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1 DMOEAs design

Table 1 shows a summary of our coverage on the literature on DMOEAs structure. We can see that the Pareto-based DMOEAs
are the most used alternative.

Table 1: MOEAs structures within the DMOEAs: Pareto-based (PB), Indicator-based (IB), or Decomposition-based (DB)
Type DMOEAs
PB [1–42]
IB [43, 44]
DB [1, 39, 45–61]

Table 2 shows a summary of the literature review of the variation operators used in DMOEAs. We can observe that the
polynomial mutation and simulated binary crossover are the most commonly used operators.

Table 2: Types of Variation Operators based on those found in genetic algorithms (GA), Gaussian mutation and arithmetic
crossover (GM-AC), differential evolution (DE), polynomial mutation and SBX crossover (PM-SBX), differential evolution
and polynomial mutation (DE-PM), evolutionary operator choice (EOC), adapted operators (AO), RM-MEDA, IM-MOEA, and
teaching-learning-based (TLB)

Traditional DMOEAs
GA [6, 12, 46]

GM-AC [7, 16, 44, 45]
DE [1, 17, 18, 30]

PM-SBX [1, 5, 10, 11, 15, 19, 22–25, 28, 29, 31, 35, 36, 38, 39, 42, 50–52, 54, 55, 62]
DE-PM [26, 42, 48, 49, 57–61]

EOC [3, 44]
AO [2, 9]

Learning-based DMOEAs
RM-MEDA [4, 20, 21, 27, 31–33, 37, 39]
IM-MOEA [53]

TLB [34, 56]

2 New DMOEAs Taxonomy

Table 3 shows a summary of the studies in each group of the new taxonomy. We can see that the prediction-based approaches
are the most common.

3 Handling Constrained DMOPs

It is worth discussing the dynamic constrained multi-objective optimization problems (DCMOPs) which are characterized
by dynamic constraints and/or the dynamic fitness functions (Azzouz et al. [68], Chen et al. [69]). To solve them, Li et al.
[70] transform a constraint optimization problem (COP) into a corresponding dynamic constrained many-objective optimization
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Table 3: DMOEA Taxonomy
Approaches Methods

Endogenous
MOEAs-
Based

Variation Operators: [2, 8, 15, 18, 41, 46]
Local Search: [22, 63]

Populations-
Based

Functional decomposition: [7, 9]
Data decomposition: [6]
Hybrids methods: [64]

Exogenous
Memory-
Based

Explicit memory: [51, 57]
Local-Search memory: [44]
Hybrid memory: [11, 24]

Immigrant-
Based

Uncorrelated Immigration schemes: [5]
Correlated Immigration schemes: [5, 16, 17, 25, 37, 40]
Hybrid Immigration schemes: [52]

Prediction-
Based

Decision Space: [3, 4, 13, 14, 19–21, 27, 32, 33, 35, 36, 38, 39, 42,
48–50, 54, 56, 58–62, 65–67]
Objective Space: [31, 34]

Endogenous-Exogenous
[26, 28, 30, 47, 53, 55]

problem (DCMaOP), by converting an m-constrained problem into an m + 1 DMOP and, then, using a dynamic constraint
handling mechanism. Azzouz et al. [68] deal with DCMOPs simultaneously considering problem constraints and objective
functions. The authors introduced a dynamic and self-adaptive penalty function to respond to changes in the fitness function
and a feasibility driven strategy that is a repair mechanism triggered when the CRM detects a change. Jiao et al. [71] turn
a constrained problem into an unconstrained one, taking the constraints as new objectives. Specifically, they introduced an
algorithm for handling all constraints and objectives together. The algorithm converts a CMOP into a DMOP or a weakly
constrained MOP and solves it. Chen et al. [69] proposed an algorithm in which the selection mechanism can consider feasible
and infeasible solutions as potential parents or survivors, and the unfit, even though viable, solutions can be reconsidered after a
change.

Very often, EAs to solve DCMOPs borrow a number of strategies used by constrained MOEAs ( [72,73]) to handle constraints:
penalty functions, special representations and operators, repair mechanisms, and separation of constraints and objectives. Chen
et al. [69] argue for there to be three classes of strategies to deal with DCMOPs: giving the highest priority to the survival of
feasible solutions, seeking a balance of feasibility and convergence by the proper mechanism, and repairing infeasible solutions.
These may be taken as the main current approaches for handling DCMOPs by DMOEAs.

