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Abstract — Considering the large number of people that suffer with epilepsy, there is great interest in developing a system
capable of predicting the occurrence of the seizures. Warning patients about the proximity of a seizure can help them to avoid
dangerous situations. Many efforts in the development of this system have been placed using, basically, machine learning tech-
niques. In most of these works, regardless of the technique employed, it is assumed that the system is able to learn when the
patient’s brain signals, obtained from electroencephalogram (EEG), change from interictal to pre-ictal state. Some published
works do not explicitly clarify the method of choosing training and test data. This means that good results may be due to the
use of an inadequate method. That is, the EEG segments may have been temporarily mixed up during training, which would
help the network correctly predict the seizure. However, this would not work from a real point of view. The objective of this
work is to investigate, through experiments, the effect of the way of choosing the training and test data on the accuracy of a
seizure prediction system. Experimental results showed that the accuracy of the systems increases when training is performed
with windows close to the seizure used for testing.
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1 INTRODUCTION

Epilepsy is one of the most common neurological diseases in the world, affecting more than 50 million people of all ages. It
is diagnosed after a person has had at least two seizures that were not due to some other medical condition [1,2].

The electrical activity of the brain is measured in the form of a so-called electroencephalogram (EEG), normally using more
than 20 electrodes positioned on the surface of the skull [3]. That activity is due to the communication between brain cells through
electrical impulses. The EEG then manifests as electric waves over time, one for each electrode. Each of these electrodes and its
corresponding waveform is called a channel. The EEG is used in the main diagnostic tests for epilepsy, as well as being used in
the diagnosis of other brain disorders.

The conventional EEG periods in epilepsy, fragmented in time windows, are depicted in Figure 1. The ictal period is that of
a seizure. Pre-ictal and post-ictal are the periods immediately before and after a seizure, respectively. Interictal are periods far
from seizures [4-6].
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Figure 1: The EEG periods in epilepsy

The options for treating epilepsy are drugs or, in rarer cases, surgery. These drugs are not effective for a large portion of
patients [7]. Therefore, there is great interest in the development of systems for predicting the occurrence of epileptic seizures,
to be used by patients in their everyday lives. If such a system could warn its user about the imminence of an epileptic seizure
(the transition from the interictal period to the pre-ictal period), with good reliability and well in advance, when warned, the
user could put herself/himself in a safe situation, for example by ceasing to drive a car or walking down the street. For those for
whom medicines are effective, these medicines could be used only after the user receives the warnings made by the system of
prediction, which would be interesting for patients who have seizures rarely and to minimize possible side effects of such drugs.

A bibliographic study of the scientific production in systems for predicting epileptic seizures, detailed in Section 2, shows that
many of those systems use some supervised machine learning technique, to differentiate the interictal period from the pre-ictal
period.
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In Figure 2, one can see a hypothetical case in which EEG time windows were chosen for training and testing a system for
predicting seizures. It can be seen that the training windows are never the same as the test windows. So this is apparently an
appropriate choice for these windows.
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Figure 2: An apparently appropriate choice of train and test windows for training and testing a system for predicting epileptic
seizures

But in Figure 3 one may see a potential problem with the choice used in Figure 2. In Figure 3, the dashed rectangle delimits
a hypothetical period in which an extraneous physiological state, not related to epilepsy, is present. The rectangle contains two
interictal windows, j;1 and jo, near each other. In addition to possibly having interictal characteristics, j; and j» may have that
extraneous physiological state characteristics. j; had been placed in the training set and labeled as belonging to the interictal
class. In the test phase, the prediction system may detect the similarity between j; and jo due to that extraneous characteristics.
So it probably will classify j, as belonging to the same class as j;, attributing to j, the same interictal label attributed to j; in
the train phase. In fact jo may be correctly classified not because it belongs to the interictal class, but because it has the same
extraneous characteristics of j; and thus deserving the same label of j;, whatever this label may be. In the test phase, this can
wrongly increase the accuracy of a seizures prediction system.
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Figure 3: The problem with the choice of training and test windows in Fig. 2

Figure 4 represents what is a more appropriate way of choosing the train and test windows for prediction systems. One may
see that the last available seizure in the EEG, with its preceding pre-ictal and interictal periods, are reserved solely for testing.
Training windows are chosen only before other seizures. In this way, the problem shown in Figure 3 is avoided. Moreover, this is
a more realistic way of choosing windows, with a view to obtaining a seizures predictor device. In this case, the device would be
trained, in a laboratory, with EEG temporally close to some seizures of the user. Afterwards, in the day-to-day use of the device,
there would be only periods to be classified in which no window would have been known during the system training.

