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Abstract – Deep learning applications in medical imaging have been achieving promising results in the detection of 

diseases, among which clinical trials in terms of screening and diagnosis of patients with COVID-19 stand out. Computed 

Tomography (CT) images of the chest have been used by specialists for the diagnosis of COVID-19. However, due 

to the need of the moment and the possibility of using computational resources to help the medical team, it is observed in 

the literature several proposed works using supervised learning, however it lacks unsupervised methods for the screening and 

diagnosis of patients with COVID-19. In this work, the deep learning models Convolutional Neural Network (CNN) and 

Variational Autoencoders are used for feature extraction and later this information is used for binary and multiclass 

classification in unsupervised methods (k-means, Fuzzy C-Means and Self-Organizing Maps). For this purpose, a public 

database containing 4173 CT images (2168 CT slices from COVID-19, 758 slices from Healthy and 1247 slices from other 

lung diseases) was used. The results show that feature extraction via Variational Autoencoders has similar performance with 

state-of-the-art models in the literature for COVID-19, mainly for the binary classification with accuracies of 95.9%, 92.1% 

and 95.9% for k-means, Fuzzy C-Means and SOM, respectively, presenting competitive results in the literature. It also shows 

the importance of extracting features through convolutional networks to improve classification performance, resulting from 

the use of deep learning and its state of the art in the area of computer vision. 

Keywords – COVID-19, Unsupervised Learning, Transfer Learning, Variational Autoencoder, k-means, Fuzzy C- 

Means 

1 Introduction 

COVID-19 is an infectious disease caused by the etiologic agent, Severe Acute Respiratory Syndrome, Coronavirus 2 (SARS-

CoV-2) [1], which has had a high mortality rate compared to other influenzas [2]. By February 2022, more than 

5.6 million deaths had been recorded, surpassing morbidities such as SARS-CoV and MERS-CoV [3]. In mid-2019, with 

the emergence of COVID-19 in the city of Wuhan (China) [4], the use of computational intelligence techniques became an 

essential tool in supporting the decision-making of doctors and/or specialists [5, 6]. Given the ease of spread and 

contagion, measures such as social isolation have been imposed in many countries, which makes the use of various 

technological resources to control this disease even more significant. 

Currently, the diagnosis of the disease is performed through Reverse Transcription Polymerase Chain Reaction (RT-

PCR), clinical history of the patient and medical images, such as computed tomography (CT) images. Although CT 

images play an important role in the diagnosis of COVID-19, this method has some limitations such as the lack of 

specificity between the lesions that may have been caused by other diseases, as well as the lack of professionals for the 

evaluation. In this context, the use of computational tools may overcome these issues [7]. 

On the other hand, the increase of available data (big data) boosted the development and improvement of Deep Learning 

technique [8], such as convolutional neural networks [9]: ResNet [10], Efficient Network [11], among other models that have 

shown expressive results, mainly for feature extraction, a crucial step to improve the classification rates. These models 

have shown good results in several areas [12], especially for screening and diagnosis of COVID-19 based on CT [13]. The 

works reported in [14,15] have demonstrated the relevance of using CT images and deep learning models to aid in the 

diagnosis of COVID-19. More recent studies have sought better solutions for this scenario [16,17]. Despite the higher cost 
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of CT compared to radiography (CXR), it can demonstrate the characteristics for the screening of COVID-19 [17] more 

clearly. Works such as [18] have shown that ground-glass opacity and consolidation are usually not identified in computed 

radiography images, but can be more easily identified in CT. 

Another technique that has been gaining importance in the scientific community is the variational autoencoders, a specific 

case of the unsupervised learning, in which several works have shown promising results for biomedical image processing 

[19, 20]. Thus, it is a consensus that the current scenario has marked the spread use of computational techniques for health, 

especially in the processing of medical images [13] related to COVID-19. 

