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Abstract – The main goal of this paper is to propose procedures for modelling and control of nonlinear systems by using 
neuro-fuzzy topologies.  For the modelling of a nonlinear system, its input space is initially divided into a number of fuzzy 
operating regions, within which reduced order models represent the system’s behaviour. The complete system modelling – the 
global model – is obtained through the conjunction of the local models by using a neuro-fuzzy network. A neuro-fuzzy 
adaptive network, based on a hybrid learning algorithm (self-organised learning and supervised learning) and called 
FALCON-H, is used in the control of a nonlinear plant modelled as described above. 
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1. INTRODUCTION 
Supervision and control of advanced processes frequently require high accuracy in their modelling and 
representation. Several industrial processes exhibit nonlinear dynamics, which introduces additional 
complexity in modelling procedures. Neural networks can approximate a wide range of nonlinear 
functions and have been successfully used in the modelling of nonlinear dynamic systems. However, 
results may be difficult to interpret, since a neural network performs as a "black box". Fuzzy logic has 
been widely used in control, but definition of appropriate rules and of membership functions is hardly a 
straightforward task [1].  
 

Neural networks extract information from historical data of the systems to be modelled or controlled, 
while fuzzy inference systems often make use of linguistic information obtained from specialists. They 
can be combined in order to take advantage of their individual characteristics, giving origin to neuro-
fuzzy systems. These systems have the learning and optimisation abilities of neural networks, as well as 
the capability of incorporating knowledge – structured as if-then rules – of fuzzy systems. On the neural 
network side the system becomes more transparent, whereas on the fuzzy logic side a learning capability 
[2] is introduced.  
 

Based on approaches for modelling [3] and control [4] of nonlinear plants, this work presents a neuro-
fuzzy procedure for both modelling and control of a nonlinear dynamic plant. It is shown through an 
application that combined neuro-fuzzy modelling and control can produce good results. 
 
2. NEURO-FUZZY MODELLING OF THE PLANT  
In practice many nonlinear processes are approximated by reduced order models, in general linear ones. 
However, these models may be valid only within certain operating ranges. When operating conditions 
change, a different model or changes in the parameters may be required. An alternative approach 
considers several operating regions and the use of local, reduced order models for approximation in each 
of the regions. These local models may be of ARMAX  (auto-regressive, moving average with exogenous 
input) form. 
 

The definition of operating conditions is often inherently vague. In general it is difficult to define 
precisely the operating regions and there may be overlappings between them. Fuzzy sets provide 
appropriate means for the definition of such regions. Takagi and Sugeno [5] have proposed an approach 
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where the input space is divided into various fuzzy regions and a local linear model is used in each of 
them; the overall output is obtained through a defuzzification procedure. 
 

In this work a neuro-fuzzy network is used for computing the local linear models within an integrated 
system that represents the whole, nonlinear, system [3]. This network combines the neural network's 
capability of learning through examples with the fuzzy system's ability to deal with imprecise 
information. The fuzzy model structure is mapped onto a neural network, whose structure is determined 
by the fuzzy rules. Previous knowledge of the process is used for the initial definition of operating 
regions, as well as for weight initialisation. Input and output data are then used for training the neuro-
fuzzy network. 
 
2.1 Fuzzy modelling of nonlinear processes 
The global operation of a nonlinear process is divided into several local regions. In each region Ri a 
linear, reduced order model in ARMAX form represents the process behaviour. This is not a restrictive 
condition; any other appropriate linear model may be used. In this work, for example, the MA part 
(random variable) is not considered Fuzzy sets are used for defining operating conditions, so that the 
dynamic model of a nonlinear process can be described by [3]: 