From now on, the choice of training and test windows of Figure 2 will be called “method A” and that of Figure 4 will be
called “method B”.

Some papers published on systems for predicting epileptic seizures do not explicitly clarify if the choice of training and test
windows has been made according to the method A or to the method B. This can raise the suspicion that they have obtained good
results due to the use of the method A.

The objective of this work is to investigate, by means of experiments, the effect of the way of choosing the training and test
windows on the accuracy of a seizures prediction system. To do this, an LSTM network is adopted for seizure prediction and only
the way of choosing windows between experiments is varied, from method A to method B, in order to isolate its effect. It must
be stressed that the objective here is not to create the best prediction system, but only to have the means to obtain conclusions
on the effect on the accuracy of the way of choosing train and test windows. It may seem that the scope of this work is very
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Figure 4: A more appropriate choice of training and test windows

limited. But, perhaps, the conclusions obtained here are important not only in the creation of systems for the prediction of
epileptic seizures, but, in general, in the application of machine learning to EEG analysis for other purposes and in the analysis
of physiological signals of other types, such as cardiac and muscular. In other words, the expected contribution of this work is to
alert researchers in the area about this important issue, both in the preparation of their experiments and in the explicit indication,
in future published articles, that their work used method B, considered here the more appropriate.

2 LITERATURE REVIEW

In the hope of building a system capable of alerting patients with epilepsy about the proximity of a new seizure, many works
have been proposed. We limit ourselves here to evaluate systems that use EEG signals from the surface of the head (the so-called
scalp EEQG), for their convenience, rather than systems that use intracranial measurements. In addition, works whose focus is the
detection of epileptic seizures such as [8] and [9] were also outside the scope of this work, since the objective here is to be able
to predict the occurrence of a seizure in advance and not to detect an already initiated seizure. In these context, it is possible to
cite cases where unsupervised learning has been applied to separate the classes by clustering the seizure and non-seizure events
as presented by [10] and [11]. However, most works have used supervised machine learning techniques to accomplish the goal
of distinguishing the interictal and pre-ictal periods [12—19], which is expected given that in the current context these techniques
have been successfully used in a wide range of applications [20-25].

