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Resumo – Este artigo apresenta um controle cinemático por modos quasi-deslizantes imunológico adaptativo integrado com
um controle dinâmico PD para o rastreamento de trajetória e o controle de formação lı́der-seguidor por robôs móveis com rodas
com acionamento diferencial não-holonômico sob incidência de incertezas e perturbações. Uma abordagem bio-inspirada no
mecanismo de regulação imunológica com efeito de reação estabelecido por um novo conjunto de regras fuzzy para ajustar o
esforço de controle de forma adaptativa é projetada, uma camada limite fuzzy também é utilizada e uma lei de adaptação para
o ajuste on-line de ganho da porção imunológica é introduzida de tal forma a também evitar a deriva paramétrica, lidando com
as desvantagens de um controle por modos deslizante de primeira ordem clássico, suprimindo o chattering e ainda mantendo a
robustez sem conhecimento a priori dos limites das perturbações. Também é proposta uma estratégia para desvio de obstáculos
por um método reativo e raio de desvio variável. A análise de estabilidade é realizada com base na teoria de Lyapunov. Os
resultados de simulação e experimentais demonstram a eficácia do controle proposto.

Palavras-chave – Robôs móveis com rodas, Controle por modos deslizantes, Rastreamento de trajetória e controle de
formação lı́der-seguidor, Sistemas imunológicos artificiais, Incertezas e perturbações, Desvio de obstáculos.

Abstract – This paper presents an adaptive immune fuzzy quasi-sliding mode kinematic control integrated with a PD dynamic
control for the trajectory tracking and the leader-follower formation control by nonholonomic differential-drive wheeled mobile
robots under incidence of uncertainties and disturbances. An immune regulation mechanism bio-inspired approach with reaction
effect established by novel fuzzy rules set to adjust the control effort adaptively is designed, also using a fuzzy boundary layer
and introducing an adaptation law for the immune portion gain online adjustment in such a way that they can also avert parameter
drift, dealing with the drawbacks of a classic first-order sliding mode control, suppressing chattering and still maintaining the
robustness with no a priori knowledge of the bounds of the disturbances. An obstacle avoidance strategy with a reactive method
and variable avoidance radius is also proposed. The stability analysis is performed based on the Lyapunov theory. Simulation
and experimental results demonstrate the proposed control effectiveness.

Keywords – Wheeled mobile robots, Sliding mode control, Leader-follower formation tracking control, Artificial immune
systems, Uncertainties and Disturbances, Obstacle avoidance.

1 Introduction

The differential drive wheeled mobile robot (DWMR) is a nonholonomic system and, despite the movement constraints, it is
characterized by a simple and low-cost mechanical structure, widely applied in control experiments [1]. In this paper, for the
trajectory tracking control problem, is described a robust first-order sliding mode kinematic control (here simply denoted by
SMC), depicted by a high-speed switching control law, whose task is to drive the trajectory of states onto a specified region of
state-space (known as sliding surface) and keeping it there (a property called by sliding mode) [2]. The extension to the formation
control by multiple robots is addressed by adopting the leader-follower separation-bearing strategy for simplicity and the fact
that its disadvantage associated with direct error propagation does not significantly affect formations with few DWMRs [3].
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Some studies can be cited considering the sliding mode technique in controllers applied to solving these control tasks. For
trajectory tracking, a sliding mode kinematic controller using a S-type continuous function instead of signum function and
proportional-integral (PI) sliding variable is proposed in [4]. It is proposed, in [5], a sliding mode controller based on a double
power reaching law to achieve a higher convergence rate, being the variation in control gains based on an exponential term,
and, in replacement of the sign function, the hyperbolic tangent function and another continuous function are applied. Different
controllers are proposed in [3] for trajectory tracking and leader-follower formation control, designing adaptive fuzzy systems
and neural networks to replace the sliding mode portion of the SMC. The trajectory tracking for a tracked vehicle is addressed
in [6], proposing a backstepping kinematic control and, for dynamic control, a SMC considering PI-type sliding surfaces, a
continuous approximation replacing the sign function and optimal evaluation of control gains. A backstepping kinematic control
is also designed in [7] for a leader-follower formation control of nonholonomic WMRs, and a fractional order SMC with a PI-
type sliding surfaces and gains adjusted by a fuzzy system is proposed for dynamic control. In [8], a SMC with a PI sliding
variable is also applied for dynamic control, and a self-tuning backstepping controller is employed for kinematic control. In [9],
a kinematic controller using the sliding mode technique with a particular sliding variables design is proposed in solving the
formation tracking control based on local interactions. In these last two works, a continuous approximation function replaces the
sign function, but the control gains are chosen as constants, and a suitable value must still be selected for them.

Considering the importance of leader DWMR safety in the proposed formation control, obstacle avoidance is another perti-
nent problem required to develop evasive strategies so that the robots can perform their tasks safely. Most works address obstacle
avoidance separately from trajectory tracking, generally considering it in the context of autonomous robot navigation problems,
determining a reasonable collision-free path between an initial and a final point, such that the robot must reach the target des-
tination. Either way, it is not an easy task because, to ensure the robot’s movement, safety, flexibility, and reliability, it is also
important to consider the robot’s nonholonomic constraints [10,11]. This paper proposes a strategy based on a reactive approach
to avoid collisions of the leader DWMR with static obstacles while tracking the reference trajectory at execution time.

Moreover, an interesting concept is to take inspiration from nature to design controllers capable of achieving their goals
without using unnecessary efforts and loss of performance [12].

The artificial immune system (AIS) is an example of a bio-inspired intelligent information processing system, stated in [13] at
the beginning of this last decade, as an emerging field of research on control, optimization, pattern recognition, and classification.
The adaptive humoral/feedback immunity model was widely applied in PID-type controllers gain adjustment as in [14] for a
DWMR control (but without considering effects of the uncertainties and disturbances), and [15–20], for other control systems,
to mention a few. However, there is a scarcity of works that combine this type of AIS scheme and the SMC design for DWMRs,
being seen applied to different systems and problems in [21–25].

The main contribution of this paper is an adaptive robust control design (denoted by AIFQSMC) for the DWMRs, based on
the combination of the sliding mode control technique, artificial immune systems, and fuzzy logic in solving problems of leader-
follower formation control, trajectory tracking, obstacle avoidance, robustness to the incidence of uncertainties and disturbances,
mitigation of the chattering and also addressing the issue of parametric drift in gain adaptation. To achieve this main contribution,
developments judged necessary and no less important are detailed in the following: a simple fuzzy boundary layer approach
using saturation function is determined to replace the discontinuous function of the sliding mode portion, significantly avoiding
the chattering phenomenon; an AIS scheme is designed for automatically adjusting the gain of the sliding mode portion inspired
by an immune response model through a simple fuzzy inference system (FIS) with a new set of fuzzy rules designed according
to the immune regulation mechanism, making it feasible to adjust the magnitude of the control effort adaptively and maintaining
robustness without requiring any a priori knowledge of the bounds of the uncertainties and disturbances or time delays, and
attenuating the chattering; an obstacle avoidance strategy based on a reactive method and a variable avoidance radius expansion
is proposed to prevent the leader DWMR from colliding with circular-shaped static obstacles distributed along the trajectory while
tracking; an adaptation law is established for immune portion gain online adjustment that avoids the parameter drift problem, with
its obtaining, within the control law, derived from the the stability analysis of the closed-loop control system through Lyapunov’s
theory; the effectiveness of the AIFQSMC is evaluated by means of simulations in Matlab/Simulink and experimental simulations
using Gazebo/ROS considering kinematic and dynamic models of the PowerBot DWMR, also compared with the SMC and
another adaptive controller. Furthermore, alternatively to [26], an auxiliary reference angular velocity is calculated from the
inverse kinematics for the leader and followers DWMRs, which allows the formation to maneuver respecting the nonholonomic
constraint of non-slipping and considering issues primarily related to the orientation of each DWMR while making a turn.

It is essential to point out that this paper also describes the problem of integrating the AIFQSMC (kinematic control) with a
PD control (dynamic control). Similarly to [27], the kinematic control generates velocity control signals to compensate posture
tracking errors, providing robustness. They are also set as the references for the dynamic controller, which generate forces and
torques that act on the DWMRs to compensate auxiliary tracking velocity errors. As a requirement, the PD control must ensure
a stable and fast-tracking of the references despite neglected dynamics to improve the robustness against chattering.

This paper is organized as follows. Section 2 presents the DWMR modeling and the description of the trajectory tracking and
formation control problems. In the Section 3, the kinematic and dynamic control structures (SMC and PD control) are presented.
The Section 4 is dedicated to performing the control design considering the AIS-inspired approach. The Section 5 describes the
separation-bearing modeling. Obstacle avoidance by the leader DWMR is treated in Section 6. The simulation results are shown
and analyzed in Section 7, and Section 8 concludes this study.
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2 Problem Formulation

The leader DWMR is indicated by the subscript i, and the follower DWMRs are identified by subscript j. When the equations
refer to the leader only or about modeling the DWMRs in general, without loss of generality, the subscript i will be omitted for
readability.

2.1 Kinematic and Dynamic Models of the DWMR

A posture model in space state of DWMRs with uncertainties is described by [3, 28]:[
q̇
v̇

]
=

[
J(q)v

−M
−1

(q)
(
H(q, q̇)v + τ b

)]+

[
0

M
−1

(q)E(q)

]
τ , (1)

where q = [x y θ]
T is the posture vector, with the coordinates of the DWMR, (x, y), and orientation, θ; v = [vl ωa]

T

is the DWMR velocity vector; τ = [τr τl]
T is the torque vector, with the torque in the right wheel, τr, and left wheel,

τl; τ b = ∆M(q)v̇ + ∆H(q, q̇)v + τd as in [28], representing uncertainties and disturbances on the DWMR’s dynamics;
J(q) = [cos(θ) sin(θ) 0;−d sin(θ) d cos(θ) 1]T is the Jacobian matrix, being d the distance between the center of mass
and the intersection point of the symmetry axis of the robot and the wheel axis; M(q) = [m 0; 0 − md2 + I] and H(q, q̇) =
[0 − dmθ̇; dmθ̇ 0] are known smooth nominal functions associated to the inertia and the centripetal and Coriolis matrices,
respectively, being m the mass of the DWMR and I the moment of inertia; and E(q) = [r/2 r/2; r/2b − r/2b] is an input
transformation matrix, being r the radius of the actuated wheels and b the distance from the center of an actuated wheel to the
DWMR symmetry axis;

The DWMR posture model, Eq. (1), presents the kinematics and dynamics in the first and second lines, respectively, pointing
out that the posture model will be used as the basis for the controllers synthesis only.

