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Abstract – This paper focuses on the use of machine learning algorithms to assist in predictive maintenance, aiming to re-
duce downtime and associated costs for electrical equipment. It introduces two machine learning predictive indicators: the
Chromatographic Assay Indicator (CAI) and the Electrical Failure Risk Indicator (EFRI), which leverage chromatographic and
sensor data, respectively. The CAI indicator was trained on external data, and its generalization capability was assessed using
company-specific chromatographic data with expert assistance. The evaluation involved two heuristics, both focusing on keyword
identification in free-text diagnoses. Results showed over 90% accuracy in predicting failures in reactors and power transformers,
and an AUC of nearly 85% for reactors. Additionally, CAI outperformed classical Dissolved Gas Analysis (DGA) methods. On
the other hand, the EFRI indicator was trained using company’s internal data from a monitoring system of operational sensors
and maintaining power transformer data. The classification model achieved over 95% accuracy and an AUC of almost 90% on
the test set. These results indicate that both indicators can be integrated into a solution to support maintenance specialists in their
decision-making processes.
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1 Introduction

The downtime of transmission assets such as power transformers leads to high costs for energy transmission companies, in
addition to disturbances in the delivery of electricity to people. According to ONS (National Operator of the Electric System),
temporary interruptions of energy supply may have several causes, such as failures in equipment or in protection and control
systems [1].

It is undoubtedly important to avoid interruptions in the energy supply, as these interruptions can lead to significant economic
losses and operational inefficiencies. Research on maintenance effectiveness reveals that one-third of all maintenance costs
is wasted due to unnecessary or improperly conducted maintenance activities [2]. This inefficiency not only wastes financial
resources but also diverts manpower and materials that could be better utilized elsewhere. The primary reason behind such
ineffective maintenance management is the insufficient availability of accurate and real-time data [2]. Without this crucial
information, it becomes challenging to accurately assess the condition and performance of plant equipment and systems, leading
to either over-maintenance, where resources are spent on equipment that does not need attention, or under-maintenance, where
issues are overlooked until they cause serious problems. Consequently, implementing robust data collection and analysis practices
is essential to optimize maintenance schedules, ensure the reliability of energy supplies, and maximize the return on investment
in maintenance operations.

Traditional methods of maintenance are reactive and preventive [2]. The former is based on actual equipment failure and is
the most expensive method for run-to-fail management. The latter is based on statistical trends and predetermined time intervals
or operating hours to reduce the probability of failure or loss of performance. Predictive methods are at the vanguard [3] because
they determine the scheduling of maintenance actions in an adaptive and flexible manner, according to the need of the equipment
instead of at fixed intervals as in preventive maintenance.

This work aims to improve the maintenance of power transformers and thereby reduce the costs associated with their down-
time. In this paper, we present two ML predictive indicators: CAI (Chromatographic Assay Indicator) and EFRI (Electrical
Failure Risk Indicator), which use chromatographic and sensor data, respectively, both from the company’s internal systems. The
developed solution integrates these two ML indicators with several classical and traditional data analytics approaches to support
maintenance specialists. After several experiments, the Random Forest algorithm was chosen to predict data from the operation
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and maintenance of the equipment. This resulted in enhanced reliability, safety, and cost-effectiveness of power transformer and
reactor operations.

The CAI indicator was assembled using chromatographic data from the company, as described in Section 4. After being
trained on external data, its generalization capability was evaluated on cromatographic data from the company with the assistance
of the specialists. The evaluation involved two heuristics, both of which focused on identifying specific keywords in the free-
text diagnoses. Results obtained in both heuristics show accuracy above 90% for predicting failures in reactors and power
transformers, and an AUC reaching nearly 85% for reactors. In addition, the results of CAI were also benchmarked against
classical Dissolved Gas Analysis (DGA) methods, where it presented greater performance. Regarding the EFRI indicator, it
was trained on data coming from internal systems of the company responsible for monitoring operational data of sensors and
maintaining information of power transformers. According to Section 6.4, it is noticeable the corresponding classification model
achieved an accuracy over 95%, as well as AUC of almost 90% on Test set.