More recently, the use of Long-Short Term Memory (LSTM) networks in seizure prediction has drawn attention due to the
superior results presented in some works [15,26,27]. An extraordinary case is the one presented in [28] in which they used
LSTM architectures and obtained 100% accuracy for the 24 patients available in the Physionet CHB-MIT Scalp EEG Database
described by [29, 30]. Various characteristics of the EEG segments were extracted and incorporated into the input vectors of
the network, such as from cross-correlation, time domain, frequency domain and graph theory, which totaled vectors having
643 input characteristics for each 5 s segment of EEG from 18 EEG channels. The authors tested the performance of different
LSTM architectures and concluded that the network with two LSTM layers alternating with two dropout layers was the best
evaluated. The performance was also investigated by defining different durations of pre-ictal periods, ranging from 15 min to
120 min. In this case, 60 min duration was the one with the best results, with mean values of specificity and sensitivity of 100%.
However, it is not possible to conclude which window separation method for training and testing, method A or method B, was
adopted by the authors, since it was not explicitly addressed in the text. The same happens in [31]. The authors investigated the
prediction of epileptic seizures during sleep and, for this, filtered the EEG signal at the predominant frequencies in this phase
(delta and gamma). Only four patients from the Physionet CHB-MIT Scalp EEG Database were chosen for the study. The
duration of the pre-ictal period of 30 min was adopted. WPT (Wavelet Packet Transform) techniques were combined, whose
decomposition process can be applied at low and high frequencies, and 4 s sliding EEG windows were segmented, and the pre
or interictal evaluation was performed for every two windows. A Bi-LSTM (Bidirectional LSTM) was used for classification,
considering the cross-validation process. A moving average filter to smooth forecasts and decrease false forecasts was applied.
The authors also compared the performance of the Bi-LSTM with an LSTM and with a Multilayer Perceptron (MLP). The former
outperformed the other arrangements, with average results above 99% with a low rate of false alarms. In [32], it is proposed
a deep learning based ensemble learning method to predict epileptic seizures. In that method, EEG signals were preprocessed
using empirical mode decomposition followed by bandpass filter for noise removal. A three-layer customized convolutional
neural network (CNN) was combined with handcrafted features to extract automated characteristics from preprocessed EEG
signals. The feature set was used to train an ensemble classifier that combines the output of SVM, CNN and LSTM using model
agnostic meta learning. An average sensitivity of 96.28% and specificity of 95.65% with an average anticipation time of 33 min
on all subjects of CHB-MIT have been achieved, whereas, on American epilepsy society-Kaggle seizure prediction dataset,
an average sensitivity of 94.2% and specificity of 95.8% have been achieved on all subjects. In [33], the authors combined
CNN to extract the characteristics of the EEG windows after the pre-processing of the signals, which included filtering and
Short Time Fourier Transform (STFT), with SVM to perform the classification in pre or interictal states. They achieved an
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average of sensitivity and specificity of 92.7% and 90.8% respectively. Previously, in [34] the authors applied Empirical Mode
Decomposition (EMD) to extract the time and frequency domain features for training a prediction model. They have extracted
the first four statistical moments and the three spectral moments of each 1 s window of the EEG, using all the patients from
CHB-MIT. At the time, they achieved an average sensitivity of 92.23% and specificity of 93.38% and average prediction time of
23.6 minutes. In that group’s more recent work [35], it is proposed an approach in which a regression-based method is applied
as an alternative to notch filtering to increase the signal-to-noise ratio. A CNN extracts the features, followed by classification
of interictal state and preictal state segments using LSTM to predict seizures. They achieved accuracy of 94.0%, sensitivity of
93.8%, and 91.2% specificity by using CHB-MIT dataset. For all these works it was not clearly informed which method, A or B,
has been applied, as it also occurs in [36], where the authors proposed a model that combines a Dense Convolutional Network
(DenseNet) and LSTM to predict epileptic seizures. The raw EEG data was segmented in 10 s windows with an overlapped
window of 1 s. Different sizes of pre-ictal state have been studied: 5, 10 and 15 min duration. Also, the authors disregarded the
5 minutes prior to the seizures. That is, this period was not counted as pre-ictal. The mother function db4 of the discrete wavelet
transform (DWT) was applied to the segments to convert them into a time-frequency type 2D image (EEG spectrogram). Then,
the preprocessing data are used as the input data of DenseNet and the resulting feature map is used as the input data of LSTM.
To evaluate the performance of the proposed method, experiments are conducted for each preictal length of 5, 10, and 15 min
using the CHB-MIT dataset. As a result, they achieved a prediction accuracy of 93.28%, a sensitivity of 92.92%, a specificity of
93.65%, a false positive rate of 0.063 per hour, and an F1-score of 0.923 when the preictal length was 5 min, i.e. 10 min before
the seizure.

Another alternative is based on the use of bi-LSTM network as presented in [6]. The authors used spectral power and mean
spectrum amplitude features of delta, theta, alpha, beta, and gamma bands of 23-channel EEG spectrum for this task. Physionet
CHB-MIT database was used and segments of 5-50 s of all available patients were extracted. They found that 30 s segments were
sufficient for an accurate prediction. The results from bi-LSTM network were compared to those obtained by different methods,
such as random forest, decision tree, k-nearest neighbor, support vector machine, and naive Bayes classifiers, surpassing all of
them with average classification accuracy of 98.14%, average sensitivity of 98.51%, and average specificity of 97.78%. Once
again, it is not informed how the pre and interictal windows were separated for the training and testing stages.