2.2 Trajectory Tracking

The reference trajectory is generated by a virtual DWMR with the reference posture and velocities known. The aim is to find a
smooth velocity control vc such that limt→∞(qe) = 0, where qe is the posture error and vr is the reference velocity vector. Then
the control torque for Eq. (1) is computed such that v → vc as t → ∞ [27].

2.3 Leader-Follower Formation Control

The aim of separation-bearing formation control is to find a velocity control input vcj for the follower DWMR j such that [29]:
limt→∞(Lijd − Lij) = 0 and limt→∞(Ψijd − Ψij) = 0, where Lij and Ψij are the measured separation distance and bearing
angle of the follower j to leader i, with Lijd and Ψijd being desired separation distance and bearing angle respectively. This
same smooth velocity input vcj must also satisfy limt→∞(qrj − qj) = 0. Then torque τj for dynamics, Eq. (1), is computed so
that limt→∞(vcj − vj) = 0 [3].

3 Leader Control Design

3.1 Dynamic Control

The dynamic controller aims to compensate the known torques and forces to ensure fast-tracking of the auxiliary velocity tracking
errors, ve. For the PD control design, as in [3, 27, 28, 30], one considers:

τ = E(q)−1u , (2)

applied to the system, Eq. (1). To achieve fast convergence of vc, the vector u = [uv uω]
T is a control input that will be designed

as the PD control, being generated in frequency domain by Cv(s) =
v(s)
uv(s)

= (kpv
+ kdv

Nv)/(1 +
Nv

s ) and Cω(s) =
ω(s)
uω(s) =

kpω
+ (kdω

Nω)/(1 + Nω

s ) with ve = vc − v, the proportional gains kpv
and kpω

, the derivative gains kdv
and kdω

, and the
derivative filter parameter gains Nv and Nω being positive and adjusted to achieve stability with good time response performance
despite the neglected dynamics, avoiding chattering [28].

This dynamic controller ensures fast convergence of auxiliary velocities tracking errors, as seen in [27,28,30], and it is proved
asymptotically stable by Lyapunov’s theory considering a constant reference velocity [3]. However, in this paper, the reference
velocities are time-varying, which implies the stability of the closed-loop system loses its asymptotic feature. For this reason,
the residual error will be handled by the SMC. It is also noteworthy that the kinematic control could handle the entire control
problem without the

dynamic control, but since the considered PowerBot DWMR is a closed platform with an internal dynamic control architec-
ture, that is, the control of motor torques is not allowed, the use of PD dynamic controller, as built into the robot, is maintained
in the implementations to carry out the simulations.
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3.2 Kinematic Control - SMC

The leader kinematic control aim is to set the velocities required so that the DWMR can track the virtual DWMR. Being
qr = [xr yr θr]

T and vr = [vlr ωar]
T as the reference posture and velocity vectors respectively, the virtual DWMR kine-

matics is modeled as:

q̇r =

ẋr

ẏr
θ̇r

 =

cos(θr) 0
sin(θr) 0

0 1

[
vlr
ωar

]
. (3)

Based on the reference and DWMR postures, the posture tracking errors are obtained in the inertial frame to the DWMR
frame, and then the leader DWMR i posture error is obtained as:

qe =

xe

ye
θe

 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

xr − x
yr − y
θr − θ

 . (4)

Due to nonholonomy and d ̸= 0, the leader orientation will not be equal to the virtual DWMR orientation while making a
turn, and the reference orientation cannot be as θr = θ [26]. So, from the inverse kinematics, auxiliary reference velocities can
be given as: [

v∗lr
ω∗
ar

]
=

[
vlr cos(θ

∗
r − θr)

−1

d
vlr sin(θ

∗
r − θr)

]
. (5)

Since the “perfect velocity tracking” (v = vc) does not hold into practice, some bounded auxiliary velocity tracking errors ve
are generated, which can be transcribed as effects of the uncertainties and disturbances d̃0 for the kinematics [27]. Thus, based
on a generic modeling of nonlinear systems, the error dynamics of the closed-loop system is obtained as follows:

q̇e = A0(qe, t) +B0(qe, t)vc(t) + db(q, t)ẋe

ẏe
θ̇∗e

 =

vlr cos(θe)vlr sin(θe)
ω∗
ar

+

−1 ye
0 −(d+ xe)
0 −1

[
vlc + d̃0v
ωac + d̃0ω

]
, (6)

where A0(qe, t) and B0(qe, t) refer to the vector and matrix of nominal parameters, respectively, and vc(t) is the vector of
control inputs. The effects of the disturbances d̃0v and d̃0ω are assumed to be bounded by positive constants as |d̃0v | ≤ d̃0Mv

and
|d̃0ω | ≤ d̃0Mω

, or norm-bounded by ∥d̃0∥ ≤ d̃0M .
Having the posture error dynamics established, with θ∗e = θ∗r − θ, the sliding surfaces are chosen as:

σ =

[
σv

σω

]
=

[
λ1xe

λ2ye + λ3θ
∗
e

]
, (7)

where λ1, λ2 and λ3 are positive constants.
Using Eqs. (6) and (7), one has:

σ̇(qe, t) =
∂σ(qe, t)

∂qe
q̇e +

∂σ(qe, t)

∂t

= A0σ +B0σvc + dσ +
∂σ

∂t

, (8)

where A0σ = ∂σ
∂qe

A0, B0σ = ∂σ
∂qe

B0 and dσ = ∂σ
∂qe

db =
∂σ
∂qe

B0d̃0 represents the effects of the uncertainties and disturbances on
the system.

However, to solve a nonsingularity problem of B0σ , as described in more detail in [3,27], new sliding surfaces (σ∗ = [σ∗
v σ∗

ω]
T )

are required to be established as:

σ∗ = BT
0σσ;

σ∗
v = −λ2

1xe (9)
σ∗
ω = λ2

1yexe − [λ2(d+ xe) + λ3] (λ2ye + λ3θ
∗
e)

It is pointed out that the SMC aims to obtain a sliding motion restricted to σ(qe, t) → 0, σ̇(qe, t) → 0, σ∗(qe, t) → 0 and
σ̇∗(qe, t) → 0.

For the stability analysis, the Lyapunov candidate function is selected as:
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V =
1

2
σTσ , (10)

which is positive definite (V > 0).
The control law is derived as [3, 27]:

vc = −B−1
0σ

A0σ︸ ︷︷ ︸
equivalent control

− G sign(σ∗)︸ ︷︷ ︸
sliding mode

−Pσ∗︸︷︷︸
reaching mode

, (11)

where sign(σ∗
n) = |σ∗

n|/σ∗
n and

A0σ =

[
λ1vlr cos(θe)

λ2vlr sin(θe) + λ3ω
∗
ar

]
, (12)

B−1
0σ

=

−
1

λ1
− ye
λ2(d+ xe) + λ3

0 − 1

λ2(d+ xe) + λ3

 , (13)

where λ2 = λ3 ασ , with 0 ≤ ασ ≤ 1/(||d+ xe||+ 1), need to be satisfied for the matrix B−1
0σ

to always be nonsingular.
By differentiating Eq. (10), considering Eq. (8) and the control law Eq. (11), one obtains:

V̇ = σT σ̇ = −σ∗T

Gsign(σ∗)− σ∗T

Pσ∗ + σ∗T

d̃0

≤ −σ∗T

Pσ∗ −
(
λmin{G} − d̃0M

)
∥σ∗∥.

(14)

Since σ∗T

Pσ∗ ≥ 0, the condition V̇ ≤ 0 is satisfied when λmin{G} > d̃0M , being λmin{G} the minimum singular value
of G and d̃0M , the maximum effects of the disturbances. Hence, it can be seen that if the uncertainties are better estimated, the
results will be better [27].

4 AIS Inspired Control Design

4.1 Humoral Immune Response Mechanism

The main role of the biological immune system (BIS) is to identify and eliminate foreign bodies called antigens, being the
collective and coordinated response of the cells responsible for it known as immune response. There are two types of immunity
[31]: As the first line of defense, the innate immune system reacts to all pathogens; the adaptive immune system is directed
against specific antigens whose immune responses are classified into cell-mediated immunity and humoral immunity. This paper
considers the last one to design the proposed AIS control structure. The cells responsible for adaptive humoral immunity are
white blood cells (leucocytes) called lymphocytes, being the main ones B cells and T cells. The B cells are associated with the
production of antibodies (Ab) that attack a specific antigen (Ag). Meanwhile, T cells need antigen-presenting cells (APC) to be
activated. The immunity regulation is mainly performed by T helper cells (Th), which secrete interleukin IL+ that stimulate B
cells to produce antibodies, and suppressor T cells (Ts), which, by producing interleukin IL−, restrict the action of Th and B
cells to prevent excessive immune responses, leading to the response stabilization. The simplified humoral immunity behavior
can be illustrated according to Fig. 1.

Figure 1: Illustrative diagram of humoral immunity.

Generally, projects of AIS based on this type of mechanism focus on the restrictive action on B cells. So, similarly to [16],
the corresponding parts of humoral-type AIS structure can be obtained as follows:
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Th = kh(ε); (15)
Ts = ks(ε)f(ε,∆ε); (16)

SB = Th − Ts

= kh(ε)− ks(ε)f(ε,∆ε)

= kh(ε)[1− ηf(ε,∆ε)]

, (17)

where η = ks(ε)/kh(ε) is a proportionality factor describing the interaction between Th and Ts cells, ε is the amount of the
antigens and ∆ε its variation, Th and Ts denotes the action of Th and Ts cells respectively, SB is the total stimulation received
by B cells, kh is the enhancing factor, ks is the supressing factor and f(·) is a nonlinear function that represents the immune
reaction effect. Table 1 outlines the control system course compared to the immune regulation process [20, 32].

