of the control law obtained by sliding mode technique is to traciottlinear trajectory of the system
to a pre-specified surface (defined by the designer) in the state gphosaintain it in this surface for all subsequent
time. This surface is calleslvitching surfaceWhen the system trajectory is above the switching surface, the feedback
presents one gain, and when the system trajectory is below the suriafeettback uses a different gain.

This switching surface is also known sliding manifoldbecause, at least in theory, once this surface is intercepted
by the system trajectory, the control law would impose to the system trajecttrgctothe surface for all the future
time (the trajectory will slide over the surface).

The dynamics of the process limited to this surface denotes the behavioraafrttielled system. The first step is
to design the sliding surface according to the desired behavior of theddlospe system, such as convergence to the
origin, parametric variation robustness [23, 24, 25, 26].

For instance, it is shown a simple example to illustrate such technique. Cotigd@est order system:

z(t) = u(x, t) (7)
with
-1 if x>0
u(z,t) = sign(z) =<0  if x=0 (8)
1 if <0

The trajectory of the system 7, with the control 8 applied, is shown in figutepossible to observe the control
law changes from-1 to +1 around the surface(z,t) = = = 0. Thus, for any initial state;, exists a finite time;
such thate(¢) = 0 Vt > t;.

It is important to note that to design such sliding surface one has to cotisideontrol law is able to switch from
one value to the other in an infinitesimal time [27]. As in the real it is impossible te hawll switching time, it
causes an effect known akattering[28, 4]. This fenomenum is present, usually as a high frequency osailatibe
equilibrium point, and can excite high frequency modes of the dynamics.

The delay in switching from one value to another can be caused by masgneasuch as data measurement,
compute of the control law, actuator limits. In [25] we have some methods to elingnioato reduce, the effects of
the chattering
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Figure 2: Trajetories of the system 7.

3.1 Kinematic Loop Control

The controller proposed in this section has a simple functional structurgegsted in the block diagram in
figure 3. The system inputs are the reference posture and the stateof¢bkinematic model.

v
| n=[]
Reference Pref Sliding Mode w Robot

Posture Controller Kinematics

Figure 3: Block diagram of the kinematic loop control.

Lemma 3.1 Let the work space of a robot be definedZasc R? and its configuration space given By= 7 x
[—7, m[e R3.

In this control scheme a Lyapunov functidhis designed to navigate the system to the origin of the work space
7 C R2. The robot navigation to the origin of the configuration spéde guaranteed by the associated gradient
e = VV. Once this gradient posses some necessary properties, the roigattioamwill happen.

The control law is designed to keep the system trajectory along te(the) gradient. Thus, the invariance and
order reduction properties of the sliding mode technique are appliedTB8]objective is to keep the linear velocity
vector of the vehicle colinear to the gradient; the velocity of the movement dlangradient can be determined
independently. The trajectory is obtained solving the following equation:

d7y _ Ey(3773/)
dr — e.(z,y) ©)

The trajectory must be smooth and continuous, and the first derivafities gradient associated to the Lyapunov
function 2=, _%Lyﬂv, % and% are limited.
Let the orientation error be given by:
A =60.—0 (20)
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The error dynamics is obtained taking the first time-derivative of the equa€@oresulting:
00, . 06 .

—Sy—w

AV = Srtt g,

) b ) [0

= _1+(§—z 2 sin(0)
T2 g e 2 9 e cos(#)
= e%-‘:ez ar (ﬁ) E%-ﬁaf, Ox (i)] [sin(@) v
- 8571,7 s Iaﬂi Oeg
= EIBZHE# cos(6) % sin(ﬂ)} v—w (11)

This equation can be rewriten to a simpler form:

A = F(x,y,0)v —w (12)
where
co LY ¢, D2z 2 25U g, Oca
F(z,y,0) = | =2 _vor 242 cos(6) 7‘9?’“6“;’ 2 gin(6) (13)
Defining the control inpub as:
w & F(x,y,0)v + Esign(A0)+/|Af| (14)

ensures the convergence# to zero will be in a finite time, witlf as a positive and finite scalar constant [29].
To ensure the existence of the sliding mode with a finite control is necessdrthéhterm#'(z, y, 0)v, in 14, be
finite. The velocity control used to give a finit&(z, y, #)v is defined as follow:

v(t) £ —lello™(t) (15)

wherev*(t) is a limited auxiliar control input. It is possible to observe th&l, 0) and, consequently(¢) and
F(z,y,0)v also converge to zero at the origin. When the sliding mode occurs @éng 0, the gradient field is
followed by the system, reducing the kinematic system 4, under the contesidL45, to the following system:

X t
- B[]
gl Lev] el €y
At the first sight is possible to think the reduced system is still under theatéstis of Brockett's theorem [30],
once the system has a state dimension higher than control input dimensipin 8more detailed analisys, one can

observe that due to the sliding mode technique, the gradient of the Lyapumaiion is exactly tracked, reducing the
order of the system by the restriction of the movement to the resulting manif@ld of

3.2 Control Law
Let V(z,y) be candidate to the Lyapunov function, expressed by:

22
V(z,y) = %(; + y2> >0 17)

whereq is a positive scalar constant aifda positive definite function. Let the associated gradient be given as:

e(z,y) = —VV = [:i] (18)
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According to the expression 9 and with the associated gradient 18, \edragctories of the type:

y = 7|zl (19)

wherey depends on the initial conditions, without importance to the control.
The control input responsible by the co-linear orientation of the robottgtadient (z, y) is obtained substituting
equation 18 in 14, resulting in:

xsinf — ycos

T (a)? v+ Esign(A0)/|AD) (20)

w =

with the orientation error expressed by equation 10 and velocity contrenh dpy:

v(t) = —va? + (ay)? v* (1) (21)

While the sliding mode exists, we ha¥e= 6. and the robot movement is dictate by the reduced system 16 with
the restriction 9. Taking:
v*(t) = —vp (22)

the position error has an exponential convergence. The convergérice orientatior to zero can be determined
analising:
0=0.= arctan(%) = arctan(abz®"!) (23)
T

during the time evolution of x 16, with control 21 and> 1.
Considering the region around the origin and the approximatiafw) ~ «, to small values of, is possible to
conclude thad convergers exponentialy to zero.

4 Dynamics Neural Controller

As seen in chapter 2, the control of mobile robots with differential drivelmseen as a cascade of a control loop
to the kinematics followed by a control loop to the dynamics of the robot.

In this section is adopted an strategy based on the application of artificiell metworks to control the mobile
robot dynamics [18].

A brief introduction to artificial neural networks is presented in the nestige and then the control strategy used,
as well the proof of stability and some practical results.

4.1 Artificial Neural Networks

An artificial neural networl (figure 4) consists in a set of processimitsihat communicate by sending signals to
the other units throw weighted connections [31]. Each of the basic elenfemtsearal network (also called neurons)
has input signal originated by the other elements or signals externals tatthe ne

The neural network used in this has 6 neurons in the input layer, 8 meimahe hidden layer and, finally, 2
neurons in the output layer. Thus, the output signal of the neural gatas by the following equation:

y(x) = WTU(VT.’IJ) (24)

wherez € R5%! is the input vector of the neural netwoi¥, € R°*® is the weight matrix between the input layer and
the intermediate layer an@ ¢ R8*? is the weight matrix between the intermediate layer and the output layer. The
functiono(-) is the so called activation function and in this work we decided to use the foljpsiwymoidal function:

B 1
Cl4e®

o(x)

The application of neural networks in the control of the dynamics of a mobietris intuited from the intrinsec
characteristic of neural networks to map unknown nonlinear functidzls JTis way, a nonlinear function generates
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Figure 4: Structure of the neural network adopted.

sampled pair§zi,y1), (z2,y2), ..., (zn,yn). The sampled data modify the parameters of the neural estimator,
approximating the neural system output to the output of the unknown nanlinection [33]. The accuracy of this
approximation is proportional to the amount of sampled data.

Based on the feature above and consideiiig) a continuous functiorR™ — R™ is possible to show that,
makingz restricted to a compact subdé € R", for a given numberV of neurons in the hidden layer, there is a
configuration of the neural network such that:

N(z)=Wlo(VTz) + ¢ (26)

wheree is the neural network approximation error. Fixing the maximum error alloweldgrapproximation process
to ey, itis possible to find < . The most important to the control perspective is the fact that, once theesalis
specified, there is one configuration of the neural network such thatdxenum desired error in the approximation
is obtained. Thus, an estimativelofz) is given by:

D(z)=Wlo(VTg) +¢ (27)

whereV andW are estimatives of the ideal weight matrices.

