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Resumo – No âmbito da recente crise hídrica, o desenvolvimento e melhoria de tecnologias para tratar eficientemente águas
residuais se torna cada vez mais necessário. Alinhado a isto, o processo de lodo ativado é amplamente usado nas plantas bi-
ológicas de tratamento de águas residuais para remover dela carbono e nutrientes. Embora grandes avanços tenham ocorrido
nos últimos anos na modelagem desses processos para melhorar sua performance e eficiência energética, os modelos obtidos
ainda são complexos e difíceis de calibrar utilizando dados de estações reais. Neste trabalho utilizamos frameworks de inferência
Bayesiana para estimar os parâmetros do processo de lodo ativado. Empregamos os processos Gaussianos para estimar a solução
das equações diferenciais do modelo do processo de lodo ativado e ajustamos essa estimativa à dados fabricados de água residual.
Obtemos que o uso do framework de inferência Bayesiana se sobressai à abordagem clássica em cenários em que medições são
mais fortemente afetadas por ruído.

Palavras-chave –Lodo ativado, tratamento de águas residuais, modelagem de processos, Inferência Bayesiana, Fenrir, Prob-
abilistic Numerics.

Abstract –In the context of the recent water crisis, the development and improvement of technologies for efficiently treating
wastewater becomes increasingly necessary. Aligned with this, the activated sludge process is widely used in biological wastew-
ater treatment plants to remove carbon and nutrients from wastewater. Although significant advancements have been achieved in
recent years in modelling these processes to improve their performance and energy efficiency, the models are still complex and
difficult to calibrate using data from real plants. In this work, we use Bayesian inference frameworks to estimate the parame-
ters of the activated sludge process. We employ Gaussian processes to estimate the solution to the differential equations of the
activated sludge process model and we fit this estimation to manufactured data of the observations of the wastewater. We find
that the use of the Bayesian inference framework outperforms the classical approach in scenarios where measurements are more
strongly affected by noise.

Keywords – Activated sludge process, Wastewater treatment plants, Process modeling, Bayesian inference, Fenrir, Probabilis-
tic Numerics.

1 Introduction

Wastewater treatment plants play an essential role in preserving the environment and public health contributing significantly
to the achievement of multiple Sustainable Development Goals (SDGs, [1]) by promoting environmental sustainability, public
health, and socio-economic well-being. In a biological wastewater treatment plant (WWTP), activated sludge process (ASP)
is a widely method for carbon and nutrients removal [2, 3]. The process aims to reduce the concentration of biodegradable
matter and nutrients in the effluent, with the compromise of keeping low sludge production using microorganisms mixed with
suspended solids in the mixture to treat domestic and industrial wastewater. Several efforts have been made in the last decades
to improve these processes in terms of energy efficiency and operational cost optimisation [4]. To aid this, the modelling of such
systems is fundamental to predict their operational states without dealing with the high costs of the real plant [5, 6]. The first
Activated Sludge Model (ASM1, [7]) was developed to describe the removal of organic carbon substances and nitrogen with si-
multaneous consumption of oxygen and nitrate as electron acceptors in urban wastewater treatment plants. Later, a full family of
ASP models (ASM2, ASM2d, ASM3, [8]) was developed to take into account the even more complex processes such as biolog-
ical phosphorus removal and, more recently, also process-related greenhouse gas emissions (especially N2O, see for instance [9]).

Despite these significant advances and the development of more complete mathematical models a common issue remains
the overparametrisation of these models, that include many kinetic and stoichiometric parameters to be adjusted for taking into
account the variations in microbial community structure and dominant species [10,11]. In addition, data from full-scale plants or
pilot- and lab-scale reactors may not yield reliable estimations for all parameters simultaneously. Model calibration is crucial to
ensure that the model accurately represents the multifaceted interactions within the treatment system, allows the specific charac-
teristics of the wastewater being treated and ensures the model’s applicability to diverse scenarios. To tackle that, guidelines have
been developed [12] to approach the calibration of the ASM models. Such guidelines consist of defining modelling objectives,
collecting the data, setting up the model, and calibration. The later is in general the most challenging step once the parameters
of the model should be optimised to match with the data of the WWTP such the model be a realistic representation of the process.
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In general, the approach used to estimate the parameters of bioreactors consists of simulating the system and evaluating the
difference between the states and observed data available from the WWTP [13–16]. This mostly involves four steps: i) char-
acterisation of the influent wastewater; ii) definition of the dynamic influent loading data; iii) manual estimation of the model
parameters; and iv) model validation. Few works adopt a probabilistic approach [17–19], whereas other procedures use informa-
tion about the gradient of the dynamics of the system to help with the computational burden [20]. Systematic analysis approaches
mainly consist of parameter identification [21], sensitivity analysis [22], and error propagation [23], which have been developed
and tested. A numerical optimal approaching procedure has been used for the systematic calibration of ASMs [24]. By means of
global factors sensitivity analysis for factors fixing and pseudo-global parameter correlation analysis for non-identifiable factors
detection, the procedure effectively determines the optimal parameter subset and performs model calibration for two different
ASP systems. Recently, a steady-state calibration methodology was proposed [25] to effectively tackle key challenges in WWTP
modelling, showing that accurate calibration is still an open problem crucial for producing reliable results.