Table 1: Immune reactions and adaptive control comparative.

Immune reaction Adaptive control
Facing an invasion of foreign materials, when the first line of
defense (innate immunity) fails, the amount of antigens is higher,
and the production of antibodies is expected to increase rapidly,
so the inhibitory action of Ts cells must be contained to promote
greater stimulation.

If robustness fails (control action is unsatisfactory or
system is unstable or disturbed), an estimate of the
limits of the disturbances is presented to generate an
“antibody” equivalent to modifying the control sys-
tem.

With antigen reduction, the amount of antibodies is not expected
to increase continuously. In other words, the containment on Ts

cells should decrease.

Based on some performance measure, the parameters
of the control system can be adaptively adjusted.

When most of the antigens have been removed, the suppression
stimulus of Ts cells is expected to rapidly increase to restrict B
cells and antibody production, stabilizing the immune reactions.

When the observed errors indicate a reduction, the
control system output is computed to minimize con-
trol efforts and achieve control system stability.

4.2 Adaptive Immune Fuzzy Quasi-Sliding Mode Control (AIFQSMC)

Given the concepts described, this humoral immune mechanism can be introduced for adaptive regulation of the sliding mode
portion gain to minimize the control efforts and compensate for disturbances.

For this, it was established that the amount of the antigens is the sliding surface σ∗, as in [21–25], and total stimulation
received by B cells for antibody generation corresponds to the sliding mode portion gain (GAIS = kh − ksf(σ

∗, σ̇∗)) as shown
in Fig. 2.

Figure 2: Proposed AIS control structure.

It can be seen that the nonlinear function f(·) plays an important role related to the regulation of the stimulus received by
B cells since the reaction can be defined by the activation or containment of the effect of Ts cells. In some works, f(·) is
described by an exponential function based on antigen consistency as in [17, 22, 23, 25]. A fuzzy system is alternatively used as
in [15–21,24], which usually considers the total stimulation received by B cells and its variation with an immune response delay.
In this paper, it is proposed the reaction effect based on the antigen amount and its variation, without the need to apply a time
delay, as illustrated in Fig. 2, according to the principles described in Section 4.1.

So, taking advantage of the universal approximation property, simplicity, and intuitive linguistic interpretation, a Mamdani
FIS is designed to compute the nonlinear function f(σ∗, σ̇∗). With N input variables, M output variables, and triangular
membership functions, by adopting the singleton fuzzification, the product inference engine, the center average defuzzification
method, and a set of K “if...then...” fuzzy rules, the mth crisp output of the FIS, ym, can be obtained by [33]:
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ym =

∑K
k=1 c

(k)
m sk∑K

k=1 sk
= CT ξ(x) , (18)

where c
(k)
m is the center value of the mth output membership function (MF) in the kth fuzzy rule, sk =

∏N
n=1 µ

(k)
n (xn) is

the product of MFs’ mappings for all input variables in the kth fuzzy rule, being µn the membership function of the input
xn (n = 1, . . . , N ) and ξ(x) =

(
ξ(1)(x), . . . , ξ(K)(x)

)T
is a regressive vector with ξ(k)(x) = sk/

∑K
k=1 sk.

In this paper, the non-linear function f(·) is the output of the fuzzy controller, whereas σ∗ and σ̇∗ are the inputs. The fuzzy
rules were designed according to the immune regulation mechanism principles summarized in Table 1 and can be inferred as
shown in Table 2, where NB is Negative Big, NM is Negative Middle, NS is Negative Small, ZO is Zero, PS is Positive Small,
PM is Positive Middle and PB is Positive Big. Since σ∗ can assume positive and negative values, it can be interpreted, in
summary, that there is an antigen amount in distinct semi-cycles: positive and negative. This means that a positive value for σ∗

and a positive variation (σ̇∗ > 0), or a negative value for σ∗ and σ̇∗ < 0 denote an increase in antigen amount, whereas σ∗ > 0
and σ̇∗ < 0, or σ∗ < 0 and σ̇∗ > 0 indicates a reduction in antigens amount. If σ∗ and σ̇∗ are close to zero, respectively, it
indicates that there is no significant amount and no significant variation has occurred.

Moreover, f is bounded, and f ≤ 0 represents a containment of the suppression effect, that is, the stimulus is enhanced,
whereas f > 0 denotes a promotion of the inhibitory effect to smooth the control effort.

Table 2: Fuzzy rules for nonlinear function f(·)

σ̇∗

σ∗ NB NS ZO PS PB
NB NB NM NM NS NS
NS NM NS ZO PS ZO
ZO ZO PS PM PS ZO
PS ZO PS ZO NS NM
PB NS NS NM NM NB

Terms kh and ks can be positive constants, as in [21] and [24], but can also be variables based on antigens amount (e.g.,
linear/nonlinear function or adaptive parameter), as in [22], [23], [25]. In this paper, gains ks are considered positive constants,
and avoiding the choice by trial and error, an adaptation law is proposed to estimate online the gains kh.

In the proposed controller, sign(σ∗) was replaced by sat(σ∗), whose nth element is defined as:

sat(σ∗
n) =

sign(σ∗
n) if |σ∗

n| > βn

σ∗
n

βn
if |σ∗

n| ≤ βn
, (19)

in which βn > 0 defines the nth value of the boundary layer thickness. This alternative has a price that the attractiveness is no
longer ensured to zero but to a closed region defined by the boundary layer (BL), in which the discontinuous control signal is
smoothed [34, 35].

The AIFQSMC control law can be established as follows:

vc = −B−1
0σ

A0σ − ĜAISsat(σ
∗)− Pσ∗ (20)

where ĜAIS = k̂h−ksf(σ
∗, σ̇∗) is described by diagonal matrices. Alternatively, ĜAIS = k̂h[1− η̂f(σ∗, σ̇∗)], with η̂ = ks/k̂h.

A possible unboundedness of gains estimates when the PE condition fails to hold (signals are not persistently exciting) is
known as parameter drift, which can be caused by non-idealities on the system, being characterized as one of the significant
problems associated with parametric uncertainties [36, 37]. To deal with the mentioned parameter drift, based on the approach
of [38], the proposed adaptation law for nth estimated value k̂h can be as:

For |σ∗
n| > βn,

˙̂
khn

=

{
Γhn |σ∗

n|sign(|σ∗
n| − ϵn) if k̂hn > khn

khn
if k̂hn

≤ khn

(21)

and, for |σ∗
n| ≤ βn,

˙̂
khn =

{
Γhn

(|σ∗
n|2/βn)sign(|σ∗

n| − ϵn) if k̂hn
> khn

khn
if k̂hn

≤ khn

(22)

with k̂hn(t = 0) > 0, ϵn > 0, βn > 0, and a small enough positive parameter khn , which is introduced to obtain only positive
values for k̂hn

. Γhn
> 0 is a term that denotes the adaptation gain, which may be related to the adjustment rate of the adaptive
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parameter, with its increase usually influencing the reduction of convergence time, but paying attention that values that are too
high can induce unnecessary overcharging. It is worth remembering that, according to the approach used in the adaptation law,
there is not only an increase factor but also a reduction factor for the adaptive gain, which is inserted within the AIS as one of the
parts that make up the gain ĜAIS .

The adaptation laws, by Eqs. (21) and (22), allow not only the gain k̂hn
increasing but also declining due the additional term

sign(|σ∗
n| − ϵn). The gain k̂hn

increases while |σ∗
n| > ϵn and decreases while |σ∗

n| < ϵn. So, since the change in the value of

k̂hn is determined by ˙̂
khn , it tends to be smaller as |σ∗

n| approaches ϵn and the adaptation process stops when the sliding variable
reaches it (|σ∗

n| = ϵn) [38, 39]. In other words, the gain will be kept at the smallest level, allowing a determined accuracy of
σ∗-stabilization at an eminent cost that this approach ensures a real sliding mode only. It is assumed succinctly that the sliding
variable tends to converge into a region delimited by a margin around zero [40, 41]. When considering the individual adaptive
gain (k̂h), the main focus is not to use it precisely to estimate the bounds of the uncertainties and disturbances [42]. Since the
gain is inserted in an immune-inspired approach in this work, the estimation of the control effort magnitude for compensatory
effect is handled by the AIS gain as a whole, i.e., ĜAIS .

It may also be convenient to tune the boundary layer thickness. In [43], a chattering measure is introduced as the absolute
value of the derivative of the control signal, |v̇c|, considered as a FIS input variable with the sliding surface to compute the
boundary layer alteration. With an exponential relation to regulate the control effort of the reaching law, this concept also
inspired the conception of the AIS-based SMC in [25]. Although this approach suggests more dynamic adaptability by taking
into account the chattering level, and since the immune control already relies on a regulation process from the function f(·) by
a FIS, to provide an online adjustment of the boundary layer thickness, also avoiding time delays, it was opted to implement a
Mamdani FIS considering as input only the absolute value of sliding surfaces |σ∗

n| with the boundary layer thickness βn as the
output variables, similarly to [44].

For the FIS design, the following principles can be brought up [25, 44]: When the sliding surface is far from the sliding
manifold σ∗

n = 0, a thin BL is required for a faster convergence; When it is closer to the sliding manifold σ∗
n = 0, a larger

boundary layer is desired to mitigate chattering. According to these concepts, the fuzzy rules are designed as presented in Table
3, where VB means Very Big, B is Big, M is Middle, S is Small, and VS is Very Small [44].

Table 3: Fuzzy rules (adaptive variable boundary layer)

Rule Antecedent Consequent
R1 IF |σ∗

n| is VB THEN βn is VS
R2 IF |σ∗

n| is B THEN βn is S
R3 IF |σ∗

n| is M THEN βn is M
R6 IF |σ∗

n| is S THEN βn is B
R5 IF |σ∗

n| is VS THEN βn is VB

The fuzzy output is obtained similarly to the Eq. (18). Just note that, while in the FIS designed for AIS function f(·), each
output is related to two inputs (i.e., fv to σ∗

v and σ̇∗
v as well as fω is to σ∗

ω and σ̇∗
ω ), this fuzzy system used to compute the

boundary layer values have each output associated to only one input (i.e., βv to |σ∗
v | and βω to |σ∗

ω|). Moreover, since it is
computed by a Mamdani FIS, βn is bounded such as 0 ≤ βnm

≤ βn ≤ βnM
.