It is important to notice the way weights of the neural network are updatee.niost used method to update the
weights is the off-line technique, where the neural network is trained wigh af ¥alues originated from the function
to be approximate. This technique requires two phases: one to teach thémetwork and another to execute the
function approximation. The use of such technique in a control applicatignnoibe possible, due to the time
required.

In this work we use the on-line training technique, which has only one phasause the weights are adjusted
during the execution phase. The weights are adjusted according to theifigllequations, which will be used later
to satisfy the theory of Lyapunov:

AW = FU(VATaj)eZ —Fo' (VTz)VTzel

C

—kF|lec||W (28)
AV = Gz(o'(VTz)We,)T
—kG|le||V (29)

where the design parametdsandG are positive definite matrices akd> 0.
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5 Overall Control Structure of the Mobile Robot

In this section we present, besides the overall structure of the conttb#garoof of stability of the neural network
and, as a consequence, the stability of the controller.

Once the dynamic model of the mobile robot is defined, we present in figime Blocks diagram of the control
scheme proposed. As already mentioned, we have a block related to thekitseecontrol and another block related
to the dynamics control, where the neural network is involved. One camabthat the error in tracking the reference

Neural
Network

Td

: f@) ; \ 3 [vl}
I Y=
' : v
' €Ec

Reference Control Law o) Ky (

1 1 Dynammics Kinematics
of the Robot of the Robot

wl

Robust
Term

Dymanics Controller Loop

Kinematics Controller Loop

Figure 5: Block diagram of the controller.

velocity is given by the difference between the value obtained from therkdtie control loop and the value measured
from the robot:
€c = Ve — U (30)

Taking the first time-derivative of equation 30 and substituting it in equatidhesdynamics of the robot can be
described by the velocity tracking error, as follow:

Mé, = —Ve. -7+ f(x) +74 (31)
where the nonlinear functiofi(z) of the robot is given by:
f(r) =M, + Vo, + F (32)

After defining the nonlinear function for the dynamics of the robot, it is imparta notice that the parameter
involved in this model (mass, inertial moments, friction coefficients, etc) ar&mmwn with enough accuracy, once
they are of difficult measurement. Due to this lack of precision we make udhe @fpproximation of multivariable
nonlinear functios property from the neural networks to map equation 32.

A simple inspection on this equation allows to explicitly define the input variablegtoabral network. The input
vector of the neural network is defined as follows:

z=[T oF oF]" (33)
Continuing, we obtain a control law expressed by:
7=f+Kiec—7 (34)
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whereK, is a positive definite matrix of gains anf{z) is an estimative of functiorf(z) of the robot, which is
performed by the neural network. Thesignal is to guarantee the control law robustness to unstructured unmodele
disturbances [18].

Applying this control in equation 31, the closed loop system can be dedaibe

Mé. = —(Kg+ Ve + f() +Tg + 7 (35)

with f = f — f.

For a better understanding of the stability proof, which is described beNewmeed to make some definitions:

Definition 5.1 The solution of a nonlinear system with the state) € R" is uniformly locally stable if there is a
compact sel/, < R", for all z(ty) = x¢o € U, existsé > 0 and a numbefT'(d, z¢) that ||z(¢)|] < 4, for all
t>tg+T.

Definition 5.2 Let A = [a;;], A € R™*" be the Frobenius norm, defined by:

|AlE = tr{ATA} = af (36)
i,J
ConsideringB = [b;;], B € R™*", the inner product associated {A.B)r = tr{ATB}. The Frobenius norm
cannot be defined as a norm of the induced matrix to any vectorial nautit is compatible with the 2-norm, such
that||[Az|s < ||A]lpllz|l2, with A € R™*™ ex € R™.

Definition 5.3 To facilitate the notation, we define a matrix with all weigths of the neural netagitk= diag{ W, V }.
Definition 5.4 The errors from the estimations the weigths are giveWby V-V, W = W —-W andZ = Z — Z.