In this work, we propose: to use the framework of probabilistic numerics [26] to address the uncertainty over the the ASMs
using Gaussian process (GP); and to address the estimation of the parameters via the optimization of the marginal likelihood,
differently of the maximum likelihood approach [18,27]. Also the use of the language Julia [28] for the modelling and calibration
of ASMs, which is not known by the authors to have been used before for the calibration of wastewater treatment models, as
well as, although outside the scope of the article, its automatic differentiation environment [29] to speedup the calculations. Our
study is presented as follows. Section 2 overviews the methodology and the assumptions made to consider the uncertainty over
the dynamical model. In Section 2.1 we follow [30] to set the GP representation of the solution of the dynamical model. Section
2.2 details the steps of the Fenrir framework [31] used in this work to define the marginal likelihood to estimate the parameters
of the ASM which fits the data better. An overview of the method adopted to perform the sensitivity analysis is presented in
Section 2.3 for the selection of the model parameters. The ASM1 model is briefly presented in Section 3 and, eventually, the
results obtained for the calibration of the model are provided in Section 4.

2 Theory and Methodology

We consider the state-space representation of the dynamical system of the bioreactor model in the equations (1).

dx(t)

dt
= f(x(t), θ, t), (1a)

y(t) = g(x(t), θ, t). (1b)

The evolution in time of the state x(t) ∈ RDx depends on a given initial value x† and the vector of parameters θ. The
measurement of the states are described by y(t) ∈ RDy . We follow [31] to propose a probability model in which θ are the
parameters of the differential equation of the bioreactor model which are to be identified using a Bayesian approach. We consider
the solution x(t) of equation (1a) evaluated at each time step of {t1, t2, ..., tn} = {tn}Nn=1 giving {xn}Nn=1 = {x(tn)}Nn=1. The
measurements occur at times {tn}Nn=1 giving {yn}Nn=1 = {y(tn)}Nn=1.

The Bayesian formulation of this problem is summarised by the following probabilistic proposition: We treat xn and yn
as being the random variables Xn and Yn which are marginalizations of the respective random processes X(t) and Y (t). We
assume the following probability density functions

p(X(t) | θ) = GP(m(t), k(t, t′) | θ), (2a)

p(Yn | Xn, θ) = N (g(Xn), σ
2
y). (2b)

In equation (2a) the time evolution of the states is modelled by a Gaussian process as X(t) with the same dimension of x(t)
and being described by its mean m(t) and covariance k(t, t′) functions [32]. The measurements are assumed to be corrupted by
additive Gaussian noise in equation (1b) resulting in the Gaussian density in equation (2b).

The Bayesian inference framework consists of fitting a probability model to a set of data and representing the result of the
fitting by another probability distribution of the non-observed (or latent) states and conditioned by the observations and the
parameters of the probability model [33]. The assumption of the probability model allows to approach the uncertainties we may
have about any aspect of the problem to be solved through the use of probability distributions and reason about these assumptions
using the probability theory [34,35]. We define the following notation: the latent variable X with the probability density p(X|θ)
called prior probability; the observed variable Y (t) with the probability p(Y |X, θ) likelihood modelling the relation between the
latent variables and the observations. The variable θ represents the parameters of the model. The Bayesian inference consists in
evaluating the Bayes’ rule such that

p(X|Y, θ) = p(Y |X, θ)p(X|θ)
Ω(Y, θ)

,

where p(X|Y, θ) is the probability density, called posterior probability, of the probability model fitted to the data. To ensure
p(X|Y, θ) to be a probability density, the numerator is normalised by Ω(Y, θ) =

∫
p(Y |X, θ)p(X|θ)dX known as marginal

likelihood or evidence. Ω(Y, θ) depends on both the observations Y and the parameters θ. For a fixed set of observations
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Y = {Y1, ..., YN}, the evidence ranks the different models represented by different values of θ [36]. Our objective is to find the
best ASM model, i.e. the best set of parameters θ, based on the maximisation of Ω({Y1, ..., YN}, θ). The problem may be stated
equivalently due to the non-decreasing behaviour of the logarithm as finding θ⋆ such that

θ⋆ = argmin
θ

{
− log Ω({Yn}Nn=1, θ)

}
. (3)

where we express the marginal likelihood as

Ω({Yn}Nn=1, θ) =

∫
p({Yn}Nn=1|{Xn}Nn=1, θ)p({Xn}Nn=1|θ)dX1...dXN , (4)

quantifying the plausibility of the data yn to have been generated by the solution Xn for n = 1, ..., N and the parameters θ.