This paper is organized into six more Sections. Section 2 describes the main related works. Section 3 describes the use
of chromatography and Supervisory Control and Data Acquisition (SCADA) systems in power transformers monitoring and
maintenance. Section 4 describes the chromatographic dataset used to develop the CAI indicator whereas Section 5 details the
monitoring dataset used by the EFRI indicator. Section 6 presents the results of experimental evaluation of CAI and EFRI. In the
end, Section 7 concludes and presents future works.

2 Related Work

In the first part of this Section, we are going to address the state-of-the-art articles related to predictive maintenance of
transmission power transformers in the context of DGA. In order to find the articles that best match the current work, we
performed a systematic search at SCOPUS by using the query string: (“predictive” AND “maintenance”) AND (“dissolved”
AND “gas” AND “analysis”) AND (“transmission”) AND (“machine” AND “learning”) AND (“power” AND “transformer”).
We obtained five results, comprising journals and conference proceedings. Afterwards, we ranked them based on their relevance.
After that, we selected the top 3 articles and the references therein that best matched the current work, which we are going to
describe in details as follows.

In [4], the authors introduced a novel methodology for incipient fault diagnosis in power transformers by using artificial
neural networks (ANN). They used a dataset available in [5], which contains fault types and the corresponding concentration of
the dissolved gases in the insulating oil of the power transformers, such as Hydrogen (H2) and Methane (CH4). Moreover, in
their proposed approach, the authors used a cascade structure of Multi-Layer Perceptron networks (CMLP) for fault classification
and the goal was to improve the network’s performance by simplifying the number of relationships required to be learned by the
ANN, which resulted in 85% accuracy in the test set. In another work [6], the authors proposed a robust multilayer framework
for online condition assessment of power transformers. They handled the measurement of uncertainties and fused the results of
independent DGA methods without losing their fault diagnosis outcome. Moreover, the authors used an ANN to intelligently
assign the weight of each independent method in the fusion procedure, depending on its fault type for a given range of input
gases concentration. The models were tested on a combination of IEC TC 10 [5] and IEEE standard [7] datasets, and the
best obtained model had an overall accuracy of 96%. In another interesting work [8], the authors used a Convolutional Neural
Network (CNN) to predict power transformer fault types under different noise levels in measurements. In this work, the authors
used different categories of input ratios concerning DGA: conventional ratios, such as four ratios of Rogers [9], new ratios, which
were conveniently created, and hybrid ratios, which are a combination of the former and the latter ratios. The datasets used for
training and testing were collected from 16 sources, such as in [10,11]. The CNN model had an accuracy of 98.5 % for 0% noise
level and 96.6% for ± 20% noise level in the test data, which shows the power of CNNs to model faulty power transformers
when data is noisy.

In the second part of this Section, we are going to address the state-of-the-art articles related to maintenance of power
transformers in the context of modeling by using SCADA data. In order to find the articles that best matched the current work,
we performed a systematic search at SCOPUS by using the following query string: (“maintenance”) AND (“machine” AND
“learning”) and (“scada”) AND (“power” AND “transformer”), which resulted in two articles. We ranked them by relevance,
and found one article that matched this work. Moreover, in order to get more articles related to this work, in the aforementioned
query string, we replaced “machine learning” by “artificial intelligence” and found three articles. After that, we ranked them by
relevance and found out that two articles are related to the current work. In the following, we are going to describe in details
such articles and the references therein. In another interesting work that used manual inspection of power transformer to confirm
the fault diagnosis [12], the authors proposed a system called SADTRAFOS in order to support maintenance’s decision with
respect to power transformers fault prediction. In that work, the authors used a fuzzy inference module for fault diagnosis, and
a decision support, which provided recommendations to the managers. The final model had an overall accuracy of 80% on real
data concerning fault diagnosis and made correct recommendations for the maintenance team.

In [13], the authors applied ML to fault prediction in wind turbines for generating corrective maintenance strategies. In this
work, SCADA data was used to capture the operational status of turbines, and by using a dual transformer model, comprised
of two stages, they obtained an accuracy of up to 96.75% for alarm prediction in the dataset obtained from [14]. In another
work [15], the authors proposed a model to detect temperature anomalies in key components of wind turbines, such as gearbox
and transformers. They used ANN to address the challenge of the limited pre-classified data and then categorized the operating
conditions into: (1) the Normal Behavior (NB) module, (2) the Expected Time To Failure (ETTF) module, and (3) Anomaly
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Detection (AD) module. Then, they applied the model in data from an offshore wind farm in Germany, and obtained an accuracy
of 94% concerning transformers with 7 hours ahead prediction.