In [37], the use of CNN for all patients from CHB-MIT database is investigated. The authors proposed a method that reduced
the number of channels used to only 6 (instead of 23) in order to achieve a more simple system that would be easily implemented.
Despite the good metrics presented (97.83% and 92.36% in terms of average sensitivity and specificity, respectively) it was
not clearly mentioned how the windows were divided in the training/testing process of the CNN applied in the work. In a
previous work [38], similar experiments were followed, with good results, using Dense Convolutional Network (DenseNet) and
all available database channels, but without presenting a clear definition of the method (A or B). The same situation also occurred
in [39] where scalograms have been used to create a multi-channel vision transformer (MViT) algorithm. The EEG windows
are converted by Continuous Wavelet Transform (CWT) and the images were then split into fixed-size non-overlapping patches,
which were used as inputs to the MViT algorithm to automatically learn the distinctive EEG features needed for subtle seizure
prediction, performed by an MLP. Different datasets from human and dogs were explored and very good results have been
obtained for the CHB-MIT patients (almost 100% for the metrics).

A deep convolutional generative adversarial network (DCGAN) was proposed in [40] to generate synthetic EEG data to
increase the prediction performance and to overcome good quality data scarcity issue. They also used transfer-learning (TL) for
evaluating the performance of four well-known deep-learning (DL) models to predict epileptic seizure. The generated data were
validated using one-class SVM and a new proposal namely convolutional epileptic seizure predictor (CESP). The CESP model
presented higher accuracy (= 5%) as compared to state-of-the-art augmentation techniques when trained on synthesized data and
testing on real Epilepsyecosystem [41] and CHB-MIT datasets, respectively. Unlike other works, in this one, the authors point
out that the tests were performed with temporal parts of the EEG that were not used in training (method B). The same occurs
in the work of [42], where a combination of CNN-LSTM architectures resulted in an accuracy of approximately 98% with an
average prediction time of 44.7 min. In this case, the authors affirm that multichannel images are first constructed by applying
short-time Fourier transform (STFT) to EEG signals. After a preprocessing step, the neural network is trained on the STFTs in
order to capture the spectral, spatial and temporal features within and between the EEG segments and classify them as pre-ictal
or interictal stage which is performed based on a majority voting method.

In [43], the authors draw attention to the dynamic nature of EEG data, characterised by data changes with time, known as
concept drifts. Then they investigate the effectiveness of automatic concept drift adaptation methods in seizure prediction. These
proposed methods incorporate a retraining process after each seizure and use a combination of univariate linear features from
time and frequency domains and SVM classifiers. The authors developed three seizure prediction pipelines to intrinsically adapt
to concept drifts. The pipelines were iteratively trained, by accumulating data from previous seizures and tested on the following
one. Thus it clear that the method B was used in that work.

In [44], the authors propose an algorithm using post-processing techniques to explore the existence of a set of chronological
events of brain activity that precedes epileptic seizures. Thus it is assumed that the epileptic seizure is not the consequence a
single event, but rather a succession of events. The methodology combines univariate linear features with a classifier based on
Support Vector Machines (SVM) and two post-processing techniques to handle pre-seizure temporality employing knowledge
from network theory. In the so-called Chronological Firing Power approach, they considered the preictal as a sequence of three
brain activity events separated in time. In the Cumulative Firing Power approach, which provided the best results, they assumed
the preictal period as a sequence of three overlapping events. In the data splitting phase of the procedure, the three first available
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seizures of each patient was used in training and the following seizures in testing, according to the method B.

Another recent published work in this area is [45]. It proposed a system integrated to the cloud that used a convolutional
neural network. But it does not make clear whether its objective is to detect or predict epileptic seizures. At no point does it
mention the duration considered for the pre-ictal period, nor how far in advance he would be able to predict seizures. It also does
not mention details about the choice of training and testing data.

In [46], the pre-ictal period is divided into multiple temporal windows. The prediction method is based on deep residual
shrinkage network (DRSN) and gated recurrent unit (GRU). The temporal dependency of the EEG in that windows is modeled
by introducing GRU into a DRSN. Automatic feature extraction is achieved by applying soft threshold denoising and attention
mechanism inside the neural network. The proposed method was tested on four patients from the CHB-MIT EEG dataset. The
choice of training and validation data was made according to the method B. The sensitivity was 90.54%, the AUC value was 0.88
and the false prediction rate was 0.11/h.

Table 1 summarizes the analyses made in this section regarding whether there was an explicit statement that method B was
used in the cited works.