Likewise, the use of models based on fuzzy logic, a theory initially proposed in [21], which deals with fuzzy sets to model 

uncertainties, has shown important results in several applications, including the medical area [22]. Regarding the use of 

CT images modeled by Fuzzy theory and Deep Learning algorithms, some studies have demonstrated its effectiveness 

when performed to classify images of COVID-19 [23]. 

As COVID-19 is relatively recent, the number of databases sufficient to train appropriate deep networks is limited. In this 

context, transfer learning [24] techniques have been attractive for problems with few data and limited hardware structure for 

training the algorithms [25]. 

In this work, a method for classifying CT images of COVID-19 using Deep Learning techniques, and unsupervised 

algorithms based on an ensemble structure is proposed. For feature extraction, we exploit the good capacity of Deep 

Learning by implementing variational autoencoder [19] and transfer learning. The feature extraction is performed in a 

specialist way, in which one data class is confronted with the others. With that, custom feature vectors for each class are 

extracted. Later, they are thus combined (concatenated) using an ensemble alike method, and finally presented to 

unsupervised classification methods, specifically, k-means and Fuzzy C-Means (FCM). 

1.1 Main Contributions 

This work presents the processing of CT images for the diagnosis of COVID-19 in unsupervised learning scenarios, which, 

in the current literature, are less investigated than the supervised learning methods. Two system architectures are 

implemented and compared to evaluate different feature extraction structures. In addition, ensemble structures are used to 

improve model generalization. 

1.2 Organization 

This research is organized as follows: Section 2 presents the main theoretical concepts that involve the proposed system. 

Section 3, presents the related works. Section 4 presents the proposed method, as well as the description of the adopted 

database.  Section 5 presents the results and an in-depth discussion.  Final considerations and future work are presented in 

Section 6. 

2 Theoretical Background 

2.1 Convolutional Neural Network (CNNs) 

Deep Learning techniques, such as the Convolutional Neural Network, have been successfully applied to image 

processing, which makes their use promising for medical image analysis. The Convolutional Neural Network is a multi-

layered network proposed by [26] that contain structures capable of extracting features for pattern recognition in image 

data analysis [27]. Since then, several CNNs have been proposed, each one with its own structure. 

In CNNs, the states in each layer are organized according to the grid structure, so each layer of the convolutional network 

is a three-dimensional network structure, which has height, width, and depth [28]. 

The work reported in [29] proposed a Convolutional Neural Network based on ResNet [10], which was used in present 

work through the transfer of learning process for feature extraction in the first scenario. A brief description of this 

architecture is presented in the next section 

2.1.1 ResNet (Residual Network) 

The basic idea of ResNet is to exploit residual blocks. Residual blocks were proposed to solve the gradient explosion 

problem, which later converged to the development of ResNet [10]. The main functionality of residual blocks is in the 

perspective of learning through residual mapping. Basically, ResNet is characterized by the stacking of several residual 

blocks, which led to the creation of several networks of residual blocks, for example ResNet-50, which means residual of 

50 layers with hop connection. 

In addition to ResNet, the literature has several CNNs, such as: Visual Geometry Group (VGG) [30], Dense Con- 

volutional Network (DenseNet) [31], GoogLeNet [32], Inception [33], Xception [34] among others. These architectures were 

trained on the imagenet [35] dataset and are available for the transfer learning process. 
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2.1.2 Transfer Learning 

Transfer learning is a machine learning method where a model developed for a task is reused as the starting point or as 

preprocessing stage for a model on a second task [24]. 

The basic idea of CNNs is that through convolutional layers, general and hidden features can be extracted from images, such 

as edges, textures, shapes and composition of objects, while the last layers are able to identify specific image features such 

as eyes, wheels, lung, among others (depending on the problem in question).  In this sense, with the use of transfer learning, 

the first layers of a given CNN are frozen (responsible for detecting edges, for example), and only the last layers are 

trained. These last are responsible for adapting to the desired situation. 

Thus, the objective of transfer learning is to improve the performance of the model by transferring information from a 

related domain to be adapted to the desired task. Transfer learning has been used mainly when you have a limited dataset 

for training. 