Another point is that the parameter ϵ, in Eqs. (21) and (22),
is also called a boundary layer because of gain adaptation behavior as a function of the relation between the sliding surface

and a margin value determined by ϵ, but pointing out that it can be different from the boundary layer used in the continuous
function replacing the discontinuous switching function [45]. Both are chosen to find a trade-off between accuracy and chattering
reduction, but keep in mind that, in this work, the selection of ϵ is also related to parameter drift avoidance. The gain adaptation
according to σ∗ about ϵ can be described as follows. If ϵ is very small, σ∗ may fluctuate so that ∥σ∗∥ > ϵ and then the gain may
increase too much, inducing chattering or even instability. If ϵ is too large, the gain tends to reduce quickly, preventing it from
continuing to grow for a long time, but the accuracy may be not good as possible since the system sensitivity is reduced, that is,
stimulus activation for compensation of the disturbances only happens if the sliding surface becomes greater than a high value
of margin, and gain takes longer to increase and act to reduce errors [38, 46, 47]. In [38, 47], a ϵ-tuning procedure is proposed.
Differently, in this work, as the saturation function approach in a quasi-sliding mode control is being used, it aims that the σ∗

is attracted and remains inside the boundary layer. In this way, it can be assumed the conception that when the sliding surface
gets out of the boundary layer, the stimulus action should be enhanced, making the gain k̂h increase. An indicator of system
stability is when σ∗ is within the boundary layer, where the gain can stop increasing and decrease. Then, it was decided to adopt
a constant value for the parameter ϵ as a margin that will define the increase or reduction of k̂h. Accordingly, for each nth value,
it is advisable to adopt ϵn ≥ βn, looking for a trade-off between performance, chattering, and parameter drift avoidance. So,
seeing that a fuzzy boundary layer was applied, an apt value would be ϵn = βnM

. The AIFQSMC scheme can be illustrated by
Fig. 3 for better visualization. Furthermore, in the sequel, similarly as in [38], for discussion and stability analysis proof, and
without loss of generality but for the sake of clarity, it is assumed that k̂hn(t) > khn for all t > 0. As soon, it is seen that a lower

bound for k̂h is evident since, by Eqs. (21) and (22), if its nth value k̂hn
≤ khn

, then ˙̂
khn

is delimited by a minimum value khn
.

For the stability analysis, the Lyapunov candidate function is chosen as:
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Figure 3: Sliding mode portion of the proposed AIFQSMC control structure.

V =
1

2
σTσ +

1

2

N∑
n=1

k̃Thn
Γ−1
hn

k̃hn
. (23)

Since Γhn
> 0 for all n, one checks that V is positive definite (V > 0). k̃hn

define the nth gain estimation error, given as:

k̃Thn
= k̃hn

= k̂hn
− khn

. (24)

Differentiating V (Eq. (23)), considering Eq. (8) and ∂σ
∂t = 0, one has:

V̇ = σT σ̇ +

N∑
n=1

k̃hn
Γ−1
hn

˙̃
khn

= σ∗T

B−1
0σ

A0σ + σ∗T

(vc + d̃0) +

N∑
n=1

k̃hnΓ
−1
hn

˙̂
khn .

(25)

Replacing the control law, Eq. (20), one has:

V̇ = −σ∗T

(k̂h − ksf)sat(σ
∗)− σ∗T

Pσ∗ + σ∗T

d̃0 +

N∑
n=1

k̃hn
Γ−1
hn

˙̂
khn

. (26)

In the case |σ∗
n| > βn, one has sat(σ∗

n) = sign(σ∗
n). Selecting the adaptation law from Eq. (21), by replacing it in Eq. (26),

one yields to:

V̇ = −σ∗T

(k̂h − ksf)sign(σ
∗)− σ∗T

Pσ∗ + σ∗T

d̃0 +

N∑
n=1

k̃hn
|σ∗

n|sign(|σ∗
n| − ϵn) . (27)

With σ∗T

d̃0 =
∑N

n=1 d̃0nσ
∗
n ≤

∑N
n=1 d̃0Mn

|σ∗
n| and σ∗T

(k̂h − ksf)sign(σ
∗) =

∑N
n=1(k̂hn

− ksnfn)|σ∗
n|, one results in:

V̇ ≤ −
N∑

n=1

[
(k̂hn − ksnfn)|σ∗

n| − d̃0Mn
|σ∗

n|
]
− σ∗T

Pσ∗ +

N∑
n=1

k̃hn |σ∗
n|sign(|σ∗

n| − ϵn) . (28)

By considering the case in which |σ∗
n| > ϵn, one has that sign(|σ∗

n| − ϵn) = 1, then obtaining:

V̇ ≤ −
N∑

n=1

[
(k̂hn − ksnfn)|σ∗

n| − d̃0Mn
|σ∗

n|
]
− σ∗T

Pσ∗ +

N∑
n=1

k̃hn |σ∗
n| . (29)

One checks that σ∗T

Pσ∗ ≥ 0. But, for V̇ ≤ 0, the following conditions must be satisfied:

N∑
n=1

(k̂hn
− ksnfn) ≥

N∑
n=1

d̃0Mn
and

N∑
n=1

k̃hn
|σ∗

n| ≤ 0 . (30)

For this condition to be met, seeing estimation error,
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N∑
n=1

k̃hn
|σ∗

n| =
N∑

n=1

(k̂hn
− khn

)|σ∗
n| ≤ 0 . (31)

Thereby, if k̂hn
≤ khn

and k̂hn
− ksnfn ≥ d̃0Mn

for all n, then V̇ ≤ 0.
This suggests that there should be an ideal value represented by the scalar khn such that khn ≥ k̂hn . To make it clearer, it is

also possible to rewrite the V̇ , Eq. (29), taking into account the gain estimation error and calling pσ = σ∗T

Pσ∗, one yields to:

V̇ ≤ −
N∑

n=1

[
(k̂hn

− ksnfn)|σ∗
n| − d̃0Mn

|σ∗
n|
]
− pσ +

N∑
n=1

(k̂hn
− khn

)|σ∗
n|

≤ −pσ −
N∑

n=1

[
(khn − ksnfn)|σ∗

n| − d̃0Mn
|σ∗

n|
]

.

(32)

Thus, being pσ ≥ 0, if khn
− ksnfn ≥ d̃0Mn

> 0 for all n, then V̇ ≤ 0 is satisfied.
When considering the case where |σ∗

n| < ϵn, one has that sign(|σ∗
n| − ϵn) = −1, Eq. (28), becomes:

V̇ ≤ −
N∑

n=1

[
(k̂hn

− ksnfn)|σ∗
n| − d̃0Mn

|σ∗
n|
]
− σ∗T

Pσ∗ −
N∑

n=1

k̃hn
|σ∗

n| . (33)

To obtain V̇ ≤ 0, since σ∗T

Pσ∗ ≥ 0, the following conditions must be satisfied:

N∑
n=1

(k̂hn
− ksnfn) ≥

N∑
n=1

d̃0Mn
(34)

and, considering the gain estimation error as Eq. (24),

N∑
n=1

k̃hn |σ∗
n| =

N∑
n=1

(k̂hn − khn)|σ∗
n| ≥ 0 . (35)

Thus, if k̂hn
≥ khn

and k̂hn
− ksnfn ≥ d̃0Mn

for all n, then V̇ ≤ 0. Similarly, when considering the case where |σ∗
n| = ϵn,

one has that sign(|σ∗
n| − ϵn) = 0, thus V̇ , Eq. (28), becomes:

V̇ ≤ −pσ −
N∑

n=1

[
(k̂hn − ksnfn)|σ∗

n| − d̃0Mn
|σ∗

n|
]

. (36)

Since pσ ≥ 0, for V̇ ≤ 0, the condition k̂hn
− ksnfn ≥ d̃0Mn

has to be met for all n.
Now, by analysing the case in which |σ∗

n| ≤ βn, one has that sat(σ∗
n) = σ∗

n/βn. Thus, with similar procedures previously
performed, replacing the adaptation law, Eq. (22), the Eq. (26) becomes:

V̇ = −σ∗T

(k̂h − k̂sf)
σ∗

β
− σ∗T

Pσ∗ + σ∗T

d̃0 +

N∑
n=1

k̃hn

|σ∗
n|2

βn
sign(|σ∗

n| − ϵn) . (37)

Similarly as done to obtain Eq. (28), the Eq. (37) can be rewritten as:

V̇ ≤ −
N∑

n=1

[(
(k̂hn

− ksnfn)
|σ∗

n|
βn

− d̃0Mn

)
|σ∗

n|
]
− pσ +

N∑
n=1

k̃hn

|σ∗
n|2

βn
sign(|σ∗

n| − ϵn) . (38)

Since ϵn = βnM
was adopted, the case where |σ∗

n| > ϵn will not be treated.
When considering the case where |σ∗

n| < ϵn, one has that sign(|σ∗
n − ϵn) = −1, thus Eq. (38) becomes:

V̇ ≤ −
N∑

n=1

[(
(k̂hn − ksnfn)

|σ∗
n|

βn
− d̃0Mn

)
|σ∗

n|
]
− pσ −

N∑
n=1

k̃hn

|σ∗
n|2

βn
. (39)

For V̇ ≤ 0, since pσ = σ∗TPσ∗ ≥ 0, the following conditions also have to be satisfied for all n:

N∑
n=1

(k̂hn
− ksnfn)

|σ∗
n|

βn
≥

N∑
n=1

d̃0Mn
(40)

70



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 22, Iss. 1, pp. 61-95, 2024
© Brazilian Computational Intelligence Society

and

N∑
n=1

k̃hn

|σ∗
n|2

βn
≥ 0 . (41)

Ultimately, in the case where |σ∗
n| = ϵn, one has that sign(|σ∗

n − ϵn) = 0, thus Eq. (38) becomes:

V̇ ≤ −pσ −
N∑

n=1

[(
(k̂hn

− ksnfn)
|σ∗

n|
βn

− d̃0Mn

)
|σ∗

n|
]

. (42)

For V̇ ≤ 0, since pσ = σ∗TPσ∗ ≥ 0, the following condition also have to be satisfied for all n:

N∑
n=1

(k̂hn
− ksnfn)

|σ∗
n|

βn
≥

N∑
n=1

d̃0Mn
. (43)

Thus, in sum, some observations can be inferred. By the adaptation laws as Eqs. (21) and (22), the k̂h gains are lower bounded
by a positive minimum value. It is also seen that when |σ∗

n| > ϵn, the adaptation law resembles an usual integral-type law, and
a sufficient condition for V̇ ≤ 0 is the existence of an ideal value khn

. However, due to modeling errors, such as parametric
uncertainties, external disturbances, measurement noise, and/or non-modeled dynamics, σ∗

n does not remain at zero and may
have some oscillations along the time. Consequently, the adaptive gain exhibits the aforementioned parameter drift, which can
deviate from its ideal value and possibly to infinity, causing instability problems [48].