3 Current maintenance practice

Maintenance plays a major role in the industrial sector, as it greatly affects costs and reliability, thereby playing a vital role in
a company’s competitiveness in the market. Unforeseen interruptions or failures in equipment can severely hamper a company’s
primary operations, potentially leading to substantial penalties and immeasurable damage to its reputation. Consequently, it is
crucial to detect and address any faults in equipments to prevent disruptions in the production processes [16]. There are several
practices related to equipment’s maintenance. These practices can be grouped in three main categories [17]:

• Reactive or Run-to-Failure (R2F) maintenance;

• Preventive Maintenance (PvM);

• Predictive Maintenance (PdM).

The advancements in modern techniques like the IoT, sensing technology, and artificial intelligence have brought a shift in
maintenance strategies from R2F to PvM to PdM. Reactive Maintenance is a simplistic approach where interventions are carried
out only after failures happen. It is carried out solely to restore equipment to its functioning state after a failure has already
occurred, leading to delays and high costs associated with reactive repairs. On the other hand, Preventive Maintenance follows
a predetermined schedule based on time or process iterations to prevent breakdowns. While it aims to prevent failures, it may
result in unnecessary maintenance and incur high prevention costs [18].

To strike a balance between the two approaches, PdM is employed. PdM relies on real-time estimation of equipment “health”
to identify potential failures and intervenes in a timely manner before their occurrence. This is the best of both worlds, allowing
maintenance to be performed with the lowest possible frequency to prevent unplanned reactive maintenance, while avoiding the
costs associated with excessive preventive maintenance [18].

Predictive maintenance has four levels of maturity [19]. The highest level is supposed to use data analytics and real-time
monitoring of equipment. Data analytical techniques include ML algorithms to uncover hidden relationships and identify mean-
ingful patterns in large amounts of high-dimensional and multivariate data, presented in complex and dynamic environments like
industrial settings.

3.1 Chromatography

Chromatography is a technique that allows the separation of a mixture of species in separate compounds [20]. In this context,
“species” is a generic term used to describe the different compounds, molecules, or elements that are mixed together. It comprises
various separation techniques depending on the material to be analyzed after separation. Physical and chemical characteristics
such as mass, density, and type of intermolecular bonding are taken into consideration in the analysis. In [21], whose authors
are the pioneers of chromatography, there is an allusion to the similarity between the chromatogram and distillation columns.
Therefore, new methods and techniques for obtaining quantities of specific elements in a sample gained prominence in various
areas of study.

In the electrical sector, chromatography enables the analysis of the quality of certain transmission assets, by identifying the
concentration of gases dissolved in the insulation oil. This analysis is often based on the the concentration of the following
nine gases: H2, CH4, C2H2, C2H4, C2H6, CO, CO2, O2, and N2. This data allows for several inferences be made about the
condition of the transmission asset, as detecting equipment defects, as the proportion of these compounds can indicate electrical
and thermal defects.

3.2 SCADA/EMS Systems

A SCADA/EMS system is a comprehensive solution for managing a utility’s electricity grid, from data collection and analysis
to real-time control of equipment and optimization of system performance. The concept means it is a Energy Management System
(EMS) implemented using Supervisory Control and Data Acquisition (SCADA) architecture.

• SCADA: This is an industrial control system that uses computers, networked data communications, and graphical user
interfaces for high-level process supervisory management. It also uses other peripheral devices, such as programmable
logic controllers and discrete proportional-integral-derivative controllers to interface with process plant or machinery. The
operator interfaces, which enable monitoring and issuing of process commands, are where specialists monitor and control
processes through SCADA. This kind of system consolidates, distributes and monitors real-time data, allowing operators
to directly interact with devices such as sensors, valves, pumps, motors, and more through human-machine interface (HMI)
software.

• EMS: An Energy Management System is a system of computer-aided tools used by operators of electric utility grids to
monitor, control, and optimize the performance of power generation and transmission. The monitor and control functions
are known as SCADA, whereas optimization packages are often referred to as “advanced applications”. The EMS assists
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in the process of ensuring that the power system is operating efficiently, with real-time adjustments to changes in the load
or power supply. It can also help plan and schedule maintenance activities.