Ri : IF operating condition i THEN   nr,ijtubjtyaty
ni

j

no

j

....,,21)()()(
1

ij
1

ij
p
i =−+−= ∑∑

==

where y:  process output 
 u: process input 
 nr: number of fuzzy operating regions 
 ni: time lag in the input 
 no: time lag in the output  

t: discrete time 
aij, bij: model parameters 

p
iy : prediction of process output in the i-th operating region 

The model output yp is obtained through defuzzification where μi is the membership function for the i-th 
region/model: 
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Assume that x and y are the process variables used for defining operating regions and that they are 

assigned fuzzy sets low, medium and high. The i-th operating region can be defined, for example, as x is 
high AND y is medium. The membership function for this region can be built in various ways. Two 
possible approaches are: 

 
))(),((min mhi yx μμμ =        (2)

)()( mhi yx μμμ =              (3)
 

In equations (2) and (3), μi is the membership function of the i-th region, μh(x) and μm(y) are the 
membership functions of x being high and for y being medium, respectively. 
 
2.2  Representation of fuzzy models as neural networks 
The fuzzy model described above can be represented by a special type of network topology shown in 
Figure 1 [3], where connections between neurons are hypothetical; they serve only as an illustration. The 
network consists of four layers, each of them representing one feature of a fuzzy inference system: 
fuzzification, rules, functions and defuzzification.  
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Figure 1:  Neuro-fuzzy network  

 
Inputs to the fuzzification layer are process variables used for defining fuzzy operating regions. Each 

neuron in this layer corresponds to a particular fuzzy set with the membership function being given by the 
neuron output. Three types of activation functions are used: sigmoidal, gaussian and complement 
sigmoidal.  
 

Each neuron in the rules layer corresponds to an operating region of the process being modelled. Its 
inputs are the fuzzy actions, which determine the corresponding operating region. Its output is the 
membership function of the corresponding fuzzy operating region. Neurons in this layer implement the 
fuzzy intersection defined by equation (3). Previous knowledge of the number of operating regions and of 
how these are established is used for building the rules layer. There are no weights to be adjusted in this 
layer. 
 

Neurons in the functions layer are linear and implement the reduced order models in the fuzzy 
operating regions. Each neuron corresponds to a particular region and its output is the sum of its inputs, 
which are process variables multiplied by their respective weights. A bias is included in each neuron to 
allow for situations in which there is a constant term in the local model. The weights are the parameters 
of the linear models in the operating regions.  
 

The final output is computed in the defuzzification layer. The inputs to the defuzzification neuron are 
the membership functions of the fuzzy operating regions and the local models outputs in these regions. 
The activation function is given by equation (1) and there are no weights in this layer. 

 
2.3  Training of the neuro-fuzzy network 
The neuro-fuzzy network can be trained through various methods; in this work backpropagation is used. 
The network weights, given by equations (4) and (5) below, are adjusted by an algorithm that minimises 
the sum of squared errors, in accordance with equation (6). 
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In equations (4) and (5) ω(k) e Δω(k) are the weight and weight adaptation at step k, respectively; α is the 
momentum coefficient, η is the learning rate and δ is the gradient of the sum of squared error with respect 
to the weight ω. In equation (6) N is the number of data points, yp is the network prediction and y is the 
target value. As with other gradient-based methods, training ends when the error falls below a pre-
specified value.  
 
3. THE FALCON-H CONTROLLER  
The FALCON-H neuro-fuzzy controller (Fuzzy Adaptive Learning CONtrol network) has been proposed 
by Lin and Lee  to study Hybrid learning paradigms, which involve structure and parameters learning 
capability [4]. The FALCON-H controller is a feedforward multi-layer network that implements all basic 
modules of a fuzzy controller in a connectionist structure by using the learning ability of artificial neural 
networks.  
 

In this connectionist structure, input and output nodes represent state variables and the output control 
variable respectively. Nodes in the hidden layers represent functional nodes, such as membership 
functions and fuzzy rules. 

 
3.1 FALCON-H structure 
The FALCON-H structure, depicted in Figure 2 [4], has a total of five layers. Each layer in the 
feedforward topology can be associated with a module of a fuzzy control system. The input nodes in layer 
1 are related to linguistic variables. In this work, these variables are associated with error and change in 
error. Layer 2 consists of the linguistic terms of each input variable and is associated with the 
fuzzification module of a fuzzy control system. Layers 3 and 4 on their turn are related to the antecedents 
and consequents of the fuzzy rules, computing  the T-norm (AND connective) and the linguistic terms of 
the output variable respectively. Finally, the defuzzification process is performed in layer 5, generating 
the final output variables.  However, during the training process, layer 5 can work in both directions, as 
will be explained in the next sections. 
 