In an attempt to avoid this, the term sign(|σ∗
n| − ϵn) was added to adaptation integral law, allowing the gain not only to

increase but also decrease. However, note that, since in the cases |σ∗
n| < ϵn and |σ∗

n| = ϵn, the gain k̂hn
decreases and has its

update process paused respectively, the conditions Eq. (34), (35), (36), (40), (41) and (43) may not always be met, making V̇
sign indefinite in these cases and this insinuates that it is not always possible to conclude on the closed-loop system stability. If
V̇ > 0, V grows and then |σ∗

n| can increase and become larger than ϵn. Therefore, with the proper conditions, V̇ ≤ 0 can be
satisfied, and then, V starts to decrease, denoting an increase-decrease behavior of the adaptive gain dynamics. Note further that
conclusions cannot be drawn regarding the convergence of k̂hn

to its ideal value khn
, indicating that the existence of uncertainties

in the estimation of gains causes errors to occur when t → ∞. Even so, they remain bounded, as suggested by the dynamics of
adaptive gain.

5 Leader-Follower Trajectory Tracking Control

To avoid collisions between the DWMRs, the distance Lij is measured from the center of the wheels axis of the leader DWMR i
to the center of the front of the follower DWMR j. So, Lij and Ψij can given as [3]:

Lij =
√
L2
ijx + L2

ijy ; Ψij = arctan

(
Lijy

Lijx

)
− θi + π ; (44)

Lijx = xiaxis
− xjfront

= xi − di cos(θi)− xj ;
Lijy = yiaxis

− yjfront
= yi − di sin(θi)− yj . (45)

The follower DWMR j kinematic model is given as:

q̇j =

ẋj

ẏj
θ̇j

 =

cos(θj) −dj sin(θj)
sin(θj) dj cos(θj)

0 1

[
vlj
ωaj

]
. (46)

Since the follower DWMR j tracks the leader DWMR i, its reference posture vector can be given as [3]:

xjr = xi − di cos(θi) + Lijd cos(Ψijd + θi) ;
yjr = yi − di sin(θi) + Lijd sin(Ψijd + θi) ;
θjr = θi . (47)

Consequently, DWMR j has its posture as [3]:

xj = xi − di cos(θi) + Lij cos(Ψij + θi) ;
yj = yi − di sin(θi) + Lij sin(Ψij + θi) ;
θj = θj .

(48)
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Seeing Eqs. (47) and (48), considering θij = θi − θj , using trigonometric transformations and simplifications, the posture
error vector qej is described by:

qej =

xej

yej
θej

 =

Lijd cos(Ψijd + θij)− Lij cos(Ψij + θij)
Lijd sin(Ψijd + θij)− Lij sin(Ψij + θij)

θjr − θj

 . (49)

To obtain the error dynamics, it is necessary to calculate the derivatives of Lij and Ψij , being the desired values Lijd and
Ψijd known constants. So, calculating the time derivatives of Lijx and Lijy:

L̇ijx = vli cos(θi)− vlj cos(θj) + djωaj sin(θj) ;

L̇ijy = vli sin(θi)− vlj sin(θj) + djωaj cos(θj) .

Considering Eq. (44) and ζj = Ψij + θej , results in:

L̇ij = vlj cos(ζj)− vli cos(Ψij) + djωaj sin(ζj) ;

Ψ̇ij = L−1
ij

[
vli sin(Ψij)− vlj sin(ζj) + djωaj cos(ζj)− Lijωai

]
.

(50)

Due to the separation-bearing formation control objective and the non-slipping constraint [26], the orientations of each
DWMR in the formation will not be equal while the formation is turning. For this reason, the orientation of each DWMR
cannot be chosen in such a way that θjr = θi. Thus, from the inverse kinematics, being θ∗ijr = θi − θ∗jr, the auxiliary reference
angular velocity is obtained as ω∗

ajr = 1
dj

(
vli sin(θ

∗
ijr) + Lijdωai cos(Ψijd + θ∗ijr)

)
.

Describing q̇ej by using generic modeling of nonlinear systems and considering the effects of uncertainties and disturbances,
one has:

q̇ej = A0j (qej , t) +B0j (qej , t)vcj(t) + dbj (qj , t)ẋej

ẏej
θ̇∗ej

 =

vli cos(θij)− ωaiLijd sin(Ψijd + θij)
vli sin(θij)− ωaiLijd cos(Ψijd + θij)

ω∗
ajr

+

−1 yej
0 −(dj + xej)
0 −1

[
vlcj + d̃0vj
ωacj + d̃0ωj

]
,

(51)

From the posture error dynamics, Eq. (51), with θ∗ej = θ∗jr − θj , the sliding surfaces for the follower DWMR j is defined as:

σj =

[
σvj

σωj

]
=

[
λ1xej

λ2yej + λ3θ
∗
ej

]
; (52)

σ∗
vj = −λ2

1xej ,

σ∗
ωj

= λ2
1yejxej − [λ2(dj + xej) + λ3](λ2yej + λ3θ

∗
ej).

(53)

The control laws of the SMC and AIFQSMC for the follower DWMR j are established similarly to Eqs. (11) and (20)
respectively, emphasizing that the sliding surfaces are determined by Eqs. (52) and (53), as well as the stability analyses of
the closed-loop control systems, which are similar to the stability analyses performed for the leader DWMR i. Considering h
followers and proper assumptions as made in [3, 26, 29], the formation stability can be demonstrated utilizing the individual
Lyapunov functions and their derivatives as [3]:

Vij = (Vi + ViPD
) +

h∑
j=1

(Vj + VjPD
) , (54)

where ViPD
and VjPD

are determined as in [3] while Vi and Vj are established as Eqs. (10) and (23). Since VjPD
≥ 0 and Vj ≥ 0

for all j, and ViPD
≥ 0 and Vi ≥ 0, thus, it can be conclude that Vij ≥ 0.

Differentiating the Eq. (54), one obtains:

V̇ij =
(
V̇i + V̇iPD

)
+

h∑
j=1

(
V̇j + V̇jPD

)
, (55)

where V̇iPD
and V̇jPD

are determined as in [3] while V̇i and V̇j are established as Eqs. (14) and (25). When V̇jPD
≤ 0 and V̇j ≤ 0

for all j, and V̇iPD
≤ 0 and V̇i ≤ 0, thus, it can be conclude that V̇ij ≤ 0.
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6 Proposed Obstacle Avoidance

Considering the obstacle coordinates (xa, ya), as shown in Fig. 4, the relative distance between the DWMR i and the ath obstacle
is defined as:

dia = ∥lia∥2 =
√
(xa − xi)2 + (ya − yi)2 , (56)

where lia = [xa − xi , ya − yi]
T and ∥·∥2 is the Euclidean norm.

Some assumptions can be made as [49–51]:

1. Each mobile robot has an onboard sensing system that can detect the obstacle based on distance measurements;

2. The obstacles are detectable so that their central coordinates are known;

3. An obstacle is considered detected by the DWMR if dia ≤ Ddet, where Ddet represents the maximum measurement
distance of the range sensor attached to the DWMR;

4. The obstacles can be delimited by a circular area with radius ra;

5. The obstacles are also surrounded by an avoidance area with radius Rd that must be larger than the physical obstacles, i.e.,
Rd > ra;

6. In theory, it is considered as a collision occurrence when dia ≤ ra.

Figure 4: DWMR’s relative position to an obstacle.

The constant avoidance area radius Rd can be established taking into account the obstacle radius ra, the robot radius RR and
a safety margin δRd

as [52]:

Rd = ra +RR + δRd
. (57)

Some works propose to dynamically modify the radius of the avoidance circle around the obstacle, even if the obstacle
dimension does not vary, as in [53–55]. The possibility of expanding the Rd value is such that it allows the DWMR trajectory to
be affected in advance by the presence of the obstacle, and the collision avoidance task becomes less difficult [56].

In this work, based on the proposal of [55], with the expectation of obtaining a safe and smooth trajectory for the obstacle
avoidance, it is introduced a variable avoidance radius Rd, which is adaptively expanded depending on the velocity and direction
of movement of the DWMR concerning the obstacle. When the relative distance between the DWMR and the obstacle is greater,
there is no priority need to increase the radius value, so more attention should be directed to the trajectory tracking performance.
When the relative distance gets smaller, more attention should be paid to safety, which may be suitable for the expansion to be
larger. Also, the faster the DWMR is relative to the obstacle, the safer and smoother the movement, and the more appropriate it
may be to increase the radius. As this relative velocity decreases, the smaller the expansion can be [55].

