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Abstract – Automated early recognition of enemy radar emissions are essential for the survival of a warship. Radar signals
intercepted by a passive digital Electronic Support Measure (ESM) receiver can be classified based on the type of intrapulse
modulation. The modulation classification is typically based on features extracted from the preprocessed radar’s signal. Low
Probability of Intercept (LPI) radars can use phase or frequency modulated signals to make radar emissions difficult for the
enemy to detect. This paper proposes the use of a new feature, the symmetry measured in a Time-Frequency (TF) matrix, to
improve intrapulse radar modulation classification. The analysis of the symmetry in a STFT matrix is characterized by an image
processing problem, where the matrix is interpreted as a grayscale image. This paper also proposes the use of Weightless Neural
Network WiSARD in identifying symmetry patterns in the Short Time Fourier Transform (STFT) matrix, a characteristic present
in signals with Barker and Polytime phase modulations and which can be used by classifiers to discriminate them from signals
with other types of modulations such as polyphase modulations (P1, P2, P3, P4 and Frank), linear frequency modulation (LFM),
and Non Linear Frequency Modulation.
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1. INTRODUCTION

When it comes to radar signal classification in ESM equipment, real-time processing is highly crucial to minimize response
time and achieve adequate crew reaction time against a threat. This is crucial for the survival of the platform where ESM receiver
is installed. The ESM system needs to quickly identify specific modulations of radar emitters, such as LPI intrapulse phase
modulation and frequency modulation, communicating to the defense system a nearby and likely threat.

The WiSARD is a computing tool that was initially designed to classify images [1]. It is a weightless neural network
composed of some discriminators that decides the class of an input data doing only one arithmetic operation, the sum, and
comparing the sum results. It has a very fast training [2–4], which is a very important feature that usually causes WiSARD to be
chosen even if other classifieres have a closer but better accuracy. The fast test time is another important feature [5], because the
memory access and the sum operation can be done in a short period of time. This feature makes it possible to use the WiSARD
network for real-time applications, such as in ESM equipments. The WiSARD can easily be implemented in a GPU [6] and in a
FPGA [7].

There are many papers about classification of radar signal modulation in literature. It is a widely studied problem, with many
proposed solutions. The use of a Time-Frequency transform to detect a signal and estimate features used in training a classifier is
explored in several works. Many authors apply a TF transform [8–14] to phase-modulated signals or a similar transform [15–17]
to analyze them from a different perspective. It’s noticeable that the results obtained from transforms applied to signals of each
modulation type can highlight some of their particular characteristics, making the classification problem easier to solve. Some
authors classify phase-modulated signals using the Choi-Williams Distribution (CWD) [8,9,11,12,14] or the modified CWD [13]
due to their immunity to noise, while others prefer using the STFT [10] because of its processing time. Kishore [18] proposed
increasing the Signal-to-Noise ratio (SNR) through the use of the Wigner Ville Distribution (WVD) transform, which employs
instantaneous autocorrelation function as its kernel. The reduction in noise presence occurs as it becomes uncorrelated. Some
works address classification in a spectral domain where it’s possible not only to classify signals with noise immunity but also to
more efficiently estimate other important signal characteristics like bandwidth and central frequency [15–17]. CNN [8,10,12–14],
SVM [11,16], Decision Tree [18], and SSD [9] are some examples of classifiers used to identify phase modulation type based on
the TF transform result. The Weightless Neural Network WiSARD can also be utilized for this purpose (Fig. 1). First the signal
samples are transformed by a TF transform. The result matrix is binarized using an image processing algorithm of binarization.
The new matrix of binary numbers can be used as images to train the WiSARD discriminators responsible for generating the final
classification.

This paper proposes the use of a new feature, the symmetry, estimated in the TF matrix, to improve intrapulse radar modulation
classification. This approach can be quickly extracted with a WiSARD weightless neural network [1]. We will show that the
symmetry feature increases the classification accuracy of LPI radar signals. This approach can be used by classifiers to better
separate the Barker [19] and Polytime [20] phase-modulated signals, that have TF symmetry, from other types of phase and
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frequency-modulated radar signals, such as Frank [21], P1 [22], P2 [22], P3 [23], P4 [23], and LFM [24], which do not have TF
symmetry.

Figure 1: The WiSARD neural network designed to classify radar-signal modulations.

2. CLASSIFICATION OF INTRAPULSE MODULATION

Identifying the type of intrapulse modulation (MOP) can be crucial in determining whether a radar signal poses a threat.
The classification also provides valuable information about the electromagnetic environment, helping to better understand the
presence of different types of signals, their origin and behavior. After classifying a MOP signal as hostile, the combat system can
react, keeping safe the platform where ESM receiver is installed.