2.2 Variational Autoencoder 

Considered in the literature as a feature extraction and data augmentation method, the Variational Autoencoder (VAE) is a 

generative model based on variational Bayesian learning, using a deep learning framework [19, 36]. In general, VAE extracts latent 

values from input variables to generate new information. 

Considering a data set with N independent and identically distributed samples (i.i.d.) for a continuous variable x, the VAE is 

designed to estimate the probabilities P(X), so that real samples with high probability and random noise with low probability are 

obtained [36]. According to [37], in the general case, to generate real data it is assumed that this is a random process consisting of 

two points: (i) the latent and continuous variable z is generated from a priori distributions p(z; θ); and (ii) the observed data x are 

results of the conditional distribution p(x|z; θ), as described in the Bayesian theory, where z is a latent variable, θ is the value of the 

parameters and p(z|x) is an intractable posteriori in the general case. 

Thus, the inference of the VAEs is performed by maximizing a variational lower limit L(θ, φ; xi), which can be derived by [37]: 

 L (θ, ϕ; xi) = − KL(q(z|xi ; ϕ) ∥ p(z; θ)) 

+  𝐸q(z|xi; ϕ) [log p(xi|z; θ)] 
          (1) 

where the parameters ϕ and θ are the learned weights of the VAE. 

Conventionally, the a priori distribution p(𝑥; θ) is assumed to be multivariate Gaussian [38], hence the a posteriori p(𝑥|xi; 

θ) is an approximate Gaussian with approximately diagonal covariance [37]. Then, L(θ, φ; xi) is expressed by: 

             L (θ, ϕ; xi) ≅ 
1

2
∑ (1 + 𝑙𝑜𝑔𝜎2

𝑖,𝑗 − 𝜇2
𝑖,𝑗 − 𝜎2

𝑖,𝑗)
𝑛
𝑗=1 + 

1

𝐿
∑ 𝑙𝑜𝑔𝑝𝑙

𝑙=1 (𝑥𝑖 ∨ 𝑧𝑖; 𝜃)                                                 
          (2) 

where µ and σ2 are the mean and variance of the VAE encoder parameters, respectively. Furthermore, J refers to 

dimensionality and L to the sample size. 

2.3 Fishers’ Discriminant Ratio 

The Fishers’ Discriminat Ratio (FDR) [39] is a well known method for feature selection, which is very useful in pattern 

recognition systems for dimension reduction. The FDR cost vector function is expressed as: 

 

             F = (µ1 − µ2)2 ⊙
1

𝜎1
2+𝜎2

2             (3) 

where F  = [F1, . . . , FL]T ,  is the “discriminant relevance” for each feature;  L  is the total number of features;  µ1 and 

µ2, and σ1 and σ2 are the mean and variance of the feature vectors of classes 1 and 2, respectively; and refers to the 

Hadamard product [40]. The term in the numerator in (3) indicates how far the feature map distributions are from each 

other, while the denominator indicates how spread out these distributions are.  Thus, the higher is the value of F , the 

greater the discriminating power of the feature. 

2.4 k-means 

The k-means algorithm described by [41, 42] aims to decisively partition a data set X into a certain number of c clusters. The 

algorithm basically works minimizing the within-cluster sum of squares given by equation (4), allocating each data sample 

xk ∈ R (k = 1, . . . , N) to its nearest cluster: 
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             JKM (X; V ) =∑ ∑ ∥ 𝑥𝑘𝑘=𝐴𝑖

𝑐
𝑛=1 − 𝑣𝑖 ∥2           (4) 

where 𝑣𝑖 ∈ 𝑅n, (i = 1, . . . , c) is the mean of the data vectors inside cluster i, given by equation (5), and 𝐴𝑖 is the set of 

samples that are closer to the ith cluster center than to the others. 