In Section 2.1 we construct the prior used to evaluate p({Xn}Nn=1|θ) and in Section 2.2 we compute the integration in equation
(4). In Section 2.3 we define the theoretical background for the sensitivity analysis needed for the selection of the parameters θ
to be calibrated in the dynamical model understudy.

2.1 Prior model

In this section, we build the solution to the system of differential equations as a GP prior to be used in the marginal likelihood.
A previous work [37] treats f(x(t), θ, t) in equation (1a) as a GP on which a regression is made by fitting it to the measurements
Y . In [38] f(x(t), θ, t) is provided as a constraint to the GP prior which together with the measurements Y constructs the max-
imum a posteriori estimate of the parameters and the states of the differential equation. The work of [31] which is followed in
this paper is similar to the former, but assuming a GP with Markovian properties. This allows a state-space representation of the
GP alleviating the known computational burden of the GP regression. We refer to [39, 40] for further discussions on state-space
representation of GP with stationary covariance functions. The main idea is that the solution of special stochastic differential
equations (SDEs, [41]) can be represented as a GP and vice-versa. As the ordinary differential equations, these special SDEs
admit a state-space representation and the probability distribution of the solution can be obtained via Kalman filter.

To obtain the GP in state-space form we define the vector X(t), the collection of time derivatives of X(t) in equation (2a), as

X(t) =

[(
X(0)(t)

)⊤
,
(
X(1)(t)

)⊤
, ...,

(
X(q)(t)

)⊤]⊤
. (5)

being X(q)(t) the q-th time derivative of X(t). Then, we define the following SDE as

dX(t) = FX(t)dt+ LdW (t). (6)

To use the matrix form we define is the m-th canonical basis vector em1 in Rq+1, IDx a identity matrix of size Dx ×Dx and ⊗
the Kronecker product. F ∈ RDx(q+1)×Dx(q+1) is the state transition matrix of the SDE, L ∈ RDx(q+1) is a diffusion matrix and
dW is the increment of the Wiener process. The solution of equation (6) is

X(t) = exp(Ft)X† +

∫ t

0

exp(Ft)LdW (τ). (7)

If the initial condition X† for t = t† is Gaussian distributed, i.e. X† ∼ N (µ†,Σ†), the solution X(t) is a GP such that [42]

X(t) ∼ GP (µ(t),Σ(t)) ,

µ(t) = exp(Ft)µ†,

Σ(t) = exp(Ft)Σ† [exp(Ft)]
⊤
+Q,

A(t− t†) = exp(Fh),

Q(t− t†) =

∫ t−t†

0

exp(F(t− t† − τ))LL⊤ exp(F⊤(t− t† − τ))dτ,

We proceed by considering the q-times integrated Wiener process, IWP(q), defined by the assumption of F =
∑q

i=1 eie
⊤
i+1 ⊗

IDx
and L =

√
κeq+1 ⊗ IDx

where κ is a hyperparameter defining the variance of X(t). Observe that F results in a upper
shift matrix that when substituted in equation (6) gives that dX(i)(t) = X(i+1)(t) for i = 0, ..., q − 1. By the end L results in
dX(q)(t) =

√
κdW (t).

We need to adjust the GP in order to incorporate the information of the differential equation in (1a). To do this we generate
ideal measurements of the vector field f , i.e. evaluations of the right hand side of equation (1a) assuming no uncertainty over it.
We do it so by defining the following random variable

Z(t) ≜ X(1)(t)− f(X(0)(t), θ, t) ≡ 0. (9)
1Also called standard basis, defined as em = [δ1,m, ..., δDx,m].
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The product Em X(t) with Em = em ⊗ IDx selects the m-th row of equation (5) containing the vector with m-th time-
derivative of all the d states. This enables us to recover solely the dimensions of X(t) we are interested in, in this case the
solution of the differential equation X0(t). We rewrite Z(t) as

Z(t) ≜ E1 X(t)− f(E0 X(t), θ, t) ≡ 0. (10)