Radar intrapulse modulation has a lot of applications. Tracking radars can determine more precisely the target position and
velocity through the pulse compression technique. In this way, the radar transmits phased modulated pulses where pulses’ echoes
will be processed by its matched filters to produce a pulse with lower pulse width. Using compressed pulses, a surveillance system
can detect with more accuracy the quantity of enemy aircrafts in a squadron. Navigation radars can use intrapulse compression
to improve their navigation precision when necessary. The matching filter also provides a SNR gain, so longer ranges can be
achieved with the same transmission power. LPI radars, a kind of radar that camouflages itself by reducing signal transmission
power, can use the intrapulse compression to reduce the transmission power without loosing the range of detection, although it is
more common to use a frequency modulated continuous wave instead of pulsed wave for LPI transmissions or, less commonly, a
phase modulated continuous wave [25]. Low Probability of Identification (LPID) radars, which have the characteristic of making
identification difficult, can use for this purpose the transmission of random phased modulated pulses.

The first process that occur in a ESM equipment is the detection of a radar signal, s(t), with a carrier frequency, fc, and pulse
width, T . The electromagnetic spectrum is observed by the antenna of the ESM receiver. In the front-end of the ESM receiver,
the electrical field of the spectrum is converted to an electrical signal, amplified by a low noise amplifier and downconverted to
an intermediary frequency fi. An analog to digital converter digitalizes the electrical signal and the detection process decides if
there exists an radar signal or not [26]. The detected signal can be frequency modulated, phase modulated, or not have any kind
of modulation. Furthermore, the detected radar signal is corrupted by noise according to the equation (1) [10].

s(t) = A cos(2πfct+ φ(t) + ψ) + n(t), t ∈ [TOA, TOA + T ), (1)

where A is the signal amplitude in Volts, fc is the carrier frequency, φ(t) is the intrapulse modulation function, TOA is the
time of arrival, the time that the radar signal was detected, ψ is the initial phase and n(t) is a circular complex AWGN process
representing the noise.

Basically, the ESM equipment needs to identify two types of MOP: frequency modulation (FMOP) [18, 27] and phase mod-
ulation (PMOP) [10, 11, 16, 27, 28]. Each one of these modulations can be expressed by defining the function φ(t) (Eq. (1)). A
linear frequency modulated pulsed radar signal (LFM) [18,27,28], also known as Chirp signal, linearly varies its frequency with
respect to time as expressed in Equation (2) [18].

φ(t) = παt2, t ∈ [TOA, TOA + T ), (2)

where α is the chirp rate, an important feature to be measured by the ESM receiver.
The Barker codes were introduced by Ronald Hugh Barker [19]. As a type of PMOP modulation, the signal phase changes

at various instants of time during the pulse transmission. Every phase modulated signal is implemented by dividing the signal
pulse into equal time intervals referred to as time segments. In the case of Barker-type modulation [11, 19] and other polyphase
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modulations [10, 11, 16, 21, 27, 28] like Frank, P1, P2, P3, and P4, the signal maintains constant the phase within each segment
and may change the phase between one segment and the next. On the other hand, the time segment of a polytime modulated
signal [10, 11, 16, 20, 27, 28] is not constant, so the time that the signal stays in a specific phase state is variable.

Concerning Barker-type modulation, the signal’s phase within each time segment can be 0o or 180o, representing the two
phase states generated by this modulation technique, whereas in the case polyphase-type modulation, three or more phase states
are generated. Equation (3) shows the phase values of a Barker13 modulated signal.
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The idea of the Barker code is to generate a signal that minimizes the energy of the first sidelobe of the autocorrelation
function. T1 and T2 Polytime sequences are derived using a stepped-RF underlying model [20]. T3 and T4 Polytime sequences
are approximations to a LFM underlying model [20]. The Frank [21], P1 [22] and P2 [22] polyphase codes derive from a stepwise
approximation of an LFM waveform. P3 and P4 polyphase codes are conceptually derived from a linear frequency modulation
waveform [23].

Equations (4) to (8) shows the phase value of a Frank, P1, P2, P3 and P4 modulated signal respectively. On the other hand,
equations (9) to (12) present the phase value of a T1, T2, T3 and T4 modulated signal, respectively.

φ(i(t), j(t)) =
2π

M
(i− 1)(j − 1), t ∈ [TOA, TOA + T ), A = {x ∈ N : 1 ≤ x ≤M} , i ∈ A, j ∈ A, (4)

where M is the order of the Frank code [16, 18, 21], with each phase based on the i(t) and j(t) values.