To formally describe the functionality of each layer, let’s assume that an integration function is 
associated to the inputs to each node. This function provides the net input, as described in equation (7): 
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where ui are the inputs to node i, ωi are the associated link weights and the superscript k indicates the 
layer number.  
The output of  node i (oi) is calculated by the activation function a:  
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Figure 2: FALCON-H structure  
 

3.1.1 FALCON-H layers 
This section describes the functionality of nodes in each of the five layers of FALCON-H.  
Layer 1 ⇒  Input linguistic variables: directly transmit the input values to layer 2.  

 
(9) and a = f (1)

iuf =

The link weights of each node in layer 1 are equal to 1 ( ). 1)1(
i =ω

Layer 2 ⇒ Fuzzification layer: each node represents a membership function of an input variable. The 
membership function is usually represented by a bell-shaped function (gaussian): 
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ƒwhere a = e
mij = centre (mean) of the bell-shaped function of the jth linguistic term of the ith input variable [4] 

ijσ = width (variance) of the bell-shaped function of the jth linguistic term of the ith input variable 
[4] 

The weight of each link between layer 1 and 2 can be interpreted as m)2(
ijω ij.     

Layer 3 ⇒  Rule nodes: the links in this layer represents the rules antecedent, that is, the AND fuzzy 
operation:  
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Layer 4  ⇒ Membership functions of the output variables. In this specific layer, the nodes operate in two 
different modes: 
• Down-up Mode: The nodes perform the fuzzy OR operation to integrate fired rules with the same 

consequent [4]: 
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• Up-down Mode: the nodes in this mode work exactly the same as those in layer 2, with only one 
single membership function for output variable. 

 
Layer  5 ⇒  Output Variables – this layer has two different types of nodes: 
• Up-down Nodes: used to train the network structure, in the phase 1 of the learning process: 

(13) and a =ƒ iyf =

• Down-up Nodes:  Defuzzifier nodes – when the centre of area is used, equation (14) is applied: 
∑∑ == (5)
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3.2  Hybrid Learning Algorithm 
The FALCON-H training process is performed in two distinct phases: an unsupervised algorithm for 
structure learning; and a supervised algorithm (Back Propagation) for parameter tuning. This hybrid 
learning algorithm gives better results than a purely supervised (back-propagation) one because of the a 
priori classification of training data through an overlapping receptive field before executing the 
supervised learning phase [4]. The unsupervised learning phase is used to learn the rules structure and the 
initial format of the membership functions. The second phase, based on supervised learning, is executed 
to tune the inputs and outputs membership functions. 
 
3.2.1 Unsupervised Learning 
In this initial phase, the network operates in a two-sided form, that is, the nodes and links in layer 4 are in 
the up-down transmission mode. In this configuration, the input and output training data can be feed into 
the FALCON-H controller from both sides. 
 

First, the mean and width of each membership function is determined by a self-organising algorithm, 
similarly to statistical clustering techniques. This is used to specify the domain of all membership 
functions, covering only those regions of the input-output space where data are present [4]. The Kohonen 
algorithm is applied in this case to establish the mean mi of the ith membership function of x, where x 
represents any input  (x ,..., x ) or output (y ,.., y1 n 1 m) variable: 
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where α(t) is a monotonically decreasing learning rate. 
 

Once the centres of the membership functions have been determined, their widths can be computed 
through the N-nearest-neighbour algorithm. Since the second phase will optimally adjust the parameters 
of the membership functions, this calculation can be simplified by the use of the following equation:  

 
 (18)rmm closestii −=σ

where an initial value for the intersection parameter  r is set by the user. 
 