To implement algorithmically the Gauss-Markov process we need to discretized the solution X(t). We define the conditional
probability density below for h = tn − tn−1

p(Xn+1|Xn) = N (Xn+1|A(h)µn,A(h)ΣnA
⊤(h) +Q(h)), (11)

where Xn is the marginalisation of X(t) at t = tn for n = 1, ..., N of the GP such that Xn ∼ N (µn,Σn), where µn = µ(tn)
and Σn = Σ(tn). We also define a discretized version of Z(t) at t = tn as Zn, which for this case is assumed to be Gaussian
distributed with null variance (which can be understood as a Dirac delta centered at zero). Thus we have

p(Zn|Xn, θ) = N (E1 Xn − f(E0 Xt, θ, t),R). (12)

with R = 0. The method can be extended for values of R ̸= 0 when an uncertainty over the function f is assumed, but
to compare the current method with the classical method to be defined we keep the zero variance assumption. Assuming
p(X0) = N (X0|µ0,Σ0) with µ0 and Σ0 given, the equations (11) and (12) give the posterior p(Xn|{Z1, ..., Zn}, θ) com-
puted using the Kalman filter algorithm [43].

Next, we define the terms necessary to the implementation of the Kalman filter algorithm:

p(Xn|Z1:n, θ) = N (µF
n ,Σ

F
n ), (13a)

Sn = Var [E1 Xn − f(E0 Xn, θ, tn)|{Z1, ..., Zn−1}] +R, (13b)

Kn = Cov [Xn,E1 Xn − f(E0 Xn, θ, tn)|{Z1, ..., Zn−1}]S−1
n , (13c)

Ẑn = E [E1 Zn − f(E0 Xn, θ, tn)|{Z1, ..., Zn−1}] , (13d)

µF
n = µP

n +Kn(Zn − Ẑn), (13e)

ΣF
n = ΣP

n −KnSnK
⊤
n . (13f)

The statistics in equations (13) are taken with respect to {Z1, ..., Zn−1} in the case of the prediction step of the Kalman filter
and {Z1, ..., Zn} in the case of the update step. The superscript P denotes the prediction coming from the estimate mean and
variance given incomplete information, i.e., the estimation of Xn given the information up to n− 1 as Z1:n−1, and F the update
of that estimate by its filtering using the most recent information Zn. The equations (13b) to (13d) are tractable if f is linear,
otherwise an approximation required (see the details on Section 2.1.1). The prediction towards n + 1 is done by using equation
(11):

µP
n+1 = A(h)µF

n , (14a)

ΣP
n+1 = A(h)ΣF

nA
⊤(h) +Q(h). (14b)

We repeat the steps in equations (13) and (14) until all the collection {tn}Nn=1 have been evaluated. We obtain the estimation
µF

n of Xn for n = 1, ..., N , as well as the variance ΣF
n of this estimation. It is worth to mention that once computed the filtered

estimates µF
n and ΣF

n , one can use the Rauch–Tung–Striebel (RTS) smoother algorithm to compute other estimates of X(t) in
other time steps not covered by {Zn}Nn=1, thus avoiding the evaluation of the function f in equation (1a). Basically, the filter and
smooth equations for the Gauss-Markov process estimate and interpolate the solution of the differential equation. We write the
terms of the RTS smoother for 0 ≤ tn′ < tn ≤ tN

p(Xn′ |{Zn}Nn=1) = N (Xn′ |µS
n′ ,ΣS

n′), (15a)

µP
n′+1 = A(h′)µF

n , (15b)

ΣP
n′+1 = A(h′)ΣF

nA
⊤(h′) +Q(h′), (15c)

Gn′ = ΣF
nA

⊤(h)
[
ΣP

n′+1

]−1
, (15d)

µS
n′ = µF

n +Gn′
[
µS

n′+1 − µP
n′+1

]
, (15e)

ΣS
n′ = ΣF

n −Gn′
[
ΣS

n′+1 −ΣP
n′+1

]
G⊤

n′ . (15f)

where we assume h′ = tn′ − tn, µS
N = µF

N and ΣS
N = ΣF

N . The RTS smother algorithm runs backwards in time using the
estimates obtained during the time-forward run of the Kalman filter [43]. For the case of estimating the parameters of the model,
the smoothing step is not necessary, only the filtered estimates of the states, as it is shown in the next section.
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2.1.1 Affine approximation of the vector field

The first order approximation of f(x(t), θ, t) in the context of the Kalman filter is known in the literature as the extended Kalman
filter (EKF, [30]). The EKF consists of approximating the trajectory of the system by its tangent at each point in time, obtaining
an affine vector field. This eases the evaluation of equations (13b) to (13d) due to the Gaussian assumption. The approximation
consists in truncating the Taylor expansion of f(x(t), θ, t) around the predicted estimate µP

n of x(t)

f(x(t), θ, t) ≈ f(E0 µ
P
n , θ, t) + Jf |x(t)=E0 µP

n
E0

[
Xn − µP

n

]
,

where Jf is the Jacobian matrix whose elements are defined as [J]ij = ∂fi/∂xj , where fi is the i-th dimension of f(x(t), θ, t)
and xj the j-th dimension of x(t). The partial derivatives are evaluated substituting x(t) = E0 µ

P
n . It is also possible to consider

the filtered estimate E0 µ
F
n of x(t) [44]. The Kalman filter parameters in equations (13) is given by the equations in (16).