φ(i(t), j(t)) =
−π
L

[L− (2j − 1)] [L(j − 1) + (i− 1))] , t ∈ [TOA, TOA + T ), B = {x ∈ N : 1 ≤ x ≤ L} , i ∈ B, j ∈ B (5)

φ(i(t), j(t)) =
−π
2L

(2i− 1− L)(2j − 1− L), t ∈ [TOA, TOA + T ), i ∈ B, j ∈ B (6)

L in Equation (5) and Equation (6) represents the order of P1 and P2 code respectively [16, 18].

φ(i(t), j(t)) =
π

Q
(i− 1)2, t ∈ [TOA, TOA + T ), C = {x ∈ N : 1 ≤ x ≤ Q} , i ∈ C (7)

φ(i(t), j(t)) =
π

Q
(i− 1)2 − π(i− 1), t ∈ [TOA, TOA + T ), i ∈ C (8)

Q in Equation (7) and Equation (8) is the compression ratio of the P3 and P4 codes respectively [16, 18].
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In Equation (9) and Equation (10), j is the segment index, k is the number of segments and n is the number of phase
states [20].
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In Equation (11) and Equation (12), n is the number of phase states and B is the signal frequency excursion [20].
The goal of a classifier is to predict the correct class of an input data, which can be represented by a set of variables forming

the feature vector xi. In the case of modulation recognition, the classes are the signal modulation types (Eq. (2) to Eq. (12)) and
the feature vector is formed calculating features from the digitalized signal samples and from the TF transform result applied to
the same samples. In a generic sense, an input data has a single associated label yi, referred to as its class. The training of a
classifier involves seeking a function f (Eq. (13)) that accurately identifies the class of a given input test data.

f : xi → yi (13)

The supervised adjustment of function f is carried out using a training set Tr (Eq. (14)).
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Tr = (xi, yi), {i ∈ N : 1 ≤ i ≤ QT} , (14)

where each element of the training set is the pair (xi, yi), xi is the feature vector representing an input data, yi is the output
which is the associated class for the input data xi, and QT is the quantity of elements in the training set. Once the function is
defined through supervised training of the classifier, it is used to predict the class of each new input data, referred to as a test
data. The function f divides the feature space directly or indirectly into regions that are associated with classes. Predicting the
class involves determining the region to which the input data xi belongs.

3. WiSARD WEIGHTLESS NEURAL NETWORK

In the field of neural networks, one of the primary research directions is that of weightless neural networks. In these networks,
the inputs and outputs of neurons are binary numbers 0,1, and there are no weights between the neurons. The functions of each
neuron are stored in tables that can be implemented in RAM memories. The learning process of artificial neural networks
involves adjusting weights. Unlike traditional neural networks, whose learning process amounts to adjusting synaptic weights,
the analogous process for weightless models is accomplished by modifying the values stored in tables, allowing the development
of flexible algorithms with rapid learning. The fast speed of learning is due to the mutual independence among the nodes when
the input data to the network is altered, crucial for the application addressed in this paper. In artificial neural networks, changing
the value of weights while it is learning changes how the node behaves relative to the patterns already trained, which does not
occur in weightless neural networks. The use of tables enables the implementation of any function in the nodes since any binary
value can be stored in response to a set of input bits during training.

The weightless neural network WiSARD was created by Wilkes, Stonham, and Aleksander in 1984 [1]. WiSARD is a neural
network applicable to classification, regression, pattern detection, and other problems. [29] introduced KernelCanvas, a method
generating fixed-size binary codes derived from spatiotemporal patterns, suitable for WiSARD networks. The combined ap-
proach of KernelCanvas with WiSARD classifier was compared against various established classifiers across four classification
tasks: human movements, handwritten characters, speaker recognition, and speech recognition. In these comparisons, WiSARD
occasionally yielded inferior results only to the considerably slower K-Nearest Neighbors approach. Moreover, WiSARD demon-
strated strong classification performance in diverse applications such as early epileptic seizure detection [2], astronomical object
classification in the Galaxy M81 [30], identification of biases in news articles [3], detection of road pavement defects [31], social
network text categorization [5], preclinical marker classification in Alzheimer’s disease [32], facial expression recognition [33],
and maritime vessel tracking [6].

Massimo [4] extensively tested WiSARD across numerous problem domains and compared its performance with state-of-
the-art classifiers, consistently concluding that WiSARD exhibits similar performance to the best ones. Furthermore, WiSARD
demonstrates suitability for rapid implementation in Field Programmable Gate Arrays (FPGA) [7] and Graphics Processing Units
(GPU) [6].