In Brazil, one of the most important SCADA/EMS systems is SAGE (acronym in Portuguese for “Open System for En-
ergy Management”). SAGE is a large-scale and high-performance SCADA/EMS system, developed and constantly updated by
Eletrobras Research Center (CEPEL). It is used by dozens of electric power generation, transmission, and distribution agents
in Brazil, particularly Eletrobras and ONS. Its modular architecture allows for proper customization, enabling it to be used as a
communication gateway, a data concentrator for a distribution system, a local or regional supervisory system, an operation center
for a system, or even a “multi-site” system composed of multiple synchronized and redundant control centers [22].

4 Chromatographic Dataset

It is common practice in the electrical sector to monitor the condition of transformers through DGA. Our objective in creating
the CAI risk indicator was to use Machine Learning to develop a classifier that assists maintenance specialists in their decision-
making process. Upon receiving the company’s data, it was evident that there were few data points and, furthermore, they
were not labeled with the type of failure present. Therefore, they were not suitable for training a ML algorithm. We opted to
combine several public datasets [23–28] to train the algorithm. These datasets have reliable data, since they were validated in
these scientific works and some transformers were manually inspected. To use these databases, it was necessary to work with a
sample universe of only 5 types of gases, as some of the databases considered only these gases.

The labeled classes were identified from the aforementioned external datasets, as follows: NF - (No Faults); PD - (Partial
Discharge); D1 - (Low Energy/Spark Discharge); D2 - (High Energy/Arc Discharge); T1 - Low Temperature Fault (t < 300◦C);
T2 - Middle Temperature Fault (300◦C ≤ t ≤ 700◦C); T3 - High Temperature Fault (t > 700◦C). The gases considered in this
work in predictive maintenance modeling were five out of the nine presented in Section 3.1, namely, H2, CH4, C2H2, C2H4, and
C2H6. After joining the datasets, we started the data preprocessing step, which consisted in two steps: (i) data cleaning, and
(ii) data normalization. The data cleaning process consisted in two main steps: (1) replacement of null or invalid values and (2)
removal of duplicated samples or blank values.

After data joining and cleaning, we calculated four concentration ratios, which were calculated and inserted as new columns
in the unified dataset, and we adjusted the non-detectable value by adding a constant value, as suggested in [29]: R1 = CH4

H2
+0.4,

R2 = C2H2

C2H4
+ 0.4, R4 = C2H6

CH4
+ 0.4, and R5 = C2H4

C2H6
+ 0.4. For normalization, we used the IQR (Interquartile Range) method,

since it is robust to outliers, and it is given by Equation 1:

NormIQR =
x−Q2/4

Q3/4 −Q1/4
(1)

where Qi is the ith quartile. The above Equation was applied to the following attributes of the unified dataset: (i) H2, (ii) CH4,
(iii) C2H4, (iv) C2H6, (v) R1, (vi) R4 and (vii) R5. However, the attributes corresponding to C2H2 gas and to the ratio R2 needed
a particular normalization process, due to the distribution of their values containing several outliers and zero values. Therefore,
in order to normalize these columns, Equations 2 and 3 were applied, respectively.

NormC2H2
=

log(x+ 1)

max(log(C2H2 + 1))
(2)

NormR2
=

x

max(R2)
(3)

5 Monitoring Dataset

The EFRI uses analogical monitoring data from the SAGE system and relates it to the maintenance data from the Enterprise
Resource Planning (ERP) system. This indicator may suggest a high risk of an electrical failure based on analogical measurement
data in a six-day time window of the failure event. A major benefit is the maintenance planning can be done in advance, assisting
the decision making of the operator on the maintenance of the asset.

A big electric energy company provided the data from SAGE and SAP Plant Maintenance (SAP PM) systems. The data from
SAP has the maintenance history of power transformers and it was used in the categorization of electric failures of SAGE data.
Such SCADA system reads the sensors of equipment and records that in a daily 5-minute log file. We calculated some daily
statistics from each sensor, including mean, quartiles and standard deviation. Therefore, we could calculate the mean of each
attribute in a six-day sliding window. The sensors have related alarms (digital data) which were computed to extract the mean
and maximum statistics.