Hn = E1− Jf |x(t)=E0 µP
n
E0, (16a)

Sn = HnΣ
P
nH

⊤
n +R, (16b)

Kn = ΣP
nH

⊤
nS

−1
n , (16c)

Ẑn = E1 µ
P
n − f(E0 µ

P
n , θ, tn), (16d)

µF
n = µP

n +Kn(Zn − Ẑn), (16e)

ΣF
n = ΣP

n −KnSnK
⊤
n . (16f)

2.2 Marginal likelihood via Kalman filtering

The next step is to evaluate the marginal likelihood in equation (4). Following [31], the proposition is to take the posteriors
p(Xn|Z1:n, θ) computed via the Kalman filter to compute iteratively also via Kalman filter the marginal likelihood. Thus we need
to store all the µP

n s and ΣP
n s for n = 1, ..., N . The idea is, once the Kalman filter finishes obtaining the posteriors p(Xn|Z1:n, θ),

we run another Kalman filter backwards in time to compute the marginal likelihood using the observations Yn
2. We assume the

following probability model

p(Xn|Xn+1, Z1:n, θ) = N (Xn|ξn,Pn), (17a)

p(Yn|Xn) = N (Yn|BE0 Xn, σ
2
yI). (17b)

The conditional probability backward evolution of the states p(Xn|Xn+1, Z1:n, θ) is computed via Gaussian algebra by the
inversion of equation (11), giving the parameters ξn = µF

n+1+Gn

[
Xn+1 − µP

n+1

]
and Pn) with Gn = ΣF

nA
⊤(h)

[
ΣP

n+1

]−1

and Pn = ΣF
n −Gn

[
ΣP

n+1

]
G⊤

n . We define matrix B whose rows are em if the m-th state is observed. The variance of the
noise is σ2

y and I the identity matrix. Then we use the prediction error decomposition [45] to compute

Ω({Yn}Nn=1, θ) =

1∏
n=N−1

N (Yn|ξFn ,ΛF
n ), (18a)

ξFn = ξPn +Mn

[
Yn −CξPn

]
, (18b)

ΛF
n = ΛP

n −MnLnM
⊤
n , (18c)

C = BE0, (18d)

Ln = CΣP
nC

⊤ +Ry, (18e)

Mn = ΛP
nC

⊤
nL

−1
n (18f)

ξPn = µF
n +Gn

[
ξFn+1 − µP

n+1

]
, (18g)

ΛP
n = GnΛn+1G

⊤
n +Pn. (18h)

The package in Julia language (Fenrir.jl) implements equation (18) considering the prior in equation (16) for nonlinear
differential equations. The optimisation problem in equation (3) is solved here using the Limited memory Broyden-Fletcher-
Goldfarb-Shanno, LBFGS, algorithm [46], which implements a Newton method. The LBFGS takes the gradient of the marginal
likelihood with respect to the variables to be optimized, in this case θ, but estimates the Hessian between the iterations in order
to improve performance. We summarise the steps of the whole framework in Algorithm 1.

2We also refer to [44] for a time-forward implementation.

8



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 22, Iss. 1, pp. 4-16, 2024
© Brazilian Society on Computational Intelligence

Algorithm 1 Inference of the parameters of the ASM1 model

Input: f(x(t), θ, t) (Eq. 1), {Y1, ..., Yn}, ϵ (convergence criterion)
µF

0 ← 0, ΣF
0 ← I, θ ← θ† (initial condition).

while ||∂θΩ|| ≤ ϵ do (LBFGS)
while n ≤ N do

Evaluate p(Xn|Z1:n, θ) in Eq. 13
Store µF

n ,Σ
F
n

n← n+ 1
end while
ξFN ← µF

N , ΛF
N ← ΣF

N

while n ≥ 1 do
Evaluate equations (18a) to (18h)
Store ξFn ,Λ

F
n

n← n− 1
end while
To LBFGS Ω({Yn}Nn=1, θ) and ∂θΩ({Yn}Nn=1, θ).

end while

We compare the estimates of the parameters using the marginal likelihood of Fenrir.jl with a classic approach as the
least squares [47] defined as

l(θ, {y1, ..., yN}) =
N∑

n=1

(yn − g(x̂(tn), θ, tn))
2 (19)

where yn is the observation at time tn and x̂ the solution of the differential equation using classic numerical methods. The
numerical integration depends on the parameters θ and the initial conditions x†. Thus at each step of the optimisation, we must
integrate the differential equation to obtain the value of l(θ, {y1, ..., yN}).