 

            𝑣𝑖 =
1

𝑁𝑖
∑ 𝑥𝑗

𝑁𝑖
𝑘=1 , 𝑥𝑖 ∈ 𝐴𝑖,            (5) 

where Ni is the number of samples in Ai. This method has no guarantee to converge to a global optimum, due to its 

initialization that uses random samples to measure the initial Means. 

2.5 Fuzzy C-Means 

Basically, the algorithm k-means works by assigning data to centroids, so [42] proposed an algorithm based on k-means 

where it is possible to handle uncertainties using the membership degree, the FCM algorithm, which is one of the widely 

used algorithms for Fuzzy classification [43]. 

In general, the FCM aims to partition the data in such a way that intra-group samples are more similar to each other, 

and inter-group samples are less similar, generating a degree of pertinence associated with a data set X in a certain 

number of clusters. This process occurs via an objective function, given by: 

             JF CM (X ; U, V ) = ∑ ∑ (𝜉𝑘,𝑖)
𝑚𝑁

𝑘=1
𝑐
𝑖=1 ∥ 𝑥𝑘 − 𝑣𝑖 ∥2           (6) 

where 𝑥𝑘 ∈ 𝑅n, (i = 1, . . . , N)  represents the samples; 𝑣𝑖 ∈ 𝑅n, (i = 1, . . . , c) is the cluster center, which can be 

defined          by: 

 

            𝑣𝑖 = 
∑ (𝜉𝑘,𝑖)

𝑚
.𝑁

𝑘=1 𝑥𝑘

∑ (𝜉𝑘,𝑖)
𝑚𝑁

𝑘=1

           (7) 

where n is the number of variables; c is the number of clusters; m is the fuzziness constant; and 𝜉ki, is the membership 

degree of the kth sample in the ith cluster: 

𝑣𝑖 =

[
 
 
 
 
𝜉11

⋮

⋯
⋱

𝜉1𝑖 ⋯ 𝜉1𝑐

⋮ ⋮
𝜉𝑘1

⋮
𝜉𝑁1

⋯
⋯

𝜉𝑘𝑖 ⋯ 𝜉𝑘𝑐

⋮ ⋱ ⋮
𝜉𝑁𝑖 ⋯ 𝜉𝑁𝑐]

 
 
 
 

           (8) 

subject to the following restrictions: ∑ 𝜉𝑛𝑘 = 1𝑁
𝑖=1  ∀n; and 0 <  ∑ 𝜉𝑛𝑘 < 1𝐾

𝑖=1 ∀k. The elements of the partition matrix are 

given by: 

            𝜉𝑘𝑖 = 
1

∑
𝐷𝑘𝑖
𝐷𝑘𝑗

𝑐
𝑗=1

2
𝑚−1

, 
          (9) 

where Dki is the square distance between xk and νk, given by: 

 

            ∥ 𝑥𝑘 − 𝑣𝑖 ∥2= 𝐷𝑘,𝑖
2 = (𝑥𝑘 − 𝑣𝑖)

𝑇(𝑥𝑘 − 𝑣𝑖).           (10) 

The centers will converge to a position in the feature space where the partition matrix presents a minimal variation, i.e. 

when ||∆U || ≤ ϵ. 

2.6 Self Organizing Maps 

Self  Organizing Maps (SOM) is an unsupervised machine learning method designed to map a high dimension data set 

into a low dimension feature map [44]. The network is trained with a competitive algorithm, where the closest weights 

are updated towards the sample feature vectors. Given a set of samples like x = [x1, x2, . . . , xM] (where M represents the total 
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number of features), the algorithm calculates the distance between every single sample vector to each neuron, aiming to 

find the best match. The learning rule of SOM comprises to update a set of neurons within a certain neighborhood 

(Nϕ(d)), which can be done by: 

 

        (11) 

where λ is the learning rate, and t represents the iteration. 

 

3 Related Work 

Much of the research done in the area of machine learning applied to COVID-19 image classification can be summarized 

as a feature extractor followed by a nonlinear classifier. The state-of-the-art literature review includes transfer learning 

research and expert models. This review section is selective and not exhaustive; therefore, it basically aims to highlight 

representative approaches in this context. 