The processed data from SAGE was matched with the categorized SAP data. We analyzed the description of maintenance
data and grouped it into categories according to some keywords. Such keywords and categories were manually chosen through
a detailed study of data and related works. The categorization process also used the Levenshtein algorithm [30] in order to find
the similarity in the free-text description. Thus, the conducted experiments that showed the best results belonged to the electric
failure category. Only the attributes of electric nature were considered in the development of the model.
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5.1 Methodology

We elaborated a methodology that covers the whole workflow of the ML algorithms and preprocessing. Each step can be
briefly pointed as: (1) Data cleansing; (2) Dataset partition and feature selection; (3) Data balancing and normalization; (4)
Model development and optimization; and (5) Model assessment. The following Subsections contain the description of each
step.

5.1.1 Data balancing and normalization

There is a huge discrepancy in the amount of failures and non-failures in the dataset. To overcome this problem, we chose
to balance the Training data trough the combination of two techniques, respectively: (i) reduction of non-failures in 3.7 times
and then (ii) data augmentation of failures in 143 times. Both techniques performed better than only one. We applied the
RandomUnderSampler algorithm from Imblearn library [31] to reduce the majority class instances. Then, we applied the SMOTE
(Synthetic Minority oversampling Technique) algorithm [32], from the same library, to oversample the minority class, based on
the parameter of the nearest neighbors, which was chosen to be 10. This augmentation technique creates synthetic data based on
the existent data, increasing the size and variety of the minority class. Both undersampling and oversampling techniques used
the same number for reproducibility. The balanced dataset had 10,142 instances of each class and was normalized based on the
Gaussian function. This choice was based on comparison tests against Min-Max and IQR-based normalization methods. After
that, we applied the normalization in the Test set with the parameters of the Training set in order to avoid data leakage, according
to the Equation 4. With this in mind, the missing data of Test set was replaced by the mean of the respective attribute of the
Training set.

NormxTest
=

xTest − xTreino

σTreino
(4)

5.1.2 Model development and optimization

We conducted experimental tests with the Random Forest algorithm with the max depth of trees parameter instantiated with the
value 13, based on empirical analysis. Thereafter, this algorithm was used as a part of the exhaustive method of optimization
GridSearchCV that uses 10-fold CV with the same parameters used by GridSearchCV in the feature selection step.

5.1.3 Model assessment

As the main metric, we chose the recall of the minority class because it evaluates the total amount of failures captured by the
model. Furthermore, we analyzed the metric Relative Risk (RR) [33] that indicates the number of times there is an increased risk
of occurring an electrical failure. RR is the rate of two metrics: False Omission Rate (FOR) and Predicted Positive Value (PPV).
The former is the rate of the electric failures classified as non-failures, according to Equation 5. The latter is the rate of failures
correctly classified over the total amount of instances predicted as failures, as shown in Equation 6. Hence, Equation 7 shows
the RR metric which is dimensionless.

FOR =
FN

FN + TN
(5)

PPV =
TP

TP + FP
(6)

RR =
PPV

FOR
(7)

The minority class was considered as to be the positive class, in other words, failures. Furthermore, we analyzed the classic
metrics as follows: accuracy, AUC, F1-score, recall and recall of minority class. The best results are presented in Section 6.

6 Results and Discussion

This Section presents the results of the both indicators: CAI and EFRI. They indicate an increased risk of occurring an electric
failure. The combination of these indicators provide decision-making support to the specialist with the most recent monitored
data. In the first Subsections, CAI results will be discussed in details. Specifically, Subsection 6.1 will show how the best ML
algorithm for CAI was determined, Subsection 6.2 will show CAI compared with classical approaches, and then Subsection 6.3
addresses the CAI model evaluated on internal company’s data by assuming two different heuristics. Finally, EFRI results will
be shown in training and test sets.
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6.1 Assessing various ML algorithms to determine the optimal CAI using external data

We ran a benchmark against some algorithms and possible scenarios. A Vapnik-Chervonenkis dimension [34] study was
conducted which, due to the limited amount of data records available, excluded the use of neural networks. The experiments were
executed with the following four algorithms: (i) Support Vector Machine (LibSVM) [35]; (ii) Random Forest [36]; (iii) Fuzzy
Unordered Rule Induction Algorithm (FURIA) [37]; and (iv) Random Trees [38]. We performed the following experiments:

• with and without label class aggregation;

• selection of three different set of concentration ratios (used in addition to all five gas concentrations);

• five or ten CV folds;

We tested all the possible scenarios, and the best result is presented in the following scenario:

• Three label classes:

i. PD, D1 and D2 labels grouped into Electric Faults;

ii. T1, T2 and T3 labels grouped into Thermal Faults;

iii. Normal.