The WiSARD neural network comprises a set of fundamental components known as discriminators. Each discriminator is
responsible for recognizing distinct classes of patterns. These discriminators consist of nodes that store 1-bit words 0,1 and can
be implemented using Random Access Memory. The output of each discriminator is the sum of its nodes’ outputs (Fig. 2).
Therefore, in a classification problem, when an input is given to the WiSARD network, the discriminator that yields the highest
sum determines the class of the input data.

The training of the network, in the classification problem, is conducted on a per-discriminator basis. In the context of
recognizing intrapulse modulation of radar signals, one of the classes to be identified might represent phase-modulated pulsed
signals by Barker sequences. In this scenario, one of the discriminators is trained exclusively with signals from this particular
class. The same is done with the other classes. Initially, before start the training, all addresses of all nodes within the network
are set to store the value 0. During the training phase, a binary image (Fig. 2), derived from the binarization of the response
of a Barker pulse to the Short-Time Fourier Transform (STFT), is fed into the discriminator representing the Barker class. This
is repeated until the last Barker test signal. Each address of the RAM memories of this discriminator that is accessed, is set to
store the value 1 [6]. Consequently, during the network’s testing phase, whenever an image resulting from the binarization of the
STFT-applied Barker pulse is presented, it is more likely that a greater number of nodes within the discriminator representing the
Barker class will return the value 1, while nodes within discriminators representing other classes will likely return 0. Following
the summation across each discriminator, it is more probable that the highest response (the sum of its nodes) will originate from
the discriminator representing the Barker class. Therefore, the WiSARD network will decide in favor of the Barker class.

The number of points in the image connected to each node within a discriminator is identical and chosen randomly (Fig.
2). The random connections of all nodes to the image within a discriminator are termed as the input mapping. Once the input
mapping is set, it remains unchanged throughout both the training and classification/test phases.

4. PROPOSED SYMMETRY ESTIMATION

One of the most important tasks in a ESM equipment is to estimate what is the radar signal modulation type. Some kinds
of frequency and phase modulations can be identified by the time-frequency analysis. Figure 3 shows the STFT of some radar
signals modulated in phase and frequency. It is easy to see that each type of intrapulse modulation produces a different STFT
matrix, which can be interpreted as an image, making the classification of the modulation type basically a visual computing
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Figure 2: WiSARD neural network .

problem. Tracing an horizontal line in the middle of the images, it becomes clear that the only image that has a certain symmetry
in relation to the line due to spectral spread is the Barker 13 phase modulated signal image. In other words, if the symmetry of
each image is computed, the Barker 13 image will produce a higher value.

Figure 3: STFT of some radar signals modulated in phase and frequency. The horizontal axis is the time. The vertical axis is the
frequency. The red color represents bigger values. Lower values are represented by the blue color.

Figure 4 shows how the symmetry estimation can be done using the WiSARD. After applying the STFT to the input signal,
the binarization/coding process starts. The aim of this process block is to transform the STFT result matrix into a binary matrix.
The binary matrix is divided equally in two rectangles. The upper rectangle has the bits used to train one discriminator of the
WiSARD, the other one has the bits to estimate the image symmetry. Our proposal is to use an input mapping for the symmetry
estimation mirrored to the training input mapping (Fig. 5). If the image is symmetrical in relation to the horizontal line, this
proposed WiSARD configuration will return a high response, otherwise the return will be a low value.

The biggest challenge of the symmetry estimation is to calculate it accurately even in presence of noise. Figure 6 shows how
the STFT response is affected by a low SNR. If the noise power is relevant in relation to the signal power (Fig. 6, right), the
measurement tends to be inaccurate because the highest STFT values, which are the most relevant and which should be the values
referring to the signal, now refer to the signal and noise. That is one of the reasons why to use a Machine Learning computational
tool to estimate the symmetry. The symmetry could be simply measured by the inverse of the template matching calculus such
as the Normalized Sum of Absolute Differences (NSAD) [34], the Normalized Cross Correlation [35] and the Normalized Sum
of Squared Differences [36]. But the simulations showed that these measurements can fail when the SNR is low (section 5). In
addition to enabling very fast training, the WiSARD can be generalized at the node level using GRAM nodes [37] to increase
resilience to the presence of noise. The symmetry estimation in STFT images to improve Barker signals classification, the use
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of the WiSARD to estimate the symmetry and the use of GRAM to increase the resilience to the noise were the contributions of
this paper.