Thus, the expansion radius is inversely proportional to the relative distance between the DWMR and the obstacle and directly
proportional to the relative velocity. So, the variable avoidance region radius Rd with a self-adaptive expansion radius rd can be
defined as [55]:

Rd = Rd + rd , (58)

rd =
κ|via|
γϱdia

(59)

where κ is a gain value, ϱ is a parameter used to adjust the denominator value, which is set as γϱdia to make the adaptive
expansion radius grow greatly when the relative distance between the DWMR and the obstacle dia becomes small. Defining the
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relative velocity between the DWMR and the obstacle by vli − vla as in [55], then via = (vli − vla) cos(ϕ) is considered the
projection of relative velocity over relative distance. Since only static obstacles are considered in this work, vla = 0. Thus, via
can be denoted as:

via = vli cos(ϕ) , (60)

in which

ϕ =

{
θi − θla if θla < θi

(θi − θla) + 2π otherwise
, (61)

where θla denotes the angle between the DWMR and the obstacle, given by:

θla = atan2(ya − yi, xa − xi) . (62)

It is advisable to limit the avoidance radius Rd so that it does not increase too much, regarding the maximum sensing range of
the DWMR, for example. For this, denoting a maximum bound value as Rb, the radius Rd (Eq. (58)) can be bounded considering
it as:

Rd = min(Rb, Rd + rd) . (63)

The reactive obstacle avoidance method is based on the one presented in [51], which is considered a switch between a
classic backstepping controller and the obstacle avoidance controller. In this work, the structure of the control remains the same,
and the reference trajectory is online re-calculated for obstacle avoidance (as usual in some reactive OA approaches [53, 57]),
consequently modifying the tracking error dynamics and then influencing the generated sliding surfaces.

The obstacle avoidance mode is activated when the DWMR is tracking the original reference trajectory and the relative
distance dia satisfies the condition:

ra < dia ≤ Rd . (64)

A vector is established to steer the DWMR in the direction of the vector described as [51]:

Ub = lia −Rd
1

dia
lia . (65)

Therefore, it can be noted that Ub is a vector pointing towards the obstacle when dia > Rd and pointing away from the
obstacle when dia < Rd, being zero when dia = Rd. It is also expected that the DWMR will drive in a direction parallel to the
boundary of the obstacle. So, another vector Uf is established as [51]:

Uf = Rf lia ; (66)

Rf =

[
cos(α) − sin(α)
sin(α) cos(α)

]
. (67)

The Eq. (67) determines Rf as a rotation matrix used to transform the vector lia to the vector Uf , being the value of α defined
by:

α =

{
π/2, θi ≥ θla

−π/2, θi < θla
. (68)

The Eqs. (62) and (68) are used to determine the fastest direction to the DWMR contour of the obstacle. When θi > θla, one
has α = π/2 and the vector Uf can be obtained by rotating the vector lia by α radians counterclockwise. With the value of α
remaining constant during obstacle avoidance, the DWMR moves towards its left side to contour the obstacle.

By combining the vectors Ub and Uf , Eqs. (65) and (66), a blending vector is obtained as [51]:

U = Ub + Uf =
[
Ux Uy

]T
. (69)

Thus, the desired motion direction of the DWMR can be obtained based on the angle of the vector U and the positive direction
of the x-axis as:

θrOA
= atan2(Uy, Ux) , (70)

where Ux and Uy are the vector components on the x and y axes respectively.
The reference linear velocity keeps the same in [51], does not changing when going from original trajectory tracking to

obstacle avoidance mode. In this work, it was chosen to reduce the linear velocity during the obstacle avoidance as recommended
in [49, 58, 59] for safe avoidance.
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Similarly to [58], a parameter 0 < ρv < 1 is used to decrease the magnitude of the desired linear velocity when the DWMR
avoids an obstacle as:

vlrOA
= ρvvlr . (71)

Note that if ρv = 1, the linear velocity remains the same as in normal trajectory tracking. It is worth mentioning that this is
a switching mechanism between different reference speeds that can end up generating discontinuities when making the DWMR
go slower when avoiding an obstacle and go faster to reach the original velocity. But, for simplicity, it was adopted here.

Considering the inverse kinematics and the reference orientation θrOA
by Eq. (70), the auxiliary reference angular velocity

of Eq. (5), when in the obstacle avoidance mode, is then established as:

ω∗
arOA

= − 1

di
vlrOA

sin(θ∗rOA
− θrOA

) . (72)

Thereby, it can be seen that obstacle avoidance occurs mainly due to a modification of the original desired DWMR’s ori-
entation, with a just reduction in the linear velocity. So, basically, for a better understanding, qr,tt = [xr,tt yr,tt θr,tt]

T and
vr,tt = [vlr,tt ωar,tt]

T can be denoted as the original trajectory tracking reference posture and velocities respectively, and
qr,oa = [xr,oa yr,oa θr,oa]

T and vr,oa = [vlr,oa ωar,oa]
T as the reference posture and velocities in the obstacle avoidance mode

respectively. Only one mode is active at a time, that is, the reference motion (qr, vr) will assume only (qr,tt, vr,tt) or (qr,oa, vr,oa).
If the condition determined by the Eq. (64) is met, obstacle avoidance mode is activated, otherwise the desired motion is pre-
scribed by the original trajectory tracking. In this way, in obstacle avoidance mode, the posture error is described similarly as
Eq. (4) with qr = qr,oa, for which it is considered Eq. (70), and the error dynamics is similar to Eq. (6) considering Eq. (72),
based on which the sliding surfaces in obstacle avoidance mode are obtained similarly to the process for Eqs. (7) and (9). With
these sliding surfaces, as the control structure remains the same, the SMC and AIFQSMC control laws are established similarly
to Eqs. (11) and (20) respectively. A variable c can be established to represent the obstacle avoidance mode state, which can be
1 if it is active and 0 otherwise.

So, a total Lyapunov function for the leader kinematic controllers can be defined as:

Vt = (1− c)Vtt + cVoa (73)

where Vtt and Voa are set by Eqs. (10) and (23).
The time derivative of Eq. (73) is denoted as:

V̇t = (1− c)V̇tt + cV̇oa (74)

where similarly V̇tt and V̇oa are established as Eqs. (14) and (26) for SMC and AIFQSMC respectively.
Accordingly, this means that, depending on which mode is active, Vt = Vtt or Vt = Voa, and V̇t = V̇tt or V̇t = V̇oa, being the

proofs that Vtt > 0, Voa > 0, V̇tt ≤ 0 and V̇oa ≤ 0 demonstrated similarly in the stability analyses performed in the Sections 3.2
and 4.2. Note also that the convergence of the original to the obstacle avoidance reference trajectory or vice versa is not treated,
assuming smoothness and convergence of the DWMR’s orientation to near surroundings of reference orientation. Thus, updating
the reference can lead to a temporary degeneration of the tracking performance, which can be seen as a disturbance effect. So, it
is up to the proposed robust controller to handle the tracking errors resulting from obstacle avoidance.

7 Implementation results

Simulation results using Matlab/Simulink software (version R2020b), with the total simulation time of 200s and the Dormand-
Prince solver, are obtained for the trajectory tracking formation control, for the leader DWMR i and the follower DWMRs j, the
embedded PD control as dynamic controller, with control law defined by Eq. (2), which can be described as

τ = E(q)−1 (kdv̇e + kpve) (75)

in time domain, integrated with the kinematic controllers SMC and AIFQSMC, with control law established as Eqs. (11) and
(20) respectively. It is pointed out that when not specified some considerations for choosing parameters are described in the
previous sections), constant gains can be optimized using the tools Simulink Design Optimization and Response Optimization of
Matlab/Simulink software and with a manual fine-tuning if necessary as described in [60].

It is important to underline that it was considered a homogenous system formation architecture, so the same gain values should
be considered for all robots. The same values were adopted for the common parameters for the comparative study between the
different controllers.

The simulation scenario is considered a configuration model with the limitations of the PowerBot DWMR, a closed platform
with internal PD controllers that tracks input variables ve and ωe with a sampling time of 5 ms. Furthermore, some modifications
to the DWMR configuration model are necessary because the internal PD control signals generate generalized forces acting at
the DWMR’s center of inertia and must be converted into torques on the wheels to be taken as control inputs in the present
configuration model. So, the signals of the PD controllers are premultiplied by the matrix T−1

v , which relates torques to the
wheels with generalized torques, given as [28]: T−1

v =
[
1
r

b
r ;

1
r

−b
r

]
, where 2b is the width of the PowerBot DWMR. Moreover,
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to simulate the behavior of the PowerBot DWMR, the configuration state-space model with the actuator dynamics representing
the structural uncertainty is considered similarly to [28]. The specifications and parameters in nominal values of the PowerBot
DWMR can also be seen in [28] or in the manufacturer’s manual.

The gains of the PD dynamic controller are adjusted as kpv
= 40, kpω

= 40, kdv
= 20, kdω

= 20, Nv = 10 and Nω = 10 as
indicated by the manufacturer. The parameters Nv and Nω are set to 10 to ensure good response time of the internal loop against
the neglected dynamics and avoid chattering [28, 30].

An eight-shape trajectory, starting in a counterclockwise direction, was adopted as reference trajectory. In view of the
acceleration and deceleration along it, it has a complexity defined by the changes in velocities, with linear velocity varying
between 0.33 m/s and 1.05 m/s, and the angular velocity, -0.18 rad/s and 0.18 rad/s. It is formulated as [3]:

q̇r =

ẋr

ẏr
θ̇r

 =



(
30 sin

((
t+

200

4

)
2π

200

)
2π

200

)
/2

−30cos

(
2

(
t+

200

4

)
2π

200

)
2π

200
ÿrẋr − ẍrẏr
ẋ2
r + ẏ2r

 ;

vr =

[
vlr
ωar

]
=

[√
ẋ2
r + ẏ2r
θ̇r

]
. (76)

Table 4 presents the initial conditions and the values of d. For all DWMRs, the gains of the SMC are pv = pω =
gv = gω = 0.1 (as minimum values), λ1 = 0.5, λ2 = 0.3 and λ3 = 0.7.

The desired separation-bearing values Lijd and Ψijd are defined as shown in Table 5.
For the FIS used to compute the function f(·), the MFs can be graphically represented by Figs. 5a, 5b and 6, being the

parameters given in Tables 6 and 7, where α1 and α3 are the “feet” of the triangle, and α2 locates the peak. For the boundary
layer thickness FIS, the MFs can be illustrated by Fig. 7 with the parameters given in Table 8.