Table 1: Summary of published papers on seizure prediction regarding whether they explicitly stated that they used method B in
their work.

paper Was it explicitly stated
that method B was used?
Tsiouris et al [28] no
Cheng et al [31] no
Usman, Khalid, Bashir [32] no
Usman, Khalid, Aslam [33] no
Usman, S. M., Usman, M., Fong [34] no
Aslam et al [35] no
Ryu, Joe [36] no
Singh, Malhotra [6] no
Jana, Mukherjee [37] no
Jana, Bhattacharyya, Das [38] no
Hussein, Lee, Ward [39] no
Rasheed et al [40] yes
Shahbazi, Aghajan [42] yes
Pontes et al [43] yes
Batista et al [44] yes
Kumar, Prakash [45] no
Xu et al [46] yes

3 METHODS

In the Introduction, it was stated that the objective of this work is to investigate the effect of the way of choosing the training
and test windows on the accuracy of a seizures prediction system. In order to isolate that effect, several pairs of experiments were
performed. Inside each pair, all parameters of the experiments were maintained constant, except that in the first experiment of
the pair, EEG windows were chosen as in Figure 2 (method A) while in the second experiment of the pair, EEG windows were
chosen as in Figure 4 (method B).

EEG signals of epilepsy patients used in this work were from the Physionet CHB-MIT Scalp EEG Database, described
by [29,30]. That database has EEG signals from more than 20 pediatric patients. The sampling frequency was 256 Hz and the
resolution was 16-bits, using the International 10-20 electrodes position system. There are many variations among patients in
the number of channels used and their numbering in the database. EEG signals from the first 11 patients were collected using
the same first 18 channels, with constant numbering among them. But the last seizures of patient number 11 are very close one
another, not leaving enough interictal and pre-ictal time between them. Therefore, the experiments performed here used only
the first 18 channels from the first 10 patients in the database. The whole pre-ictal EEG periods of each patient were used in
the experiments. For this purpose, they were subdivided in 5 s adjacent temporal windows. Then, the same number of 5 s EEG
temporal windows were extracted from the interictal periods. For each patient, the total available interictal periods are greater
than the total available pre-ictal periods. So, in order to have the same number of windows from the two classes, interictal 5 s
windows were not adjacent, but were extracted from EEG data at regular time intervals, leaving gaps between them. Table 2
summarizes patients records characteristics. Looking directly at the database [29], it is possible to observe that the available EEG
recording times, the number of seizures and the intervals between them vary greatly depending on the patient. Therefore, in the
experiments, the number of EEG windows used also varied greatly depending on the patient. The experiments were performed
on a Subject-Specific Model (SSM) basis, as is usual in this field.
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Table 2: Patients records characteristics. Gender: Male (M), Female (F).

patient | gender | number of | total recording
seizures | time (hh:mm:ss)
1 F 7 40:33:08
2 M 3 35:15:59
3 F 7 38:00:06
4 M 4 156:03:54
5 F 5 39:00:10
6 F 10 66:44:06
7 F 3 67:03:08
8 M 5 20:00:23
9 F 4 67:52:18
10 M 7 50:01:24
total 55 580:34:36

The methods used in the experiments here are inspired mainly by that presented in [28], also of the SSM type, due to the
excellent accuracy results obtained there. As stated in Section 2, that work employed an LSTM as the classifier [47]. It receives
vector sequences as its inputs and, in that case, classifies each sequence as belonging to the interictal or to the pre-ictal class.

Each experiment carried out in the present work used vectors assembled from a single commonly used feature type extracted
from the EEG signals. The features types explored here were obtained from: Fast Fourier Transform (FFT), wavelet transform,
cross-correlation between EEG channels and graph theory. Statistical features like those used in [28] had very poor performance
here for all experiments configurations and their use have then been discarded. Details on the extraction for the four types of
features used in the experiments are described below.

In the FFT features extraction, performed by using the numpy Python language package [48], FFT transform was applied for
each 5 s EEG window and each EEG channel. Then six numbers were calculated for each channel by averaging the absolute
values of the spectral lines in the following bands: delta (< 3 Hz), theta (4 to 7 Hz), alpha (8 to 13 Hz), beta (14 to 30 Hz),
gammal (30 to 55 Hz) and gamma?2 (65 to 110 Hz). Thus for 18 channels and six numbers per channel, a vector composed of
108 numbers was assembled for each EEG window.