4 Dynamic Multi-Objective Problems

Table 4 summarizes the DMOPs covered in this survey when handled by DMOEAs. We can observe that FDA functions and
dMOP benchmarks are the most used problems. Also, we notice that there is not a standard problem set to DMOEAs assess.
Furthermore, although many real-world dynamic multi-objective optimization problems exist, very few DMOEAs have been
used to solve them.

Table 4: Dynamic Multi-Objective Optimization Problems and the
studies that use them.

DMOPs DMOEAs
Moving Peaks Benchmark [7, 13, 74]
FDA [1–7, 9, 11–20, 22–24, 26–29, 32, 33, 37–39, 41–54, 56–61, 66, 67, 75, 76]
DSW [1]
ZJZ [4, 41, 48, 56, 59, 61]
DTLZAv [28, 77]
dMOP [12, 15, 18, 20–22, 26–29, 32, 33, 37–39, 41, 42, 48–51, 56, 58–60, 75, 76]
DIMP [14, 16, 38, 42]
DMZDT [11, 24, 44]
WYL [11, 44]
HE [38, 78]
ZJZ2 (F) [20, 21, 26, 27, 32, 33, 37, 49, 58, 65–67]
UDF [28, 41, 54, 56, 76, 79]

2



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 21, Iss. 2, pp. 55-82, 2023
© Brazilian Society on Computational Intelligence

WYL2 [26]
MT [49]
CEC2015 [31, 34]
GTA [53, 66, 67, 80]
JY [35, 42, 59–61, 65–67, 81]
DF [36, 39, 42]
Fun [66, 67]
fun [67]
DCMOPs DMOEAs
DTF [1]
DCTP [25]
DMaOPs DMOEAs
SJY [29, 82]
Real-World DMOEAs
Control of combustion in a rubbish burner [45]
Dynamic hydro-thermal power scheduling problem [5]
Optimal force allocation for a combat simulation [46]
Identification of good parameter sets for the machining gradient materials [10]
Feature selection problem of the dynamic streaming data environments [40]
Dynamic workflow scheduling in cloud computing [62]

5 Performance indicators: definitions

Many measures used to evaluate MOEA performance have been adapted to assess DMOEAs. Helbig and Engelbrecht [83]
classified these dynamic multi-objective performance measures into four groups: (1) accuracy performance indicators, (2)
diversity performance indicators, (3) combined performance indicators, and (4) robustness performance indicators.

Accuracy performance indicators. These evaluate the algorithm’s convergence. They can be applied to the distance between
the approximate optimum front (POF ∗) and the true one (POF ′), or between the approximate optimal set (POS∗) and the true
one (POS′); moreover, they are based on the optimal solution percentage/ratio found to belong to the POF/POS; thus, they
measure the algorithm’s accuracy in tracking the POF/POS. For a given x1:N , the set of non-dominated solutions is of size N
and can be found by the algorithm at the t− th iteration. Table 5 presents the most popular indicators in this group.

Diversity performance indicators. Diversity indicators can measure either the distributivity of solutions in the POF ∗ or
the extension of the resulting Pareto front. For a given x1:N , the set of non-dominated solutions is of size N and is found by
the algorithm at the t − th iteration for a problem with m objective functions. Several indicators developed in this group are
presented in Table 6.

Table 6: Diversity Performance Indicators

Indicator Equation Best

Spacing Metric of Deb (∆)
[89]

∆ =
∑m

k=1 de
k+

∑N
i=1 |di−d̄|∑m

k=1 de
k+Nd̄

where di is any distance between neighboring solutions, d̄ is the distances average and
dek is the distance between the extreme solutions of POF ∗ and POF ′. It is only used
for bi-objective problems.

↓

PL-Metric (PL) [1] PL :=
∑

f(xi)∈POF ′ ln(ξxi
)

LPOF ′

where ξ = L(γ, f(xi), f(xi+1)) + 1 is each subsection between neighboring points
arranged in the true Pareto front, adding 1 to ensure that new solutions increase the
metric value.
L(γ, a, b) :=

∫ a

b
|γ̇|dt =

∫ a

b

√
γ̇2
1 + ...+ γ̇2

m is the path size between two solutions
[a, b]. γ(t) :⊆ ℜ → ℜm is a continuous parametric function.