Definition 5.5 Let the error of the intermediate layer, for a givenbe defined as:

G=0—6=0(VTz)—o(VTz) (37)

The expansion in Taylor Series @fs) for a givenx can be described as follows:

o(VIz)=o(VTz) + o' (VTz) + O(VTx) (38)
with 5
0-/(2) = g(zZ) z=Z

being the Jacobian matrix a@(V”'z) the higher order terms in the Taylor series. Defining2 o' (V7z) it is
possible to write:

g=0 (Viz)VIz + OV z) (39)

One can observe in definiton 5.5 (equation 37) that nonlinear with respect % and in equation 39 it is linear
with respect toV. The determination of the weight adjustment rule is possible due to this lineanizatio
Based on practical applications, the following considerations were mé&gle [1

Consideration 5.1 In a given compact subset B, the ideal weights of the neural network are bounded by a known
positive number, which means the¥' || < Vi, [|W|| < Wy or || Z|| < Zys, with Vg, Wi or Zyr known.
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Consideration 5.2 The reference trajectory is bounded, i. By, || < gas with g5y @ known constant scalar . The
disturbances are also bounded; < d,,.

Consideration 5.3 Let the robustness term be given by:
() = —K:(1ZlF + Zur)ec — eo (40)
with K, > Cs.
Lemma 5.1 For each instant, x(¢) in 33 is bounded by:
lz|| < qnr + collec(to)ll + callec(®)|| < e1 + callec(t)]| (41)
where the variables; are positive and feasible.
Lemma 5.2 The disturbance considered in the model is bounded by:

16| < Co + C1llZ||F + CallZ] Fllecll (42)

The proofs of the lemma 5.1 and 5.2 will not be demonstrate in this paper ate:dannd in [34].
5.1 Stability of the Neural Controller by Lyapunov Theory

This section covers the mathematical proof of the stability of the proposdtbtienfor the dynamics of mobile
robots, which is based on neural networks technigue.
Let V; be a function candidate to be the Lyapunov function, given by:

Vo=Vi+Vs (43)
wherel; corresponds to the function from kinematics control loop and we assutne tha
Vi>0 e <0 vt >0 (44)

The functionV; refers to the neural network controller, given by:

1 — ~ ~ ~ ~
Vo= (el Me.| + tr{WIF "W} + tr{VIG~'V} (45)

The first time derivative ot/ is expressed by:
Vo = I Mé, + eI Me. + tr{WITF'WT} 1 t7{VTG~1VT} (46)

Substituting equation 35 in 46 and considering the approximation of the funttignby the neural network we
obtain:

Vo = elMé.+el'[— (Ki+ Ve + Wa(Va) - Wio(Va) +e+1y+7] +
—i—%efﬁec + tr{WTF_le} + tr{VTG_l\L/'T} 47)
Vo = —elKuyeo+ %(ﬁ —2V)e.+ el [WTo — WT5 + WT6 - WTG et 7y+9] +
+r{WIFWT} 4 (VTGV} (48)
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Applying the skew-simetry property and after some algebrical manipulaiidagossible to write:

Vo = —elKueo+ el [WHe+ Wi+ W6 +etry+q] +
+r{WTF "W} 4 tr{V'G"'VT}
Replacing 39 in equation 49 we have:
Vo = eCT{WT (6 Ve +0(Vz)] + WI[6'Va + O(Va)] + W6 + e+ 15+ 7} +

—el'Kye. + tr{WTF_IWT} + tr{\?TG_l\LIT}
Using the lemma 5.1 and 5.2 we can rewrite equation 50 as:

Vo = —elKye.+el(6+7)+el [VNVT&,V:U + WPV + WTEI]

+r{WIF W} + 1 {VIG-1VT}

Let the disturbance termbe given by:

5(t) = WIs'VIe + WIO() + e+ 74

and we have equation 50 as follows:

Vo = —eKyeo+el(0+7) + tr{WI(E'W + 5T — 5 VT xel)}
+tr{VT(G™'V + 2zl WT5')}

(49)

(50)

(51)

(52)

(53)

Based on definiton 5.4, we have tﬁgz't = —W and\Lf = —\7. Thus the equation above is rewritten below:

Vy = —eZK4eC + ecT((S + ) + Ellec|| [tr{WT(W — VV)} + tr{\NfT(V — \7)}}
Vo = —elKuec+el(6+7)+klle||[tr{Z"(Z — Z)}]
Considering:
tr{Z"(Z - 2)}] = (Z,Z)r - ||Z|}
< |1Z|rlZlF — 2]

equation 54 becomes:

Vo < —ed Kaee +eq (0+7) + kllecl (12 F 1Z11F — |1 ZIIF)

Now, using consideration 5.3, we have:

Vo < —ecKaee+[lecl|][d] — egec+
~kllecll|ZI(I1ZI| = Zar) = K=(I1Z] + Zar) llecl®

and with lemma 5.2:

Voo < —llecll[Kalleell + k(1ZIP = 1211 Z3) — Co — C1IZ]] - eTe.

Let the auxiliar constant’; be given by:

(54)

(55)

(56)

(57)

(58)

(59)
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Manipulating the terms in the brackets in equation 58, substituting 59 and ssprapgeting we obtain:
Vo < = llecl[Kallecl + k(IZ - C5)* = kCF = Co| - eTe. (60)

For the functionV, be negative, we must guarantee that

ksC3 + Cy
Ky

. C
1Z]| > Cs +4/C3 + = (62)

el > (61)

or

lecll

lec(®)]

IZ|F

Figure 6: Region of stability to the neural network based controller.

Bearing in mind the Lyapunov theory and LaSalle theorem we showj¢héand||Z|| are uniformly locally stable
(according to the figure 6).

It is possible to observe that inside the region delimited by equations 61 atite@2nctionV5 isn't negative
semi-definite. HowevelK, can be such a suitable value for the tracking velocity error be as smalsaedie

6 Simulation Results

The results presented in this section were obtained by simulation and in seastierpiesent the experimental
results.

The gains to the sliding mode kinematic controller are 2.0, £ = 20.0 andVp = 0.5(m/s). The initial posture
of the robot iszy = 2.0(m), yo = 3.0(m) andfy = 0.0(rd) and the reference posturezis= 2.0(m), y = 0.0(m)
andf = 0.0(rd).

Figure 7 shows the trajectory efcoordinate during the manouver and figure 8 shows,tbeordinate trajectory.
The orientation of the robot is in figure 9.
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Figure 7: Position: of the robot (solid line) and its reference position (dotted line.
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Figure 8: Pository of the robot (solid line) and its referengeposition (dotted line).
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Figure 9: Robot orientation (solid line) and reference orientation (dottedl lin

The trajectory described by the robot on the cartesian plan is shown e fifuand the velocities imposed to the
robot can be analized on figure 11.
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Robot Trajectory
3r Trajectory Reference  + o
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Figure 10: Final trajectory of the robot to the reference posture.
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Figure 11: Linear (solid line) and angular (dotted line) velocities of thetrobo

7 Experimental Results

Finally we present the experimental results regarding the application dfdmgsnode technique to the kinematic
control loop and neural networks to the dynamic control loop. The obgitito track the robot to the origin of the
system.

The initial position of the robot is;y = 1.0(m), yo = 1.0(m) andfy = 0.0(rd). The gains of the kinematic
controller arex = 2.0, £ = 10.0 andvg = 0.5(m/s). To the dynamic controller we hav€, = 50 I, k£, = 0.001,

k =0.01, F = 3.0 andG = 4.0, wherel is the identity matrix with appropriate dimensions.

In figure 12 we have the trajectory describedabgoordinate of the robot during the movement to the origin of
coordinate system. Next, in figure 13,is describeditiseordinate traejctory. The orientation of the robot during the
approximation to the origin can be visualized in figure 14.

12 T T T T T T
X Position
X Reference  +

0.8

0.6

0.4

0.2

Figure 12: Positiorx: of the robot during the convergence to the origin.
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Figure 13: Positiony of the robot during the convergence to the origin.
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Figure 14: Orientation of the robot.

The plannar trajectory executed by the robot to achieve the aiigin 0) is in figure 15. The torques provided by
the right (solid line) and left (dotted line) motors are depicted in figure 16.
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Figure 15: Final trajectory of the robot to achieve the origin of the coatdisystem.
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Figure 16: Torques provided by the right (solid line) and left (dotted Imejors.
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