In the features extraction from wavelet transform, as in [28], the db4 was the mother wavelet. The discrete wavelet transform
was applied here to each 5 s EEG window, separately to each channel. In each level of detail, a number was obtained as the
average of the absolute values of the wavelet coefficients at that level. Seven such numbers were obtained for each of the
18 channels, resulting in an 126 components vector for each EEG window. This was performed using the Python package
PyWavelets [49].

One of the features extracted from correlation calculations is the cross-correlation between EEG channels. For each pair of
EEG channels, a[t] and b[t], where ¢ represents the sample indices, the Pearson correlation coefficient is calculated to several
relative displacements between these signals: a[t] and b[t — 5], a[t] and b[t — 4], ..., a[t] and b[t], ..., a[t] and b[t + 4], a[t] and
b[t + 5], and the maximum among these coefficients is retained. Another feature extracted from correlation calculations is the
decorrelation time, which is the smallest value of the integer & such that the Pearson correlation coefficient between z[t] and
z[t + k] falls below 0.5. These calculations were performed using the numpy Python language package [48] resources.

For the extraction of features using Graph Theory, initially, a graph was built with a node representing each channel. The
edges between each pair of nodes was weighted with the cross-correlation measure between these two EEG channels, as de-
scribed above. Then several features were extracted from this graph: clustering coefficient, global efficiency, local efficiency,
betweenness centrality, eccentricity, radius, diameter and characteristic path length [50]. For this, the Python package NetworkX
was used [51].

As in [28], experiments were performed here for which sequences were assembled to the LSTM using 15, 30, 45 and 60
features vectors. Each such training sequence was assembled by randomly choosing vectors from their classes, without regarding
their original ordering nor their adjacencies in the EEG signal. The only difference in the sequence assemblies between methods
A and B was that for method A, the Figure 2 configuration was adopted using the extracted windows, whereas for method B, the
Figure 4 configuration was adopted. In this way, different sequences were assembled between methods A and B, based on the
same EEG temporal windows. The pre-ictal period duration was adopted as being 60 minutes, because this was the best value
verified in [28]. The LSTM had here one layer, with 32 cells. In each experiment, it was trained using 40 epochs.

4 RESULTS

The obtained results are summarized in Table 3. The first column represents the four methods for extracting features from
EEG used here. The second column specifies the four lengths of the vectors sequences used to train and test the LSTM. For each
of these 16 combinations of features extraction methods with sequences lengths, experiments were performed for the first ten
patients of the database, first using the method A and then using the method B of choosing train and test windows, as indicated
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in the third column. These totaled 4 x 4 x 10 x 2 = 320 experiments. The next four columns show the mean accuracy,
sensitivity, specificity and F1-score and the standard error of the mean for the ten patients in the conditions specified in the first
three columns. There is no clear trend in the influence of sequence length on the evaluated metrics regardless of the method or
even the feature set. However, when comparing the methods, since the F1-score is a good metric for summarizing classification
tests results, the last column shows for what of the two methods, A or B, the F1-score was higher, that is, for which the results
were the best in each condition. Clearly, it can be seen that method A was superior in almost all cases.

Table 3: Results. Here, each accuracy, sensitivity, specificity and F1 score value is the average of results obtained in experiments
performed for 10 patients.