Figure 4: Use of the WiSARD neural network to estimate the symmetry.

5. SIMULATIONS AND RESULTS

The objective of this paper is to demonstrate that classifiers can enhance the accuracy of modulated signal classification by
incorporating estimated symmetry in the time-frequency plane into the feature vector xi. In order to achieve the objectives,
simulations were conducted using MATLAB version 2023a.

The analyzed signals include radar pulses simulated with intrapulse modulations such as Linear Frequency Modulation
(LFM), Barker13, polyphase modulations (Frank, P1, P2, P3, and P4), and polytime modulations (T1, T2, T3, and T4). Fourteen
different Signal-to-Noise ratio (SNR) values were considered for the signals (in dB): [-25, -20, -17.5, -15, -12.5, -10, -7.5, -5,
-2.5, 0, 2.5, 5, 10, 15]. A total of 140 signals of each modulation type were used. The considered noise was Additive White
Gaussian Noise. The pulse width (PW) of the signals were 10µs.

The objective of the first three simulations is to demonstrate that the symmetry estimated from the resulting matrix of the
STFT applied to a modulated signal can be used to effectively distinguish between two sets of classes (Fig. 7, Fig. 8 and Fig.
9). The first set is composed of signals characterized by low symmetry: LFM signals and polyphase signals (Frank, P1, P2, P3,
and P4). The second set is composed of signals which exhibit high symmetry: polytime signals (T1, T2, T3 and T4) and Barker
signals. The best surface of separation of these two classes is represented by a red line at Figures 7 to 9. The red line position is the
symmetry threshold that minimizes the quantity of incorrect classifications. A different threshold was calculated for each of the
following methods of symmetry estimation. Three approaches to template matching, previously unused for estimating symmetry
in the time-frequency domain, were compared against the WiSARD proposed method: NCC [35](Eq. (15)), NSAD [34] (Eq.
(16)) and NSSD [36](Eq. (17)). The NSAD and NSSD are measures of differences. The greater the similarity between templates,
the lower the measured values. For this reason, a negative sign was introduced to estimate the similarity: -NSAD and -NSSD.
The results of these simulations are analyzed using a box plot. At Figures 7 and 8, each column represent the symmetry of one
specific modulation type.

The NCC, NSAD and NSSD symmetry is estimated as follows. First the STFT is applied to the signal. A bounding box of the
region were the signal is present segments the points of interest in the time-frequency plane. A horizontal line passing through
the center of the bounding box divides the segmented region into two rectangles, defining the two templates (Fig. 4 and Fig. 5).
If the response to the STFT exhibits symmetry, the horizontal line acts as a mirror, meaning that the template below the line is a
reflected image of the template above the line. So these three template matching algorithms are measured using two templates,
one is the image above the horizontal line and the other is the image under the horizontal line rotated by 180o.

NCC =
∑

x,y∈T1∧x,y′∈T2

T1(x, y)T2(x, y
′)√∑

(T1(x, y))2
√∑

(T2(x, y′))2
, (15)

where T1 is the template 1, T2 is the template 2, x is the column of a point in T1, y is the row of a point in T1, y′ is the row of a
point in T2, (x, y) and (x, y′) are points equidistant from the horizontal line (Fig. 5).

NSAD =
∑

x,y∈T1∧x,y′∈T2

|T1(x, y)− T2(x, y
′)|

MAX (T1(x, y) ∧ T2(x, y′))
, (16)
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Figure 5: Input mapping of the training discriminators is mirrored to the test discriminator’s input mapping. This way the
symmetry can be estimated.

Figure 6: STFT response of a radar signal with Barker signal modulation. On the left there is a signal with SNR = 15dB. On the
right there is a signal with SNR = -15dB.
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where MAX is the maximum operator.

NSSD =
∑

x,y∈T1∧x,y′∈T2

(T1(x, y)− T2(x, y
′))

2

MAX (T1(x, y) ∧ T2(x, y′))
(17)

The first simulation was conducted to demonstrate that the symmetry measure can effectively distinguish between the two
sets of signals modulated with 0dB ≤ SNR ≤ 15dB without errors, regardless of the method used to measure symmetry (Fig.
7).

Figure 7: Symmetry estimated using NCC, NSAD, NSSD, and WiSARD for signals modulated with 0dB ≤ SNR ≤ 15dB.

The second simulation was conducted to demonstrate that depending on how the symmetry measure is performed, it influences
the ability to distinguish between the two sets of modulated signals when signals with low SNR are tested (Fig. 8). In this
simulation, signals with −20dB ≤ SNR ≤ −10dB were used.