Once the initial membership functions formats have been established, the process of rule creation 
begins. The basic idea is to determine the correct consequent link of each rule node (layer 4). Again a 
competitive learning process is used; more details can be found in [4]. After that, a rule combination is 
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used to reduce the number of rules. The criteria for combining a set of rule nodes are: those that have 
exactly the same consequents; some antecendents are common to all rule nodes; and the union of other 
antecedents encompasses the whole linguistic terms of some input variables. 

 
3.2.2  Supervised Learning  
In the second phase of the hybrid learning algorithm, after the whole network structure has been 
established, the neuro-fuzzy structure processes data in a feedforward mode – nodes and links in layers 4 
and 5 are in the down-up transmission mode. The gradient descent algorithm is used (Back Propagation) 
to adjust the parameters of the input and output membership functions. The complete computation of the 
derivatives for determination of the learning rule for each layer can be found in [4]. 
 
4. CASE STUDY  
The proposed neuro-fuzzy system (for modelling and control) has been applied to a dynamic nonlinear 
process which relates the percentage of carbonic gas (%CO ) to gas flow rate (feet3

2 /min) in a specific 
plant [6], as shown in Figure 3.  
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Figure 3: Relation between  %CO  and the gas flow rate. 2
 
4.1 Neuro-fuzzy modelling 
The first neuro-fuzzy model was developed to model the relation between %CO and the2  gas flow rate. 
The process was divided into three operating regions:  low %CO , medium %CO   and large %CO2 2 2. Two 
hundred points were used for training and another 200 points for testing the neuro-fuzzy model. The 
training parameters used in the learning process were: learning rate (η)  = 0.1, momentum (α) = 0.2; and 
maximum gradient error = 10-3. The following fuzzy model was obtained: 

R1:  If   %CO   is  low:  )1(0170.0)1(9996.0)( −−−= tutyty2

R2:  If   %CO is medium:    )1(1813.0)1(0015.1)( −−−= tutyty2  

R3:  If  %CO   is high:   )1(0143.0)1(001.1)( −−−= tutyty2

 
The performance of the neuro-fuzzy plant for the testing data set is illustrated in Figure 4. The Mean 

Absolute Percentage Error (MAPE = 1.33%) was used as a  performance measure.  
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Figure 4:  Performance of the neuro-fuzzy plant. 

 
4.2  Neuro-fuzzy control of the plant 
The FALCON-H neuro-fuzzy controller was used to control the neuro-fuzzy plant in a direct fashion, 
giving origin to the result depicted in Figure 5. The setpoint is a step varying from 60% CO  to 50% CO2 2. 
The final FALCON-H structure is the following:  

Layer 1: two input nodes ⎯ error (e) and change in error (Δe);  
Layer 2: seven nodes with gaussian membership functions for each input variable from layer 1;  
Layer 3:  49 rule nodes (AND);  
Layer 4:  seven nodes with gaussian membership functions;  
Layer 5:  one output node (control action).  

 
In order to generate the control action (manipulated input) for training, a procedure suggested in [3] 

has been employed. In this procedure, given the setpoint and a desirable output behaviour , a quadratic 
objective function is minimised, giving the manipulated input as a result. As in the neuro-fuzzy plant, 200 
points were used for training and testing, with learning rate η=0.15, intersection parameter r = 2 and 
gradient error = 10-2.  
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Figure 5: Performance of the FALCON Neuro-Fuzzy controller  
 
5. CONCLUSION 
This paper presented a new approach that combines neuro-fuzzy structures for both modelling and control 
of nonlinear systems. The neuro-fuzzy approach combines the advantages of fuzzy inference systems and 
artificial neural networks, integrating interpretability and learning capabilities. In addition, neuro-fuzzy 
systems create the fuzzy rule base automatically, eliminating the difficulty of having an expert to express 
the rule base. 
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The results obtained demonstrate that the neuro-fuzzy approach is effective for both modelling and 

controlling the nonlinear dynamic process and that the combined approach can be a good alternative 
when a mathematical model of the plant is not available.  
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