Since the nonlinear function f(·) can assume negative and positive values, the output MF values of the FIS to compute it can
be obtained by taking into account the following considerations. Given that: f is computed by a Mamdani FIS, it is bounded by
a minimum negative value fmin and a maximum positive value fmax, the gain k̂h is adaptive with a minimum positive value kh,
and also that ks is constant gain, defining a minimum value ĜAIS(min) for ĜAIS (such that 0 < ĜAIS(min) < kh), to avoid
ĜAIS = k̂h − ksf < 0, the choice of fmax is such that:

ĜAIS(min) = kh − ksfmax

fmax = (kh − ĜAIS(min))/ks .

Therefore, the peak value (α2) of the PM triangular MF for the output f(·) (Table 7 and Fig. 6) need to be relatad to this
value, fmax. There would be no restriction for the value of fmin (related to the peak of the NB MF of the FIS output), and its
choice would depend on the controller performance since it is related to the stimulus reaction (maximum containment of the
suppression effect) by adding ksf to the value of k̂h. Here, fmin = −1, thus, k̂h can be increased by a full value or a percentage
of ks depending on the negative value of f(·).

Table 4: Initial posture and parameter d of the DWMRs.

x0 y0 θ0 d

Reference 0 0 π/2 0
Leader -1 1 0 0.1

Follower 1 -3.5 3 0 0.4
Follower 2 -3 -1 0 0.4

Table 5: Values of Ψijd and Lijd for followers.

Ψijd Lijd

Follower 1 (3/4)π rad 1.25 m
Follower 2 −(3/4)π rad 1.25 m

For the AIFQSMC, it was established that k̂hn(t = 0) = khn = 0.1, as a minimum positive gain value, ϵv = ϵω = 0.05,
ksv = 0.55 and ksω = 0.55 for all DWMRs. The values of Γh are shown in Table 9.

To verify the compensatory characteristics behavior of the kinematic controllers in a disturbed case, simulations are performed
considering load variations of mass and moment of inertia (in the time range of 40 to 160 s), as well as unmodeled dynamics
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(a) Triangular-shaped MFs for input σ∗ (AIS).
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(b) Triangular-shaped MFs for input σ̇∗ (AIS).

Figure 5: Triangular-shaped MFs for inputs σ∗ and σ̇∗ (AIS).
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Figure 6: Triangular-shaped MFs for output fn(·) (AIS).
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Figure 7: Triangular-shaped MFs for input and output (BL).

Table 6: Parameters of MFs for input σ∗ and σ̇∗.

σ∗ σ̇∗

α1 α2 α3 α1 α2 α3

NB −∞ -0.030 -0.015 −∞ -0.50 -0.25
NS -0.030 -0.015 0.000 -0.50 -0.25 0.00
ZO -0.015 0.000 0.015 -0.25 0.00 0.25
PS 0.000 0.015 0.030 0.00 0.25 0.50
PB 0.015 0.030 ∞ 0.25 0.50 ∞

introduced in the form of friction (during the entire simulation time). External disturbances with unknown upper bounds are also
applied on the system at different time intervals (time-varying sinusoidal form at 3 to 20 s and 100 to 120s; constant signal at 50
to 70 s and 150 to 170 s). These uncertainties and disturbances are similar to those considered in [27].

For the case with obstacle avoidance, it was considered: ρv = 0.1, obstacles of radius ra = 0.5 m, the DWMR’s radius
approximately RR = 0.56 m, as can be seen in the manufacturer manual, and a security margin δRd

= 1.7m, considering the
desired separation plus a deviation (1.25 + 0.45). The parameters for the variable avoidance radius Rd are shown in Table 10.
The obstacle coordinates were established similarly to [61] as shown in Table 11.

To measure the chattering level, |v̇c| is adopted [43]. As commonly used in the literature, the root mean square errors (RMSE)
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Table 7: Parameters of MFs for output f(·).

fn
α1 α2 α3

NB −∞ -1.00 -0.66
NM -1.00 -0.66 -0.33
NS -0.66 -0.33 0.00
ZO -0.33 0.00 0.09
PS 0.00 0.09 0.18
PM 0.09 0.18 ∞

Table 8: Parameters of MFs for Fuzzy BL.

|σ∗
n|, βn

α1 α2 α3

VS 10−6 0.0050 0.0162
S 0.0050 0.0162 0.0275
M 0.0162 0.0275 0.0387
B 0.0275 0.0387 0.0500

VB 0.0387 0.0500 ∞

Table 9: Values of kh and Γh.

khv
Γhv

khω
Γhω

Leader 0.1 0.15 0.1 0.40
Follower 1 0.1 0.15 0.1 0.40
Follower 2 0.1 0.15 0.1 0.40

Table 10: Parameters for the variable avoidance region radius Rd.

Rd [m] Rb [m] κ γ ϱ

2.76 5.00 5.00 2.00 1.00

Table 11: Obstacles coordinates.

Obstacle 1 Obstacle 2 Obstacle 3
xa 0.00 8.00 -14.50
ya 15.50 -4.25 -11.25

is used as a performance evaluation method, being given by RMSE(x) =
[
1
T

∑
x2

]1/2
, where T is the number of samples and

x(k) is the value of the k-th sample [27, 28].

Table 12: RMSE values in a disturbed case.

RMSE(xe) RMSE(ye) RMSE(θe)

Leader SMC 3.2309 3.4591 4.0197
AIFQSMC 0.5399 0.6988 0.2327
FCAFSMC 0.4519 0.5694 0.2546

Follower 1 SMC 0.8302 2.3546 0.4170
AIFQSMC 0.1298 0.1340 0.0318
FCAFSMC 0.1806 0.1883 0.0528

Follower 2 SMC 0.7973 1.9537 0.4404
AIFQSMC 0.1008 0.1114 0.0206
FCAFSMC 0.1456 0.1693 0.0427

7.1 Simulation results for SMC

Results for SMC are illustrated by Figs. 8a to 12b. The static obstacles distributed along the trajectory according to Table 11
can be seen in the first figure (Fig. 8a), which also readily shows that there were troubles in tracking by the leader robot and
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information by the followers. Besides that, Fig. 8b shows high levels of measured chattering. The robustness is affected because,
when the gains are not enough, there is no compensation for auxiliary velocity tracking errors (see Figs. 9a, 9b, 10a). Separation
and bearing errors are also affected (see Fig. 10b) and the control system has difficulty finding stability (see Figs. 11a, 11b, 12a,
12b), despite the OA strategy acting in the collisions prevention for the leader.

This leads to larger RMSE values (see Table 12). Thus, the effectiveness in terms of robustness against uncertainties and
disturbances depends on an adequate choice of the gain values, and hence a priori knowledge of the bounds of the disturbances
is required to ensure the compensatory effect of the SMC.

(a) Trajectory tracking, formation, OA. (b) Chattering measure.

Figure 8: Trajectory tracking, formation, OA, and chattering measure (SMC).

(a) Leader: Auxiliary velocity tracking errors and compensations. (b) Follower 1: Auxiliary velocity tracking errors and compensations.

Figure 9: Auxiliary velocity tracking errors and compensations - Leader and Follower 1 (SMC).
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(a) Follower 2: Auxiliary velocity tracking errors and compensations. (b) Separation and bearing errors.

Figure 10: Auxiliary velocity tracking errors and compensations - Follower 2 - and separation-bearing errors (SMC).

(a) Sliding surfaces σv and σ∗
v . (b) Sliding surfaces σω and σ∗

ω .

Figure 11: Sliding surfaces σn and σ∗
n (SMC).

(a) Derivatives of sliding surfaces σv and σ∗
v . (b) Derivatives of sliding surfaces σω and σ∗

ω .

Figure 12: Derivatives of sliding surfaces σn and σ∗
n (SMC).

80



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 22, Iss. 1, pp. 61-95, 2024
© Brazilian Computational Intelligence Society

7.2 Simulation results for AIFQSMC

The Figs. 13a to 23b show the results for AIFQSMC. By Fig. 13a, it can be seen that the DWMRs could get around the obstacles.
A smoother behavior than the SMC is observed in Fig. 13b. The obstacle avoidance is established by the blending vectors
displayed in Fig. 14a. When the obstacle avoidance mode is activated, new reference posture θr = θrOA

is generated to steer
the DWMR around the obstacles (see Fig. 14b). The switching between reference in the original trajectory tracking mode (qr,tt,
vr,tt) and in the obstacle avoidance mode (qr,oa, vr,oa) can be lead to a tracking performance degeneration as the DWMR modifies
its orientation to achieve the new desired motion. So, since obstacle avoidance is applied for the leader DWMR, greater errors
were obtained compared to the errors for the follower DWMRs. Table 12 exhibits the obtained RMSE values for the AIFQSMC
controller in a disturbed case with obstacle avoidance. For visualization, the avoidance area is shown by a circle of constant
radius Rd in the Fig. 13a. The behavior of the variable radius Rd is seen more clearly in Figs. 15a, 15b and 16a, by which it
can be noted that the expansion tends to increase as the DWMR starts to approach or move away from the obstacle, making the
motion smoother. By Fig. 16b, it is observable that the collision does not occur seeing the relative distance between the leader
DWMR and the obstacles, as well as for the followers (Figs. 17a and 17b). Note further that the deviations of obstacles coincide
with the incidence of the disturbances (at the beginning, middle, and end of the disturbance effect for each obstacle, respectively)
as can be seen in Figs. 18a, 18b, 19a. Making the separation-bearing errors, the sliding surfaces and their derivatives reach the
zero surroundings (Figs. 19b, 20a, 20b, 21a, 21b), the controller was able to adapt to overcome the arising errors and prevent the
system from instabilizing as seen in Figs. 22a, 22b, 23a and 23b.

(a) Trajectory tracking, formation, OA. (b) Chattering measure.

Figure 13: Trajectory tracking, formation, OA, and chattering measure (AIFQSMC).

(a) OA blending vectors. (b) OA reference posture.

Figure 14: OA blending vectors, reference posture in original trajectory tracking and obstacle avoidance mode (AIFQSMC).