Using the accuracy as a form of comparison, the proposed method was the most efficient, producing only 10 incorrect clas-
sifications, followed by NCC which produced 20. The NSSD and NSAD methods produced 72 and 111 incorrect classifications
respectively. The NSAD on this simulation was the worst estimation method. By using the red line for visual comparison as a
separation boundary between the two classes (Fig. 8), the symmetry estimation obtained with NSAD incorrectly classifies most
of the T3 modulated signals as belonging to the class of signals without symmetry. In the case of the estimate obtained with
NSSD, the separation line between the classes touches the interquartile range of the T3 modulated signals box. The symmetry
estimated by the WiSARD network and NCC does not intersect the interquartile range of any of the modulated signal types
boxes.

The third simulation has the same objective as the second: to compare the performance of symmetry estimates when the SNR
is low (Fig. 9). In this simulation, signals with the lowest SNR were analyzed: −25dB ≤ SNR ≤ −20dB.

Using the accuracy as a form of comparison, the proposed method was the most efficient, producing only 29 incorrect
classifications, followed by NCC which produced 37. The NSSD and NSAD methods produced 65 and 89 incorrect classifications
respectively. The NSAD on this simulation was the worst estimation method. The symmetry estimation obtained with NSSD and
NSAD incorrectly classifies most of T3 modulated signals as belonging to the class of signals without symmetry. The symmetry
obtained with NCC is slightly worse than the WiSARD one.

The fourth simulation was conducted to test whether the estimation of symmetry in the time-frequency plane improves the
performance of a classifier. For this test, the classifier proposed by Ming [38] was chosen because it is a simple and easily
implementable classifier. The classifier consists of two Elman recursive neural networks. The first network separates the input
signals into four classes: LFM, Costas, Binary Phase, Polyphase. The second network is responsible for classifying the Polyphase
signals into P1, P2, P3, P4, and Frank.
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Figure 8: Symmetry estimated using NCC, NSAD, NSSD, and WiSARD for signals modulated with −20dB ≤ SNR ≤ −10dB.

Figure 9: Symmetry estimated using NCC, NSAD, NSSD, and WiSARD for signals modulated with −25dB ≤ SNR ≤ −20dB.
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Only the first network of Ming’s proposed classifier was used in this simulation. Radar signals from four classes LFM, Pulsed,
Barker, and POLY (Polyphase P1, P2, P3, P4, and Frank + Polytime T1, T2, T3, and T4) were used, which the first network
should classify. Barker and Polytime classes have high symmetry in the time-frequency plane, while the other classes do not
have high symmetry. The first network uses 11 features for classification, some extracted in the time-frequency plane and others
extracted in the time domain [38]: Moment M10, Moment M20, Cumulant C20, PSD maximum 1, PSD maximum 2, Standard
deviation of instantaneous phase, Standard deviation of instantaneous frequency, Number of objects (10%), Number of objects
(50%), CWD time peak location, Standard deviation of object width. The pulse width of the signals is 10 microseconds, and the
tested SNRs were: 15dB, 10dB, 5dB, 2.5dB, 0dB, -2.5dB, -5dB, -7.5dB, -10dB, -12.5dB, -15dB, -17.5dB, -20dB, -25dB.

Figure 10: Confusion Matrix obtained from the classification without using symmetry estimation.

Figure 11: Confusion Matrix obtained from the classification using the symmetry estimated by the WiSARD neural network.

The confusion matrix is a matrix in which the values represent quantities of classifications generated. The rows represent
the true classes and the columns represent the classes obtained by the classifier under test. For example, if a class 1 signal is
classified as a class 3 signal, 1 is added to the value in line 1 and column 3. The larger the values on the diagonal, the greater the
classification accuracy. The accuracy rate of signals from each class, represented with a blue color column, increases with the
inclusion of the twentieth feature, the symmetry estimation, especially for signals from the Barker class (Fig. 10 and Fig. 11).

The fifth simulation aims to observe that the lower the SNR, the greater the influence of symmetry estimation on the classifier’s
performance.

By using signals with SNR ≤ -10dB, the accuracy rate increased for all classes, specially the Barker class, that increased
from 58% (Fig. 12) to 76% (Fig. 13) with the use of symmetry estimated by the WiSARD network. This increase (from 58%
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Figure 12: Confusion Matrix obtained from the classification without using symmetry estimation. Only signals with SNR ≤
−10dB were considered.

Figure 13: Confusion Matrix obtained from the classification using symmetry estimated by the WiSARD neural network. Only
signals with SNR ≤ −10dB were considered.
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to 76%) was greater than the increase observed with signals at all simulated SNRs (from 78.6% to 86.4%), indicating that the
performance improvement is more significant when the SNR is lower.