↑

Average Density (AD) [87] AD = 1
KT

∑T
i=1

∑K
j=1

√
1

N−1

∑N
l=1(d̄ij − dijl)2

with dijl = minr ̸=l,1≤r≤N {∥xl − xr∥xl,xr ∈ Xij}, and d̄ij =
1
N

∑N
i=1 dijl

↓

C-Metric (C) [9] C(Ai, Bi) =
|{b∈Bi|∃a∈Ai:b⪰a|}

|B|
(Ai, Bi) are two sets of non-dominated solutions found by two algorithms. If
C(Ai, Bi) = 1, Bi is weakly dominated by Ai. If C(Ai, Bi) > C(Bi, Ai), algorithm
A has better performance than B. The dominance operator is not symmetrical. To
analyze how close POF ∗ to POF ′ is, the set A is formed by the solutions of POF ′,
and the set B is formed from POF∗.

↑
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Coverage Rate (Co) [87] Co(A,B) = 1
4TK2

∑T
i=1

∑K
j=1

∑K
r=1 C(Aij , Bir)

If Co(A,B) > Co(B,A), algorithm A is better than B. To analyze how close POF ∗

to POF ′ is, the set A is formed by the solutions of POF ′, and the set B is formed
from POF∗.

↑

U-Measure (U ) [9] Um(POF∗) = dstd =
√

1
2mN−1

∑
g∈POF∗

∑2m
r=1(dr − dmean)2

with dmean = 1
2mN

∑
g∈POF∗

∑m
r=1(d2r−1 − d2r)

where r ∈ {1, 2, ...,m} is used to classify the POF∗ into subsets
POF∗r1;POF∗r2; ...;POF∗rk according to the r-th objective points value.
dr = 1

2|T−{T r
l ,T r

k }|
∑

g∈T−{T r
l ,T r

k }(d2r−1 − d2r), for any g ∈ T r
i ⊂ T , d2r−1 =

d2r−1 + dr se i = 1 and, d2r = d2r + dr if i = k. d2r−1 and d2r are the distances of
two neighbors of a point g ∈ POF∗ from g.

↓

γ Diversity Metric (γ) [43] γ = 1
NP

∑NP
j=1

1
L

∑L
l=1

[
−
∑S

k=1 Plk log(Plk)
]

where NP is the population size, L is the chromosome length, S is the genotype
alleles cardinality, and Plk is the k-th allele genotype rate in the l-th location.

↑

Maximum Spread
(MS) [90]

MS(t) =
√∑m

k=1(POF ∗
k (t)− POF ∗

k (t))
2

where POF ∗
k (t) and POF ∗

k (t) are the maximum and minimum values of the k-th
objective at POF ∗.

↑

Maximum Spread
Adaptation (MS′) [12]

MS′(t) =

√
1
m

∑m
k=1

[
ms(t)

POF ′
k(t)−POF ′

k(t)

]2
ms(t) = min

[
POF ∗

k (t), POF ′
k(t)

]
−max

[
POF ∗

k (t), POF ′
k(t)

] ↑

Coverage Scope Measure
(CS) [91]

CS = 1
N

∑N
i=1 max{∥ f(xi)− f(xj) ∥}

xi,xj ∈ POF ∗, i ≥ 1 and j ≤ N
↑

Spacing Metric of Schott (S
or SP ) [92]

S =
√

1
N−1

∑N
i=1(d̄− di)2

where di = minj=1,...,N {
∑m

k=1 |fki(x)− fkj(x)|} and d̄ is the average of all di
values.

↓

Combined performance indicators. These indicators can compare algorithms by simultaneously considering their convergence
and diversity. Table 7 presents a representative set of indicators from this category.

Robustness performance indicators. Robustness measures evaluate how well the algorithm responds to environmental
changes. Table 8 shows the metrics of this group.

Typically, the measures and metrics are calculated by considering all changes. An average value, (θ̄), is calculated as

θ̄ =
1

numchange

numchange∑
i=1

θi, (1)

where θ is the performance indicator used, numchange denotes the number of environmental changes, and θi is the θ value
calculated before the (i+ 1)-th change occurs.