2.3 Sensitivity analysis

We perform a sensitivity analysis to check how the parameters are prune to variations of the observations [48]. The method
chosen is the Morris method [49] which consists in varying one parameter which may cause a variation in the output, which is
also measured. We define the elementary effect EEi as

EEi(θr) =
x̂(tN , θr +∆ei, x†)− x̂(tN , θr, x†)

∆
,

where x̂ is the solution of the dynamical system obtained with numerical methods, here evaluated at the last time step tN using
the parameters θr. The term ei is a vector of the canonical base and ∆ is a predetermined multiple of 1/(m − 1), being m
the number of elements of the discretisation of each dimension of the parameter space. In the r-th step, a random point θr in
the parameter space is chosen. Then, for i-th parameter the elementary effect is calculated. By the end of a suitably chosen of
iterations R, the following metrics are obtained

µM =
1

R

R∑
r=1

|EEi(θr)|,

σM =

√√√√ 1

R

R∑
r=1

(
EEi(θr)−

1

R

R∑
r=1

|EEi(θr)|

)2

.

µM indicates the influence of the i-th parameter on the output, and σM how non-linear are the effects of the i-th parameter on
the output. If µM is small it suggests that the effects of the parameters are weak with the output.

3 Application to a biological reactor model

To demonstrate the methodology exposed in Section 2, we explore the widely used Activated Sludge Model No. 1 (ASM1,
[7]). In this work, the ASM1 models a bioreactor consisting of the aerated continuous stirred tank reactor with perfect mixing
shown in Figure 1, where the influent load, xIN , is given in terms of the thirteen ASM1 state variables and the flow-rate, Q, that
equals the effluent one, the set of sensors in the effluent stream gives the the measured variables: dissolved oxygen, nitrate and
nitrite nitrogen, ammonia nitrogen and alkalinity, that is SO, SNO, SNH and SALK , respectively, and KLa gives an adjustable
variable considered representative of the diffused aeration in the bioreactor.
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Figure 1: Bioreactor schematic.

ASM1 is a state-of-the-art model commonly used for representing the carbon and nitrogen removal, oxygen consumption and
sludge production. The growth of the microbiological population responsible for the processes occurring inside the reactor is
described by Monod kinetics [50]. The mass balances for the state variables lead to a system of ordinary differential equations
of the thirteen state variables in Table 1 that comprises stoichiometric and kinetic parameters in Table 2. As an example of the
nonlinearity in the ASM1, the differential equation for the readily biodegradable organic matter, SS in equation (20), is provided.

dSS

dt
=

Q

V

[
SIN
S − SS

]
+RSS

(20a)

RSS
= −

µH

YH

SS

KS + SS

[
SO

KOH + SO
+ ηg

KOH

KOH + SO

SNO

KNO + SNO

]
XBH

+ kh
XS

KXXBH +XS

[
SO

KOH + SO
+ ηh

KOH

KOH + SO

SNO

KNO + SNO

]
XBH . (20b)

Symbol Description Units
SI Soluble inert organic matter g COD ·m−3

SS Readily biodegradable substrate g COD ·m−3

XI Particulate inert organic matter g COD ·m−3

XS Slowly biodegradable substrate g COD ·m−3

XBH Active heterotrophic biomass g COD ·m−3

XBA Active autotrophic biomass g COD ·m−3

XP Particulate products arising from biomass decay g COD ·m−3

SO Dissolved oxygen g O2 ·m−3

SNO Nitrate and nitrite nitrogen g N ·m−3

SNH NH+
4 +NH3 nitrogen g N ·m−3

SND Soluble biodegradable organic nitrogen g N ·m−3

XND Particulate biodegradable organic nitrogen g N ·m−3

SALK Alkalinity molHCO−
3 ·m−3

Table 1: ASM1 - State variables

The right-hand side of equation (20a) represents the mass balance and the RSS
term, fully given in equation (20b), is the kinetic

of the reaction producing (or consuming) SS . SIN
S is the inflow concentration of biodegradable substrate. We refer to the work

in [51] for the full description of the system of equations. The biological reactor is simulated considering the settings established
by the Benchmark Simulation Model No. 1 (BSM1, [52]), a simulation environment defining a plant layout, the ASM1 as sim-
ulation model, the influent load concentrations and flow-rate, as well as the test procedures and evaluation criteria. We consider
the steady-states of the BSM1 computed in [53] as initial conditions to solve the differential equations of the ASM1.