Figure 14: Confusion Matrix obtained from the classification without utilizing symmetry estimation. Only signals with SNR =
−20dBand− 25dB were considered.

Figure 15: Confusion Matrix obtained from the classification using symmetry estimation by the WiSARD neural network. Only
signals with SNR = −20dBand− 25dB were considered.

By using signals with SNR = -20dB and -25dB, the accuracy rate of the Barker class, that increased from 15% (Fig. 14)
to 45% (Fig. 15) with the use of symmetry estimated by the WiSARD network. This increase (from 15% to 45%) was even
greater than the increase observed with signals at SNR ≤ -10dB (from 58% to 76%), reinforcing the conclusion that performance
improvement is more significant when the SNR is lower.

6. CONCLUSION

The WiSARD neural network is an excellent tool for pattern recognition. It is a simple and fast network. Keeping these
characteristics in mind, one of the proposals of this article was to use the WiSARD neural network as a tool to estimate the
symmetry present in a phase or frequency-modulated radar signal in the time-frequency plane. The simulations 1 to 3, conducted
in section 5, with the aid of the box plot tool, demonstrated that the symmetry estimated by the WiSARD network was more
accurate than those estimated using the NCC, NSAD and NSSD measures. These measures are well-known template-matching

30

https://doi.org/10.21528/lnlm-vol23-no1-art2


Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 23, Iss. 1, pp. 19–32, 2025
https://doi.org/10.21528/lnlm-vol23-no1-art2 © Brazilian Society on Computational Intelligence

measures present in the literature. The WiSARD network was slightly more efficient than the NCC measure, another well-known
template matching tool.

The second proposal of this paper, the use of radar pulse symmetry estimation measured on a Time-Frequency (TF) matrix
to improve modulation classification was demonstrated through the simulations 4 and 5, conducted in section 5. It was shown
that the symmetry estimate extracted from the time-frequency plane can be used as an input feature for a classifier to enhance
its performance. The simulations also revealed that the use of symmetry feature estimated from the STFT matrix improves the
accuracy of the classifier under all SNR conditions.

For future work, the impact of using time-frequency plane symmetry could be verified using other types of classifiers, and
other template-matching measures can be compared with the symmetry extracted with the proposed WiSARD network.
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[11] A. Bektaş and H. Ergezer. “LPI Radar Waveform Classification Using Binary SVM And Multi-Class SVM Based On
Principal Components Of Tfi”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences
and Engineering, vol. 62, no. 2, pp. 134—-152, 2020.

[12] J. Wan, X. Yu and Q. Guo. “LPI Radar Waveform Recognition Based on CNN and TPOT”. Symmetry, vol. 11, no. 5, pp.
725, 2019.

[13] Z. Qu, X. Mao and Z. Deng. “Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Neural Network”.
IEEE Access, vol. 6, pp. 43874–43884, 2018.

[14] D. Quan, Z. Tang et al.. “LPI Radar Signal Recognition Based on Dual-Channel CNN and Feature Fusion”. Symmetry, vol.
14, no. 3, pp. 570, 2022.

[15] C. Yang, Z. Xiong, Y. Guo and B. Zhang. “LPI radar signal detection based on the combination of FFT and segmented
autocorrelation plus PAHT”. Journal of Systems Engineering and Electronics, vol. 28, no. 5, pp. 890–899, 2017.

[16] G. Vanhoy, T. Schucker and T. Bose. “Classification of LPI radar signals using spectral correlation and support vector
machines”. In Analog Integr Circuits Signal Process, pp. 305–313. Springer, 2016.

[17] R. K. Chilukuri, H. K. Kakarla and K. Subbarao. “Estimation of Modulation Parameters of LPI Radar Using Cyclostationary
Method”. Sensing and Imaging, vol. 21, no. 51, pp. 1–20, 2020.

31

https://doi.org/10.21528/lnlm-vol23-no1-art2


Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 23, Iss. 1, pp. 19–32, 2025
https://doi.org/10.21528/lnlm-vol23-no1-art2 © Brazilian Society on Computational Intelligence

[18] T. R. Kishore and K. D. Rao. “Automatic Intrapulse Modulation Classification of Advanced LPI Radar Waveforms”. IEEE
Transactions on Aerospace and Electronic Systems, vol. 53, no. 2, pp. 901–914, 2017.

[19] R. Barker. “Group synchronizing of binary digital systems”. In Communication theory, pp. 273–287. American Mathemat-
ical Society, 1953.