Recently, several works were developed in which promising results were found. These algorithms usually employ a classifier 

based on convolutional neural networks. The work reported in [45] used the Resnet-50 model through transfer learning to 

classify 5941 images from 2839 patients into four classes:  normal, bacterial pneumonia, viral pneumonia and COVID-19, 

resizing was also adopted (pre-processing) of the images. This approach reached an average accuracy of 96.23% with only 

41 epochs. 

Some works have compared classification performances with and without the use of transfer learning. In [46], the authors 

used a CNN model and achieved an accuracy of 91%, without the use of data transfer learning, to differentiate between 

COVID-19 and non-COVID-19. This same study used transfer learning and the accuracy increased to 94% in differentiating 

between COVID-19 and non-COVID-19. Among the contributions of this work, the good performance of the model with 

transfer learning technique stands out. 

In addition to transfer learning techniques, the preprocessing stage has also gained relevance in the analysis of COVID-

19 images [47]. The work reported in [48] used transfer learning through the COVIDNet-CT model, which is based on 

ResNet, and obtained a validation accuracy of 94.9% and a test accuracy of 88.89%, for the classes COVID- 19, 

Pneumonia and Healthy. The model employed important preprocessing stages comprising to region of interest (RoI) 

extraction, normalization and image resizing. This literature review shows the relevance of extracting features via deep 

learning models. This work contributes by combining different feature extraction techniques with expert models to classify 

CT images of COVID-19. 

4 Proposed Approach 

The proposed approach consists of two ensemble structures based on unsupervised algorithms, as shown in Figure (1). 

Basically, the structures consist of three steps: feature extraction, feature selection and classification. 

The first approach (upper left in Figure (1)) uses three pretrained models,  developed specifically for COVID-19 image 

classification (COVIDNet-CT [29, 49]). These models were used to extract the feature vectors from the images, using a 

transfer learning approach, in which the outputs of the last convolutional layer of the models (flattened in one dimensional 

layer) are used. Two models provided 176 features and one model 412. The outputs are then concatenated, totaling 764 

features. Thus, each processed image is represented by a vector of 764 features. 

The second approach (upper right in Figure (1)) used Variational Autoencoder models to map the data into a latent 

space, which remains at the model bottleneck. After training the Variational Autoencoder, it is able to extract a reduced 

feature vector from each image. In this case, a Variational Autoencoder model was trained for each of the classes 

consisting of the following scenarios (COVID-18 vs (Other diseases and Healthy), Other diseases vs (COVID-19 and 

Healthy) and (Healthy vs (COVID-19 and Other diseases)). Note that each scenario is proposed to identify a class, 

through binary classification, hence the name expert class. With this strategy, the model is trained to identify  patterns 

of a certain class. The three models were trained with a space 256 latent features1 From there, VAE models were used 

to map all the images of the three classes to a single latent vector, obtained by concatenation of the outputs into a vector 

with a total of 768 of features.1Following an intermediate latent space to map the data [50]. 

The final common step (at the center bottom in Figure (1)) uses FDR criterion for dimension reduction, decreasing the 

number of features to five for the k-means algorithm, which was the number of features such that the algorithm performed 

better. For the FCM and SOM algorithms, the number of features was not reduced with FDR, since it did not lead to 

better results. Thereby, this resulting feature vector is presented to the unsupervised classifiers FCM, k-means and SOM. 

Finally, in the operational stage, the distances from the test samples to the cluster centers are used as metric for final 

classification. 
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Figure 1: General model proposed, with feature extraction via modified ResNet convolutional neural network and variational 

autoencoder. 

4.1 Database 

As it is a respiratory disease, acute SARS-COV-2 infection is highly cytopathic, that is, it can cause damage to the 

alveolar structures of the lung, which can lead to extensive lung damage [51]. Thus, the lung is the most affected organ, 

featuring respiratory symptoms and changes that can be identified by computerized medical images. 