features sequences | method accuracy sensitivity specificity F1 score method with the best
from length average F1 score
15 A 0.52+£0.12 | 0.54+£0.16 | 0.52+0.15 | 0.124+0.04 B
15 B 0.55+0.09 | 0.49+£0.15 | 0.65+0.13 | 0.23 +£0.07
30 A 0.78+0.10 | 0.64 £0.13 | 0.79+0.12 | 0.45+0.13 A
correlation 30 B 0.714+0.08 | 0.22+£0.11 | 0.91 +£0.04 | 0.154+0.08
45 A 0.87+0.09 | 0.72+£0.14 | 0.89 +0.10 | 0.63 +£0.15 A
45 B 0.62+0.10 | 0.35+£0.14 | 0.74+0.13 | 0.13 +£0.06
60 A 0.64£0.14 | 0.77£0.13 | 0.60+0.16 | 0.48+0.14 A
60 B 0.724+0.09 | 0.23+0.13 | 0.88+0.10 | 0.15+0.10
15 A 0.91+0.03 | 0.75+£0.12 | 0.93+0.03 | 0.61 +£0.11 A
15 B 0.70£0.11 | 0.55£0.13 | 0.63+0.15 | 0.40 +£0.12
30 A 0.79+0.11 | 0.78 £0.13 | 0.77+0.13 | 0.54+0.13 A
FFT 30 B 0.68+0.11 | 0.36 £0.15 | 0.80 +0.13 | 0.24 +0.11
45 A 0.724+0.11 | 0.43£0.15 | 0.76 £0.13 | 0.24 +0.12 A
45 B 0.73+0.10 | 0.20+£0.13 | 0.90 +0.10 | 0.154+0.09
60 A 0.63+0.13 | 0.69+£0.15 | 0.61+0.16 | 0.39+0.14 A
60 B 0.57+0.11 | 0.25£0.13 | 0.77+0.13 | 0.04 £0.03
15 A 0.79+0.11 | 0.56 £0.15 | 0.79+0.13 | 0.424+0.14 A
15 B 0.83+0.06 | 0.14+£0.09 | 0.99+0.01 | 0.174+0.10
30 A 0.76 £0.11 | 0.50£0.16 | 0.78 £ 0.13 | 0.26 +0.12 A
30 B 0.65+0.11 | 0.20£0.11 | 0.78 £0.13 | 0.13 +£0.08
graphs 45 A [ 0741011 | 046 £0.16 | 0.77 £0.13 | 0.25 £ 0.11 N
45 B 0.67+0.10 | 0.30£0.15 | 0.67+0.15 | 0.134+0.10
60 A 0.82+0.08 | 0.41+£0.16 | 0.89 +£0.10 | 0.25+0.11 A
60 B 0.68£0.12 | 0.20£0.13 | 0.80+0.13 | 0.10 £ 0.10
15 A 0.594+0.13 | 0.78 £0.13 | 0.55+0.16 | 0.40 +0.12 A
15 B 0.54+0.12 | 0.69+0.14 | 0.39+0.16 | 0.37+0.10
30 A 0.47+0.13 | 0.92+£0.08 | 0.43+0.15 | 0.40 +£0.12 A
Wavelets 30 B 0.66 £0.10 | 0.49+£0.16 | 0.69+0.15 | 0.26 +0.10
45 A 0.43+0.14 | 0.90£0.10 | 0.38 +0.16 | 0.36 = 0.12 A
45 B 0.80 £0.07 | 0.36 £0.15 | 0.78 +£0.13 | 0.30 +0.12
60 A 0.39+0.13 | 0.88+0.10 | 0.29+0.15 | 0.33+0.12 A
60 B 0.50£0.11 | 0.60£0.16 | 0.60+0.14 | 0.24 +£0.11

The number of sequences that were used in each experiment varied from tens to thousands, depending on the available
interictal and pre-ictal durations for each patient in the database, always looking to ensure that there was no imbalance between
the two classes in the training process.

Another way to organize the results is by patient, as shown in the Table 4. It shows the same metrics as Table 3, but presented
as averages, for each patient, of the results obtained in all 16 experiments (4 features x 4 sequences lenghts) for each method (A
or B). For all 10 patients, it can be seen that method A provided the best F1-score on average.

Many published works assemble different features in the input vectors to the system, which certainly impacts its performance.
However, if the adopted method includes EEG training windows as illustrated in method A, the results presented here indicate
that the behavior of those systems will tend to be superior in relation to those performed in the most indicated way, as in method
B.