• All four concentration ratios (R1, R2, R4 and R5);

• Ten CV folds.

We split the data into training and test sets, with 80% and 20% of the original data, respectively. In order to find the best
hyperparameters, we used the RandomizedSearchCV method from Sklearn [39] library in the training set by using ten folds.

Table 1: Experiment results obtained in the best scenario
Algorithms LibSVM Random Forest FURIA Random Tree
Accuracy 74.2% 92.7% 89.2% 81.1%

6.2 Comparison between CAI and classical chromatographic indicators

In order to validate the Random Forest model obtained from the last Subsection, we compared such a model with classical
DGA methods, for instance: (i) Rogers, (ii) Doernenburg, (iii) NBR 7274, (iv) IEC 599 and (v) Duval’s Triangle [40–44]. The
comparison results are displayed in Table 2, from which we can see that the Doernenburg’s method had the highest accuracy
among the classical DGA methods. The hybrid DIEC-R method, which consists of a combination of Doernenburg’s and IEC
Ibrahim’s method [26], presented the best result among all classic/hybrid methods. From the same Table, we can clearly notice
that the Random Forest model outperformed all the other classical methods in almost 19 percentage points, presenting 92.2%
accuracy and 92.1% F1-score in the test set.

Table 2: Classical DGA methods and Random Forest model performance in the Test set
Method Accuracy F1-score
Rogers 35.1% 24.2%
Rogers (refined) 46.8% 27.8%
Doernenburg 13.6% 14.5%
NBR 7274 51.7% 43.3%
IEC Ratio 51.2% 41.0%
IEC (refined) 64.4% 56.6%
Duval’s Triangle 60.5% 38.8%
Doernenburg + Durval 69.7% 52.3%
Doernenburg + IEC (Ibrahim) 73.2% 71.3%
Random Forest 92.2% 92.1%
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6.3 CAI results on internal data of the company

After training the CAI’s model on external data, it became necessary to verify its generalization capability on data from a
specific company’s system, which contains chromatographic samples followed by their corresponding diagnoses provided by a
specialist. To accomplish this, a dataset comprising chromatographic samples from this company’s system was used, including
the same five gases described in Section 4, along with a novel feature representing the specialists’ diagnoses in a free-text format
instead of discrete labels. To obtain target labels from this free-text format, two different heuristics were applied. Essentially,
both heuristics constrained the classification problem to a binary scope, and they are detailed more extensively in the following
subsections.

6.3.1 First Heuristic

In the first heuristic, the labels ‘0’ (representing the Non-Failure class) and ‘1’(representing the Failure class) were assigned
according to the following rule: if the expert report field is blank then assign label ‘0’, otherwise assign label ‘1’. According to
experts, blank fields actually represent non-failure scenarios. Following this labeling heuristic, the CAI model was evaluated on
both transformers and reactors data. The confusion matrices, as well as the main evaluation metrics, are presented in Tables 3
and 4, respectively.

Table 3: Confusion matrices of CAI evaluated with the First Heuristic.
Transformers Reactors

Class (predicted) Positive (predicted) Negative (predicted) Positive (predicted) Negative
(real) Positive 9 9 10 4
(real) Negative 52 646 9 300

Table 4: Evaluation metrics of CAI evaluated with the First Heuristic.
Metric Transformers Reactors
Accuracy 91.48% 95.98%
AUC 71.28% 84.26%
F1-score 59.14% 79.24%
Recall (failure class) 50.00% 71.43%
Relative Risk 10.74 40.00

In Table 4, “Relative Risk” indicates how many times there is an increased risk of an abnormality in a equipment whenever
the model assigns a chromatographic sample to the Failure class [45]. Also in Table 4, it is noteworthy that the recall was only
0.5 (in case of transformers). By analyzing the Failure Class records, it was found that some reports are inconclusive and they
are filled indicating the need of getting a new chromatographic sample. Therefore a new heuristic was implemented to deal with
the report field by searching keywords.