We consider that, beyond the measurements of nitrate and nitrite nitrogen, SNO, and dissolved oxygen, SO, given by the
sensors setting in the simulation platform [53] and commonly used in modern WWTPs, it is also possible to measure ammonia
nitrogen, SNH , [54] and alkalinity, SALK , [55] in real-time. The number of sensors is realistic and low avoiding to increase
operational costs in a real plat setting. The measurements occur ten times a day and are evenly spaced.
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Symbol Description Value Units
YA Autotrophic yield 0.24 g XBA COD formed · (g N oxidised)−1

YH Heterotrophic yield 0.67 g XBH COD formed · (g COD utilized)−1

fP Fraction of biomass to particulate products 0.08 g XP COD formed · (g N decayed)−1

iXB Fraction nitrogen in biomass 0.08 g N · (g COD)−1 in biomass
iXP Fraction nitrogen in particulate products 0.06 g N · (g COD)−1 in XP

µH Maximum heterotrophic growth rate 4.00 d−1

KS Half-saturation (heterotrophic growth) 10.0 g COD m−3

KOH Half-saturation (heterotrophic oxygen) 0.20 g O2 m
−3

KNO Half-saturation (nitrate) 0.50 g NO3−N m−3

bH Heterotrophic decay rate 0.30 d−1

νg Anoxic growth rate correction factor 0.80 -
νh Anoxic hydrolysis rate correction factor 0.80 -
kh Maximum specific hydrolysis rate 3.00 g XS (g XBH COD d)−1

KX Half-saturation (hydrolysis) 0.10 g XS (g XBH COD)−1

µA Maximum autotrophic growth rate 0.50 d−1

KNH Half-saturation (autotrophic growth) 1.00 g NH4−N m−3

bA Autotrophic decay rate 0.05 d−1

KOA Half-saturation (autotrophic oxygen) 0.40 g O2 m
−3

ka Ammonification rate 0.05 g XS (g COD d)−1

Table 2: ASM1 - Parameters

4 Results and discussion

The computation of the solution of the system of differential equations for both the sensitivity analysis and the least squares
method is done using the package DifferentialEquations.jl implemented in Julia language [28, 56].

(a) Sensitivity of SS (b) Sensitivity of SI and XI (c) Sensitivity of XS (d) Sensitivity of XBH

(e) Sensitivity of XBA (f) Sensitivity of XP (g) Sensitivity of SO (h) Sensitivity of SNO

(i) Sensitivity of SNH (j) Sensitivity of SND (k) Sensitivity of XND (l) Sensitivity of SALK

Figure 2: Results of the Morris analysis, being µM and σM the metrics calculated for each output of the ASM1 model. All the
parameters of the system are pictured in gray dots but only the ones obeying

√
µ2
M + σ2

M ≥ 1 where labeled.

Figure 2 displays the results of the sensitivity analysis conducted using the Morris method. The findings align with those
reported in [57] for YH , YA, µA and bA. In the same work, the sensitivity of these parameters was explored concerning various
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outputs derived as functions of state variables, specifically the chemical oxygen demand, total suspended solids, ammonia and
pH . In contrast, our approach directly observes the system states. The parameters KNH and KOA previously identified as
significant in [57] have their sensitivity reduced when considering the sensitivity of bH and µA on the states directly measured.
Consequently, we decided to comprehensively identify the set of parameters, θ = YH , YA, µA, bH , µA, KNH and KOA,
simultaneously and evaluate the performance of parameter estimation across them. The plots in Figure 2 indicate that bA and bH
exert a robust linear influence on model outputs due to the values of µM greater that 1 while the other parameters exhibit strong
non-linear effects owing to the values of σM greater than 1. Additionally, we anticipate that the estimation, overall, will perform
more effectively for parameters situated away from the origin in the sensitivity plots in Figure 2. Specifically, for the measured
states SNO, SO,SNH and SALK we anticipate suboptimal performance for parameters µH , bh, KNH , bA and KOA given that
their sensitivity results satisfy

√
µ2
M + σ2

M ≤ 1 suggesting weak sensitivity of the outputs on these parameters. This is attributed
to the reliance on gradient methods, as employed in this work, where weak dependencies of outputs on parameters result in small
gradients concerning the parameters during the evaluation of the optimisation problem’s objective function.

(a) Time evolution of SS (b) Time evolution of XI (c) Time evolution of XS (d) Time evolution of XBH

(e) Time evolution of XBA (f) Time evolution of XP (g) Time evolution of SO (h) Time evolution of SNO

(i) Time evolution of SNH (j) Time evolution of SND (k) Time evolution of XND (l) Time evolution of SALK

Figure 3: Simulation of the system with the set of parameters obtained from the optimisation of the least squares (LS) for different
noise standard deviations σy .