81



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 22, Iss. 1, pp. 61-95, 2024
© Brazilian Computational Intelligence Society

(a) Rd,1 (zoomed plot). (b) Rd,2 (zoomed plot).

Figure 15: Variable radii Rd,1 and Rd,2 (AIFQSMC).

(a) Rd,3 (zoomed plot). (b) Relative distance between the leader DWMR and the obstacles.

Figure 16: Variable radius Rd,3 and relative distance between the leader DWMR and the obstacles (AIFQSMC).

(a) Relative distance between the follower 1 DWMR and the obstacles. (b) Relative distance between the follower 2 DWMR and the obstacles.

Figure 17: Relative distance between the followers DWMRs and the obstacles (AIFQSMC).
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(a) Leader: Auxiliary velocity tracking errors and compensations. (b) Follower 1: Auxiliary velocity tracking errors and compensations.

Figure 18: Auxiliary velocity tracking errors and compensations - Leader and Follower 1 (AIFQSMC).

(a) Follower 2: Auxiliary velocity tracking errors and compensations. (b) Separation and bearing errors.

Figure 19: Auxiliary velocity tracking errors and compensations - Follower 2 - and separation-bearing errors (AIFQSMC).

(a) σ∗
v and βv . (b) σ∗

ω and βω .

Figure 20: σ∗
n-trajectories with time-varying boundary layer βn (zoomed plot) (AIFQSMC).
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(a) σ̇v and σ̇∗
v . (b) σ̇ω and σ̇∗

ω .

Figure 21: Derivatives of sliding surfaces (AIFQSMC).

(a) Adaptive gains k̂h. (b) Time-varying parameter η̂.

Figure 22: Adaptive gains k̂h and η̂ (AIFQSMC).

(a) AIS function f(σ∗, σ̇∗). (b) AIS gain ĜAIS .

Figure 23: AIS function f(σ∗, σ̇∗) and gain ĜAIS (AIFQSMC).
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7.3 Simulation results for FCAFSMC

Comparisons with another approach are performed, considering the embedded PD dynamic control integrated with the Formation
Controller - Adaptive Fuzzy Sliding Mode Control (FCAFSMC) proposed in [3]. In this adaptive controller, the discontinuous
sliding mode portion, Gsign(σ∗), is replaced by a fuzzy gain F̂ (σ∗) = ĈT ξ(σ∗), i.e.:

vc = −B−1
0σ

A0σ − F̂ (σ∗)− Pσ∗, (77)

where Ĉ is the online updated consequences vector and ξ(σ∗) is the rule weights vector. The adaptation law for Ĉ is given by [3]:

˙̂
C = σ∗ξ(σ∗). (78)

It is important to point out that the rule base, the triangular-shaped membership functions and their parameters, as well as
the stability analysis and other details of the FCAFSMC, are described in [3]. Differently of [3], the FCAFSMC was employed
taking into account the same system modeling based on inverse kinematics, the same values for parameters in common, the same
uncertainties and disturbances as well as the same obstacle avoidance strategy adopted for the AIFQSMC.

The RMSE values are shown in Table 12 and results, in the Figs. 24a to 28b, from which it can be observed satisfactory
performance for the trajectory tracking and formation control. The FCAFSMC had smaller errors in x and y for the leader, but
in general the errors were equivalent to the AIFQSMC, the obstacle avoidance was completed and the movements were smooth.

(a) Trajectory tracking, formation, OA. (b) Chattering measure.

Figure 24: Trajectory tracking, formation, OA, and chattering measure (FCAFSMC).

(a) Leader: Auxiliary velocity tracking errors and compensations. (b) Follower 1: Auxiliary velocity tracking errors and compensations.

Figure 25: Auxiliary velocity tracking errors and compensations - Leader and Follower 1 (FCAFSMC).
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(a) Follower 2: Auxiliary velocity tracking errors and compensations. (b) Separation and bearing errors.

Figure 26: Auxiliary velocity tracking errors and compensations - Follower 2 - and separation-bearing errors (FCAFSMC).

(a) Sliding surfaces σv and σ∗
v . (b) Sliding surfaces σω and σ∗

ω .

Figure 27: Sliding surfaces σn and σ∗
n (FCAFSMC).

(a) Derivatives of sliding surfaces σv and σ∗
v . (b) Derivatives of sliding surfaces σω and σ∗

ω .

Figure 28: Derivatives of sliding surfaces σn and σ∗
n (FCAFSMC).
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7.4 Experimental results for AIFQSMC

Results obtained of experimental simulations for the AIQFSMC were performed using the open-source simulator Gazebo con-
nected to Matlab/Simulink via ROS interface. With the proposal of providing a smooth transition from simulation to real hard-
ware, this tool is helpful in realistically testing and experiencing physical scenarios. In the experimental simulator, the obstacles
are considered virtual, and the nonlinearities and uncertainties are just derived from the robotâs model in the Gazebo, with the
model of the PowerBot DWMR being considered.

The RMSE values obtained are shown in the Table 13 and the graphical results are shown in Figs. 29a to 39b.
In summary, satisfactory performance in the trajectory tracking, formation, and OA was verified (Fig. 29a) with low levels of

chattering (Fig. 29b). The proposed OA strategy worked adequately, as can be seen in Figs. 30a to 33b referring to the blending
vectors generated for the OA, the reference posture (with the OA) compared with the original one (without OA), the variable
avoidance radius for each obstacle and the relative distance between the DWMRs and the obstacles. The compensatory effect
realized by the sliding mode control portion can be seen in Figs. 34a, 34b and 35a. The separation and bearing errors tend to be
zero (Fig. 35b). The σ∗-trajectories considering time-varying boundary layers are shown in zoomed plots (Figs. 36a and 36b),
observing that the sliding surfaces and their derivatives tended to zero (Figs. 37a and 37b). The signals generated in the AIS
(Figs. 38a, 38b, 39a and 39b) provide the adaptation of the control actions.

Table 13: RMSE values – Experimental results (AIFQSMC).

RMSE(xe) RMSE(ye) RMSE(θe)
Leader 0.4604 0.5881 0.2205
Follower 1 0.1532 0.2428 0.1987
Follower 2 0.0999 0.1560 0.0349

(a) Trajectory tracking, formation, OA. (b) Chattering measure.

Figure 29: Trajectory tracking, formation, OA, and chattering measure (AIFQSMC) – Experimental.
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(a) OA blending vectors. (b) OA reference posture.

Figure 30: OA blending vectors, reference posture in original trajectory tracking and obstacle avoidance mode (AIFQSMC) –
Experimental.

(a) Rd,1 (zoomed plot). (b) Rd,2 (zoomed plot).

Figure 31: Variable radii Rd,1 and Rd,2 (AIFQSMC) – Experimental.

(a) Rd,3 (zoomed plot). (b) Relative distance between the leader DWMR and the obstacles.

Figure 32: Variable radius Rd,3 and relative distance between the leader DWMR and the obstacles (AIFQSMC) – Experimental.
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(a) Relative distance between the follower 1 DWMR and the obstacles. (b) Relative distance between the follower 2 DWMR and the obstacles.

Figure 33: Relative distance between the followers DWMRs and the obstacles (AIFQSMC) – Experimental.

(a) Leader: Auxiliary velocity tracking errors and compensations. (b) Follower 1: Auxiliary velocity tracking errors and compensations.

Figure 34: Auxiliary velocity tracking errors and compensations - Leader and Follower 1 (AIFQSMC) – Experimental.

(a) Follower 2: Auxiliary velocity tracking errors and compensations. (b) Separation and bearing errors.

Figure 35: Auxiliary velocity tracking errors and compensations - Follower 2 - and separation-bearing errors (AIFQSMC) –
Experimental.
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(a) σ∗
v and βv . (b) σ∗

ω and βω .

Figure 36: σ∗
n-trajectories with time-varying boundary layer βn (zoomed plot) (AIFQSMC) – Experimental.

(a) σ̇v and σ̇∗
v . (b) σ̇ω and σ̇∗

ω .

Figure 37: Derivatives of sliding surfaces (AIFQSMC) – Experimental.

(a) Adaptive gains k̂h. (b) Time-varying parameter η̂.

Figure 38: Adaptive gains k̂h and η̂ (AIFQSMC) – Experimental.
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(a) AIS function f(σ∗, σ̇∗). (b) AIS gain ĜAIS .

Figure 39: AIS function f(σ∗, σ̇∗) and gain ĜAIS (AIFQSMC) – Experimental.
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8 Conclusions

A leader-follower separation-bearing formation control was proposed for DWMRs under the incidence of uncertainties and
disturbances in solving the trajectory tracking. The proposed kinematic controller AIFQSMC, inspired by an immune regulation
mechanism, provided online adaptability for the SMC gains, without parameter drift, being able to smooth the control effort and
to compensate uncertainties and disturbances without a priori knowledge of their upper bounds. The stability of the closed-loop
control system was analyzed using the Lyapunov theory. Moreover, static obstacles distributed along the reference trajectory were
considered to verify the adaptability of the AIFQSMC. The proposed obstacle avoidance strategy with the adjustable avoidance
radius expansion made the leader DWMR reactively steer the obstacles.

Verifying the simulation results and comparing the different controllers, it was observed that the performance of the SMC
was affected by its compensatory signals, which were limited by a constant gain. This problem was overcome by the AIFQSMC,
whose gains were adaptively regulated thanks to the satisfactory functioning of the AIS and with an adjustment range improved
by the proposed adaptation law. Chattering, another drawback of the SMC, was also significantly mitigated, counting on the fact
that the fuzzy boundary layer also acted. Due to the performance equivalence with FCAFSMC, the AIFQSMC proves to be a
convenient adaptive strategy alternative, attested by the results obtained from the experimental simulation.

Research can be extended to a comparison of AIFQSMC to other related approaches; generalization for other possible classes
of mobile robots (i.e., unmanned aerial vehicles); and the treatment of inter-collision between DWMRs, dynamic obstacle avoid-
ance problem, and the obstacle avoidance by the followers DWMRs, since they are still subject to a possible collision.
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