6.3.2 Second Heuristic

After evaluating the CAI indicator results from the first heuristic, another experiment was conducted using internal data of the
company based on a second heuristic. The reports provided by the specialists for the chromatographic data of both transformers
and reactors from the company were reviewed, and labels ‘1’ for Failure or ‘0’ for Non-Failure were assigned according to the
presence of certain keywords. This new heuristic works according to the following algorithm:

1. If the expert report field contains a non-failure keyword then assign label ‘0’.

2. Otherwise, if the expert report field contains a failure keyword then assign label ‘1’.

3. Otherwise assign label ‘0’.

For blank fields, the result is the same as the previous heuristic. However, for fields containing some report, results may differ.
The keywords used in the labeling process are listed below:

• Non-Failure keyword: resampling;

• Failure keywords:: increase, elevation, acetylene, generation, out, shutdown, monitoring, inspection/inspected.

The CAI model was re-evaluated using the new heuristic. The resulting confusion matrices, as well as the main evaluation
metrics, are shown in Tables 5 and 6, respectively.

In comparison to the first heuristic, there was a significant improvement in the results, particularly in the failure class recall
metric, which for transformers increased from 50% to 61.54%. Concerning reactors, the results also point out to a relevant
improvement in the model’s generalization capability, improving AUC, recall and Relative Risk metrics.
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Table 5: Confusion matrices of CAI evaluated with the Second Heuristic.
Transformers Reactors

Class (predicted) Positive (predicted) Negative (predicted) Positive (predicted) Negative
(real) Positive 8 5 8 1
(real) Negative 53 650 11 303

Table 6: Evaluation metrics of CAI evaluated with the Second Heuristic.
Metric Transformers Reactors
Accuracy 91.90% 96.28%
AUC 77.00% 92.69%
F1-score 58.68% 77.60%
Recall (failure class) 61.54% 88.89%
Relative Risk 17.18 128.00

6.4 EFRI results

6.4.1 Dataset partition and feature selection

The dataset was split into two disjoint subsets: Training (80%, being 71 failure and 37,401 non-failure) and Test (20%, being
18 failure and 9,350 non-failure). In both sets, the proportion of the classes is the same: 1/527. Missing values in the Training
set were replaced by the mean value of the attribute. Afterwards, we conducted preliminary tests with the decision tree based
algorithm DecisionTreeClassifier from Python’s Sklearn library [46]. Such algorithm is deterministic and was applied to the
Training set in order to rank the most important attributes. To help this choice, we picked some hyperparameters of this algorithm,
such as the minimum amount of samples required to split a node between 2 and 403 with an interval of 20, with the support of a
method of exhaustive optimization of estimators, named GridSearchCV [47], from the same library. This method used refitting
of the estimator with the best parameters found in the Training set based on the recall metric of the minority class. In addition,
we chose the strategy to evaluate the performance of the Cross-Validation (CV) algorithm on the test fold using a list of the
following multiple metrics: F1 of minority class, recall of minority class, AUC (Area Under the ROC Curve). After that, we
ranked the most important attributes and selected the top 19 analogical in addition to the remaining 42 digital attributes to use in
the modeling from now on, totaling 61 attributes.

The best results indicated that there was an increased risk of a power transform to fail in 99.7 times (indicated by the RR
metric). The Random Forest performance is shown in confusion matrix of the Test set in Table 7. The evaluation metrics of
Training and Test sets are present in Table 8.

Table 7: Confusion matrix of EFRI on Test set
Class (predicted) Positive (predicted) Negative
(real) Positive 15 3
(real) Negative 432 8918

Table 8: Evaluation metrics on Training and Test sets
Metric Training Test
Accuracy 97% 95.4%
AUC 97% 89%
F1-score 97% 52%
F1-score (failure class) 98% 6.5%
Recall 97% 89.4%
Recall (failure class) 99.9% 83.3%
Relative Risk 3061 99.7

The algorithm parameters were chosen using recall metric evaluated on the failure class. The results show that the model can
be a helpful aid to the maintenance team on pinpointing the equipment in need of servicing.

7 Conclusions and Future Work

The exploration of predictive maintenance technologies is of great importance for the electrical sector, which is typically
highly regulated and complex. Expanding predictive maintenance as applied in this article, leveraging the methodology in the
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maintenance of power transformers, and generalizing it to other transmission assets that allow the use of CAI and EFRI indicators
for decision support can be a good path for future related work.