For lesions caused by SARS-COV-2 to the lung, it is possible through computed tomography (CT) to identify 

abnormalities that may raise suspicion of probable infection by COVID-19. The main findings on chest CT include 

ground-glass opacity, vascular enlargement, and bilateral abnormalities. 

Thus, a data set with CT scans in PNG format was used, which are divided into: 758 CT scans for healthy patients (15 CT 

scans on average per patient). 2.168 CT scans for patients infected with SASR-CoV-2 (on average 27 CT scans per 

patient) and 1.247 CT scans for patients with other pulmonary directions (on average 16 CT scans per patient) [52]. 

Figure (2) shows chest CT sample examples of each of the classes, in Figure (2.a), COVID-19 exam is shown, where it can 

be observed the whitish regions, in contrast to what is shown in Figure (2.b) for a healthy patient. Besides, as shown in 

(Figure (2.c) other diseases can also be confused with COVID-19, as CT images also exhibit whitish regions. 

 

(a) Patient with COVID-19              (b) Healthy patient       (c) Patient with other lung diseases 
 

Figure 2: CT scan of database samples. 

 

With the objective of feasibility and generalization of the proposed approach, the system will be trained and tested

through K-fold cross-validation procedure [53, 54]. 
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5 Results and Discussions 

5.1 Data Cleanup 

For scenario 1, the extraction of image attributes was performed based on the layer before the dense layer of the  network, 

totaling a set of 764 attributes, being 176 of two models with a lower number of parameters and 412 of another model 

with a higher number of parameters. A small part of these attributes was null and, when applying the Fisher ratio, the 

results were interpreted as non-numerical, as it is a mathematical indeterminacy. To resolve this issue, the attributes were 

removed, leaving 747 attributes per sample. 

5.2 Numerical Results 

Seeking to analyze this divergence between the model and the classification in the databases, three different scenarios were 

created for a more detailed analysis. Confronting the COVID-19 and Healthy, COVID-19 and Other Diseases, and finally 

COVID-19, Other Diseases and Healthy. 

5.2.1 FCM, k-means and SOM via transfer learning 

The analysis of the scenarios was initially divided into two sections, the Tables 1, 2 and 6 summarize the information on 

the binary classification COVID-19 vs Healthy and COVID-19 vs Other Diseases for FCM, k-means and SOM, respectively, 

in terms of accuracies for both train and testing data sets. Similarly, Tables 4, 5 and 6 present the results of the multiclass 

classification COVID vs Healthy vs Others. With the objective of verifying the best scenario, several configurations were 

analyzed, thus the number of clusters was varied from 2 to 12 and the total amount of attributes per sample was maintained. 

To measure the accuracy of the FCM algorithm, it was used the Mahalanobis distance from every sample to the 

center, and for k-means and SOM, it was used the Euclidean distance to the cluster centers/neurons. 

 

Table 1: Classifier Fuzzy C-Means for binary scenario. 

Clusters COVID-19 × Healthy COVID-19 × Others 

train accuracy     test accuracy     train accuracy     test accuracy     

2 84.3 ± 6.9 85.6 ± 12.9 68.9 ± 2.2 63.8 ± 5.2 

4 42.7 ± 17.6 52.1 ± 20.9 33.3 ± 9.5 33.9 ± 9.3 

6 27.8 ± 18.4 39.1 ± 31.3 8.9 ± 13.4 10.6 ± 11.7 

8 10.9 ± 13.3 9.4 ± 12.9 22.9 ± 21.1 22.4 ± 20.4 

12 8.8 ± 15.2 13.0± 23.1 12.4 ± 3.3 13.6 ± 4.9 

 

 

Table 2: Classifier k-means for binary scenario. 