[20] J. E. Fielding. “Polytime coding as a means of pulse compression”. IEEE Transactions on Aerospace and Electronic
Systems, vol. 35, no. 2, pp. 716–721, 1999.

[21] R. Frank. “Polyphase codes with good nonperiodic correlation properties”. IEEE Transactions on Information Theory, vol.
9, no. 1, pp. 43–45, 1963.

[22] B. L. Lewis and F. F. Kretschmer. “A New Class of Polyphase Pulse Compression Codes and Techniques”. IEEE Transac-
tions on Aerospace and Electronic Systems, vol. AES-17, no. 3, pp. 364–372, 1981.

[23] B. L. Lewis and F. F. Kretschmer. “Linear Frequency Modulation Derived Polyphase Pulse Compression Codes”. IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-18, no. 5, pp. 637–641, 1982.

[24] J. R. Klauder, A. C. Price, S. Darlington and W. J. Albersheim. “The theory and design of chirp radars”. The Bell System
Technical Journal, vol. 39, no. 4, pp. 745–808, 1960.

[25] P. Pace. Detecting and Classifying Low Probability of Intercept Radar. Artech House Publishers, London, 2008.

[26] A. D. O. P. Silva, J. Costa and R. Moreira. “Application of a Channelized Energy Detector for Digital Wideband ESM
Receivers”. In XLI Brazilian symposium on telecommunications and signal processing, 2023.

[27] S. H. Kong, M. Kim, L. M. Hoang and E. Kim. “Automatic LPI Radar Waveform Recognition Using CNN”. IEEE Access,
vol. 6, pp. 4207–4219, 2018.

[28] Z. Ma, Z. Huang, A. Lin and G. Huang. “LPI Radar Waveform Recognition Based on Features from Multiple Images”.
Sensors, vol. 20, no. 2, 2020.

[29] D. F. P. de Souza, F. M. G. Franca and P. M. V. Lima. “Spatio-temporal Pattern Classification with KernelCanvas and
WiSARD”. In 2014 Brazilian Conference on Intelligent Systems, pp. 228–233. IEEE Computer Society, 2014.

[30] T. Chuntama, P. Techa-Angkoon et al.. “Multiclass Classification of Astronomical Objects in the Galaxy M81 using
Machine Learning Techniques”. In 2020 24th International Computer Science and Engineering Conference (ICSEC), pp.
1–6. IEEE Computer Society, 2020.

[31] S. Milhomem, T. S. D. Almeida et al.. “Weightless Neural Network with Transfer Learning to Detect Distress in Asphalt”.
International Journal of Advanced Engineering Research and Science (IJAERS), vol. 5, no. 12, pp. 294–299, 2018.

[32] M. D. Gregorio, A. D. Costanzo et al.. “Classification of preclinical markers in Alzheimer’s disease via WiSARD classifier”.
In ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, pp. 43–48. i6doc.com, 2022.

[33] L. A. D. L. Filho, F. M. G. Franca and P. M. V. Lima. “Near-optimal facial emotion classification using a WiSARD-based
weightless system”. In ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, pp. 85–90. i6doc.com, 2018.

[34] J. Cai, P. Huang and D. Wang. “Novel dynamic template matching of visual servoing for tethered space robot”. In IEEE
International Conference on Information Science and Technology, pp. 389–392. IEEE, 2014.

[35] J. N. Sarvaiya, S. Patnaik and S. Bombaywala. “Image Registration by Template Matching Using Normalized Cross-
Correlation”. In 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies,
pp. 819–822. IEEE, 2009.

[36] S. Nikan and M. Ahmadi. “Partial Face Recognition Based on Template Matching”. In 11th International Conference on
Signal-Image Technology and Internet-Based Systems (SITIS), pp. 160–163. IEEE, 2015.

[37] I. Aleksander. “Ideal neurons for neural computers”. In International Conference on. Parallel Processing in Neural Systems
and Computers, pp. 225–228. Elsevier Science Publishers, 1990.

[38] M. Zhang, L. Liu and M. Diao. “LPI Radar Waveform Recognition Based on Time-Frequency Distribution”. Sensors, vol.
16, no. 10, pp. 1–20, 2016.

32

https://doi.org/10.21528/lnlm-vol23-no1-art2

	. INTRODUCTION
	. CLASSIFICATION OF INTRAPULSE MODULATION
	. WiSARD WEIGHTLESS NEURAL NETWORK
	. PROPOSED SYMMETRY ESTIMATION
	. SIMULATIONS AND RESULTS
	. CONCLUSION