In an era of smart, data-driven, and cost-effective operations, the electrical sector can benefit from the development of a cloud
platform to support the creation of other machine learning models, which is an important step towards predictive maintenance
of power substation equipment. Cloud platforms offer scalability, data accessibility, and computing power that boost the devel-
opment and deployment of complex ML models such as the ones presented in this work. The two ML indicators presented in
this paper show that ML can be a useful addition to classic data analytics tools in supporting maintenance specialists in their
decision-making process.

In summary, we used ML-based approaches to predict failures of power transformers by using chromatographic data (CAI)
and data from SAGE (EFRI). In the case of CAI, we outperformed the classical DGA methods by using an RF model, as described
in Section 6, obtaining an improvement in the accuracy of predicting failures on the test set by 19% compared to the best classical
method. We tested the CAI model on the company’s internal data, achieving AUC metrics close to 0.77 and 0.92 for transformers
and reactors, respectively, evidencing the great generalization capability of the CAI model for the company’s purpose. In the
case of EFRI, by using a Random Forest model, we obtained an accuracy of 95.4% and a recall of 89.4% on the test set, showing
that this method is quite helpful in predicting failures. Using the aforementioned indicators of failure, the maintenance planning
of power plants can be performed in a data-driven way, leading to more efficient maintenance strategies. Moreover, the modeling
process shown here opens up possibilities for modeling the downtime of power plants and wind turbines with reliability and
reducing associated costs. In the initial phase of our prediction project, the estimation of the minimum size of the learning
dataset required to achieve good predictions, based on the PAC-learning agnostic model, indicated that Support Vector Machines
(SVM) and Random Forest, with a slight preference towards the latter, would be the most effective predictors. This is due to
their relatively low Vapnik-Chervonenkis dimension, which ensures they can achieve good generalization performance even with
smaller datasets.
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machine learning methods applied to predictive maintenance”. Computers & Industrial Engineering, vol. 137, pp. 106024,
2019.

[17] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone and A. Beghi. “Machine learning for predictive maintenance: A multiple
classifier approach”. IEEE transactions on industrial informatics, vol. 11, no. 3, pp. 812–820, 2014.

[18] Y. Ran, X. Zhou, P. Lin, Y. Wen and R. Deng. “A survey of predictive maintenance: Systems, purposes and approaches”.
arXiv preprint arXiv:1912.07383, 2019.

[19] M. Haarman, M. Mulders and C. Vassiliadis. “Predictive maintenance 4.0: predict the unpredictable”. Technical report,
PwC and Mainnovation, 2017.

[20] W. De Malsche. Solving advanced micromachining problems for ultra-rapid and ultra-high resolution on-chip liquid
chromatography. Twente University Press, 2008.

[21] A. J. Martin and R. L. Synge. “A new form of chromatogram employing two liquid phases: A theory of chromatography.
2. Application to the micro-determination of the higher monoamino-acids in proteins”. Biochemical Journal, vol. 35, no.
12, pp. 1358, 1941.

[22] L. A. Pereira, L. C. Lima, A. J. Silva, P. A. Machado, M. F. Amorim, L. Ayru Filho, G. P. Azevedo, N. Lambert, P. D. Zarur,
V. V. Tavares et al.. “SAGE-Um Sistema Aberto para a Evolução”, 2014.

[23] E. Li, L. Wang and B. Song. “Fault Diagnosis of Power Transformers With Membership Degree”. IEEE Access, vol. 7, pp.
28791–28798, 2019.

[24] E. Li. “Dataset directly extracted from Table 9 of Enwen Li (2019)”, 2019. Ta-
ble 9 available in the article: https://ieee-dataport.org/documents/
dissolved-gas-data-transformer-oil-fault-diagnosis-power\protect\penalty-\
@M-transformers-membership-degree.

[25] E. Li. “Dissolved gas data in transformer oil - Fault Diagnosis of Power Transformers with Membership Degree”, 2019.

[26] S. I. Ibrahim, S. S. Ghoneim and I. B. Taha. “DGALab: an extensible software implementation for DGA”. IET Generation
Transmission Distribution, vol. 12, no. 18, pp. 4117–4124, 2018.

[27] M. Duval and A. dePabla. “Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases”.
IEEE Electrical Insulation Magazine, vol. 17, no. 2, pp. 31–41, 2001.

[28] D. R. Morais et al.. “Ferramenta inteligente para detecção de falhas incipientes em transformadores baseada na análise de
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