To compare parameter estimation results, we employ the least squares (LS) method outlined in equation (19). Subsequently,
we optimize the objective function with respect to the ASM1 parameters θ using the LBFGS algorithm, setting boundaries of the
optimisation problem based on the range of values established by the literature review in [57]. The measurement of the states
SO, SNO, SNH and SALK are subject to additive Gaussian noise with standard deviation σy . The assumed range of σy in the
simulated data encompasses values wider than the precision of the available sensors [53]. Four scenarios were tested by varying
the standard deviation of the noise in the observations, as detailed in the first column of Table 3. The absolute errors |θ⋆ − θ|
are presented in Table 3, where θ⋆ represents the result of the optimisation and θ denotes their true values shown in Table 2.
Noticeably, LS was unable to reduce the error for σy values below 10 leading to the same parameter estimates on those scenarios.

σy YA YH µH bH µA KNH bA KOA

10 0.0400 0.0500 2.0000 1.3000 0.3000 0.0000 0.1000 1.6000
0.1 0.1679 0.0495 0.0200 0.2345 0.2920 0.2475 0.0010 0.0160

0.01 0.1679 0.0495 0.0200 0.2345 0.2920 0.2475 0.0010 0.0160
0.001 0.1679 0.0495 0.0200 0.2345 0.2920 0.2475 0.0010 0.0160

Table 3: Parameter absolute error for the LS objective function. The parameters for which the method performed better than the
marginal likelihood method were highlighted.
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(a) Time evolution of SS (b) Time evolution of XI (c) Time evolution of XS (d) Time evolution of XBH

(e) Time evolution of XBA (f) Time evolution of XP (g) Time evolution of SO (h) Time evolution of SNO

(i) Time evolution of SNH (j) Time evolution of SND (k) Time evolution of XND (l) Time evolution of SALK

Figure 4: Simulation of the system with the set of parameters obtained from the optimisation of the marginal likelihood (Fenrir)
for different noise standard deviations σy .

The marginal likelihood evaluation in this study is conducted using the Fenrir package developed in the Julia programming
language (Fenrir.jl, [31]). It generates the negative log marginal likelihood as the objective function utilised in the optimisa-
tion problem. The optimisation is carried out using the same LBFGS settings as employed in the least squares method. Similarly
to Table 3, Table 4 presents the absolute error |θ⋆ − θ| where θ⋆ represents the result of the optimisation using the negative log
marginal likelihood as the objective function and θ denotes their true values shown in Table 2.

Figures 3 and Figure 4 showcase the time evolution of each state obtained by simulating the ASM1 with the original and the
optimised set of parameters for each scenario of noisy measurements. One of the states, the soluble inert organic matter SI , is
excluded as it exhibits no dynamic changes over time. This is supported by the null values in the sensitivity analysis of SI and
XI in Figure 2b. Overall, the marginal likelihood objective function leads to parameter estimations that are closer to their true
values in scenarios with higher noise. In contrast, the least squares method was unable to achieve parameter estimates closer to
their true values for the values of σy below 10. Consequently, the solutions plotted in Figure 3 display only two lines: One for
σy equals 10 in blue , and all the others superposed.

σy YA YH µH bH µA KNH bA KOA

10 0.0039 0.0000 0.1659 1.3000 0.0975 0.1674 0.0999 0.0784
0.1 0.1404 0.0000 0.1307 0.1736 0.1930 0.2400 0.0954 0.0002
0.01 0.0636 0.0446 0.0535 0.2500 0.1590 0.2234 0.0527 0.0066

0.001 0.1505 0.0486 0.0248 0.2266 0.3000 0.2462 0.0280 0.0015

Table 4: Parameter absolute error for the marginal likelihood method. The parameters for which the method performed better
than the LS method were highlighted.

5 Conclusion and future works

We conclude noticing that the main disadvantage of the marginal likelihood is the computational cost. Both implementations,
Fenrir.jl and the LS, make use of the automatic differentiation available in Julia, but only the LS experienced sped ups in
terms of wall-clock time to convergence of the LBFGS algorithm at the cost of ignoring the uncertainty over the model. Hence,
it may be advisable to consider classical methods, particularly in scenarios characterised by low noise. This recommendation
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is grounded in the observation that classical methods can yield comparable errors with significantly less computational burden.
The optimisations were conducted in a user-end 11th Gen Intel(R) Core(TM) i7-11800H 2.30GHz with 16.0 GB of RAM. The
wall-clock time was 8600 seconds for the Fenrir loss while 200 seconds for the least squares. There is space for optimizations
in the computation time and explorations of scenarios not considered in this work as the uncertainty of the solution for R ̸= 0.
We judged the latter to need a deeper discussion with the convergence behavior in sight once this analysis is not known by the
authors.
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