From the state-of-the-art review of performance indicators, we can see in Table 9 that the combined measures category is the
most used; these evaluate DMOEAs according to their convergence and spreading. The inverted generational distance IGD and
HV metrics are the most popular. The maximum spread MS and generational distance GD are used as diversity and accuracy
measures, respectively. Notably, no set of standard performance indicators has yet been established for evaluating DMOEAs.
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Table 5: Accuracy Performance Indicators
Indicator Equation Best

Convergence Performance
Measure (ex, ef ) [45]

ex = 1
N

∑N
j=1 mini=1:|POF ′|

∥∥∥POF ′
i (t)−POF∗

i (t)
R(t)−U(t)

∥∥∥
ef = 1

N

∑N
j=1 mini=1:|POS′| ∥POS′

i(t)− POS∗
i (t)∥

where U(t) is the utopia point [84], and R(t) is the time-dependent
nadir point [84]

↓

Based-Distance
Performance Indicator
(D(P )) [85]

D(P ) = 1
|POF∗|

∑
x∈POF∗ ∥x− y(x)∥2

y(x) = argminy∈POF ′ ∥x− y∥2
↓

Success Ratio (SCτ ) [1] SCτ = |{x|f(x)∈POF ′}|
|POF∗| ↑

Generational Distance (GD)
[86]

GDt =

√∑N
i=1 d2

i

N
where di are the minimum Euclidean distances of the function value of
a solution to the Pareto front

↓

Convergent Ratio (CR) [87] CR = 1
KT

∑T
i=1

∑K−1
j=1

1
K−j

∑K
l=j+1 C(Aij , Ail)

where K is the number of times that an algorithm A runs on the i-th
environment, with 1 ≤ i ≤ T , resulting in K sets of non-dominated
solutions {Aij}Kj≥1

↓

Variable Space Generational
Distance (V D) [12]

V D(t) =

√
N

∑N
i=1 d2

i

N
where di is the Euclidean distance between the i-th POS∗ solution and
the closest POS′ member

↓

Convergence Metric (λ) [43] λ = 1
N

∑N
j=1 min ∥POF ∗ − POF ′∥ ↓

Average Hausdorff Distance
(∆p) [88]

∆p(X,Y ) = max{GDp(X,Y ), IGDp(X,Y )} =

max

((
1
N

∑N
i=1 dist(xi, Y )p

) 1
p

,
(

1
M

∑M
i=1 dist(yi, X)p

) 1
p

)
where X = x1, ..., xN , Y = y1, ..., yM ⊂ ℜm are non-empty finite
sets, GDp and IGDp are the average of GD and IGD metrics,
respectively, using the p-norm

↓
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Table 7: Combined Performance Indicators
Indicator Equation Best

Hypervolume (HV )
[93]

HV = Leb
⋃

x∈POF [f1(x), r1]× · · · × [fk, rk]
r = (r1, r2, · · · , rm) is a reference vector. It is mainly used when the
POF ′ is unknown.

↑

Hypervolume Ratio
(HV R) [94]

HV R(t) = HV (POF∗(t))
HV (POF ′(t)) ↑

Hypervolume
Difference
(HVD) [95]

HVD = HV (POF ′)−HV (POF ∗) ↓

Inverted
Generational
Distance (IGD) [11]

IGDj =
∑N

i=1 di

N

with di = min
|POF ′|
k=1

√∑m
j=1

(
f
∗(i)
j − f

′(k)
j

)2

↓

Improvement version
of IGD (IGD+) [96]

IGDj =
∑N

i=1 di

N

with di = min
|POF ′|
k=1

√∑m
j=1

(
max

{
f
∗(i)
j − f

′(k)
j , 0

})2

↓
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(acc) [97]
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accalt(t) = |HV (POF ′(t))−HV (POF ∗(t))| ↑

Set Coverage Metric
(η) [98]

η = D(POF∗,POF ′)
HV (POF ′) + D(POF ′,POF∗)

HV (POF ′)

where D(POF ∗, POF ′) = HV (POF +POF ′)−HV (POF ′) is D
metric [90].

↓

Table 8: Robustness Performance Indicators
Indicator Equation Best
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t′ − t|t < t′ < τmax, t
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}
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long it takes for an algorithm to recover after an environment change.
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