S CONCLUSION

In this paper, two ways of choosing training and test data are compared for epileptic seizures prediction systems. Experimental
results showed that the biased method A tends to provide better results than the method B. But the method B is the more
appropriate to be employed in a real application.
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Table 4: Results per patient. Here, each accuracy, sensitivity, specificity and F1 score value is the average of results obtained in
all 16 experiments (4 features x 4 sequences lenghts) performed for each patient for each method (A or B).

patient | method accuracy sensitivity specificity F1 score method with the best
average F1 score

CHBOI A 0.84 £0.06 | 0.79 £0.10 | 0.85 + 0.08 0.68 +0.10 A
B 0.86 +0.02 | 0.25+0.09 | 0.96 + 0.03 0.25 +0.08

CHBO2 A 0.61£0.10 | 0.74£0.11 | 0.60£0.12 0.38 £0.10 A
B 0.56 £0.06 | 0.38 £0.12 | 0.62 £ 0.12 0.17 £ 0.05

CHBO3 A 0.54+0.11 | 0.75£0.11 | 0.50£0.13 0.36 +0.10 A
B 0.38 £0.07 | 0.26 £0.10 | 0.63 +0.13 0.26 £0.10

CHBO4 A 0.734+0.10 | 0.69£0.10 | 0.73+0.10 0.35+0.10 A
B 0.72+0.11 | 0.27£0.11 | 0.7240.11 | ~ 0.00 £0.00

CHBOS A 0.48+0.08 | 0.60£0.12 | 0.424+0.12 0.23 £0.05 A
B 0.57+£0.08 | 0.37+£0.12 | 0.61 +=0.11 0.11 £0.03

CHBO6 A 0.71£0.09 | 0.48£0.12 | 0.74+0.11 0.27 £0.09 A
B 0.51£0.06 | 0.36 £0.12 | 0.57£0.12 0.16 = 0.05

CHBO7 A 0.77£0.09 | 0.54+£0.12 | 0.78 £0.10 0.26 £0.10 A
B 0.81 +£0.08 | 0.25+0.10 | 0.83+0.09 0.06 +0.03

CHBOS A 0.81 £0.07 | 0.78 £0.08 | 0.83 + 0.08 0.65 4+ 0.09 A
B 0.88£0.04 | 0.49 £0.11 | 0.9540.03 0.45+£0.11

CHBO9 A 0.74+£0.10 | 0.68 £0.12 | 0.75+0.11 0.42+£0.11 A
B 0.80 £0.10 | 0.66 £0.12 | 0.80 £ 0.10 0.36 £0.10

CHBI10 A 0.54+£0.10 | 0.67 £0.12 | 0.524+0.12 0.24 £0.07 A
B 0.54+0.04 | 0.24£0.11 | 0.81£0.10 0.16 4+ 0.07

The main conclusion here is that papers on seizures prediction methods should make it very clear whether the training and
test EEG time windows were chosen as in method A or in method B. Otherwise, there will be suspicion as to whether good
results were due to using the less appropriate method A.

In the literature review, few works were found that explicitly states that they used the method B of choosing training EEG
windows. The present work results experimentally justifies this choice, demonstrating that this issue can no longer be neglected.
The contribution of this work is to alert researchers in the area about this important issue, both in the preparation of their
experiments and in the explicit indication, in future published articles, that their work used method B, considered here the more
appropriate. Otherwise, good experimental results obtained in laboratory, but due to the use of the inappropriate method A, will
not be reproducible in a real life application.

A limitation of method B is that it requires that there be sufficient time in the interictal period and preictal period for testing
the system after the previous seizures used for training, that is, there must be at least one last seizure in the patient’s EEG,
sufficiently removed from previous crises.

The conclusions obtained here may be important not only in the creation of systems for the prediction of epileptic seizures,
but also in the application of machine learning to EEG analysis for other purposes and in the analysis of physiological signals of
other types, such as cardiac and muscular.

Although this was not the objective of this work, from Table 3, restricting the comparison to the experiments using method
B, it is seen that, on average, the form of feature extraction that provided the best F1-score values was the wavelets, followed, in
descending order, by FFT, correlation and graphs. Regarding sequence lengths, using method B, the best average F1-score was
obtained for length 15, followed by 30, 45 and 60, that is, the F1-score fell with the increase in sequence length. But, as this was
not the objective of this work, more general conclusions about the best ways of extracting features, best sequence lengths, best
EEG window durations, best classification algorithms and best values for other parameters should be sought in the literature or
investigated through experiments specifically prepared for these purposes.

In Figure 2, one may see another potential problem in the method presented in [28]: the sequences assembled there to the
LSTM do not maintain the original ordering or adjacencies between EEG windows. As a future work, a comparison might be
made between the results of this assembling method and those of a method in which the original ordering and adjacencies were
respected.
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