Clusters COVID-19 × Healthy COVID-19 × Others 

train accuracy     test accuracy     train accuracy     test accuracy     

2 88.2 ± 0.8 90.2± 7.7 70.6 ± 0.7 66.4 ± 7.0 

4 43.4 ± 16.4 44.0 ± 23.3 36.4 ± 3.8 35.3 ± 7.9 

6 25.6± 12.9 26.4 ± 18.6 22.9 ± 6.6 21.7 ± 7.6 

8 20.1 ± 12.3 23.5 ± 15.0 19.5 ± 3.1 18.8 ± 8.0 

12 15.8 ± 6.8 19.8± 11.1 12.4 ± 3.3 13.6 ± 4.9 

 

 

Table 3: Classifier Self-Organizing Maps for binary scenario. 

Clusters COVID-19 × Healthy COVID-19 × Others 

train accuracy     test accuracy     train accuracy     test accuracy     

2 87.3 ± 0.8 89.3 ± 7.3 69.5 ± 0.6 65.0 ± 5.5 

4 60.2 ± 4.1 57.0 ± 15.5 45.1 ± 2.2 44.1 ± 8.2 

6 20.8 ± 5.0 16.4 ± 6.4 26.9 ± 0.4 27.9 ± 6.3 

8 18.8 ± 3.8 10.3 ± 4.1 19.6 ± 0.9 19.9 ± 4.7 

  12 11.3 ± 2.1 9.8± 4.3 11.6 ± 0.6 12.1 ± 2.9  
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Table 4: Classifier Fuzzy C-Means for multiclass scenario. 

Clusters COVID-19 × Others × Healthy 

train accuracy     test accuracy     

3 55.9 ± 4.8 56.4 ± 8.8 

6 29.6 ± 17.1 32,2 ± 16.4 

9 28.4 ± 19.7 28.5 ± 19.3 

12 13.7 ± 15.3 14.2 ± 15.6 

 

 

Table 5: Classifier k-means for multiclass scenario. 

Clusters COVID-19 × Others × Healthy 

train accuracy     test accuracy     

3 50.8 ± 5.3 55.1 ± 8.1 

6 28.1 ± 2.8 27.3 ± 5.4 

9 18.4 ± 4.8 18.5 ± 6.2 

12 14.2 ± 4.5 14.3 ± 4.3 

 

 

Table 6: Classifier Self-Organizing Maps for multiclass scenario. 

Clusters COVID-19 × Others × Healthy 

train accuracy     test accuracy     

3 60.2 ± 0.7 61.4 ± 6.0 

6 28.6 ± 0.4 29.7 ± 3.3 

9 15.3 ± 0.4 16.6 ± 3.2 

12 10.6 ± 0.2 13.4 ± 3.3 

 

For the binary classification (Tables 1, 2 and 3), the increase of the number of cluster led to the decreasing of the accuracy, 

in which two clusters was the best configuration for all clustering algorithms. This behaviour is also verified in the 

multiclass classifier, according to Tables 4, 5 and 6. In these last cases, three clusters scenario was the best value, since 

three classes (COVID-19, Other diseases and Healthy) were considered. 

In general, the result obtained by the clustering algorithms was similar. By varying the set of attributes selected by the 

criterion of Fisher’s discriminant ratio for the algorithms C-Means and SOM, the performances were better when all 

the attributes extracted by the convolutional models were used (except for null values). In the algorithm k-means there was a 

need to use a smaller number of attributes, since the result for the total set of attributes presented a lower performance in 

relation to the scenario in which a greater number of attributes was used. 

Other works in the literature also make use of the techniques studied here, such as transfer learning for feature extraction. 

The work reported in [55] used CT images for classification between COVID-19 and non-COVID, the model 

performance for the COVID-19 class was 98.68% accuracy and 99.20% sensitivity. These results are superior to those 

achieved by the proposed models, however, this method was developed to identify COVID-19, while the proposed method 

classifies three classes: COVID-19, Healthy and Other diseases. 

The work reported in [56] used transfer learning from DenseNet201, ResNet50, VGG16 and Xception convolutional 

networks, and the classifiers support vector machine, random forest, decision tree and k-nearest neighbors (KNN). A 

performance of 100% was found using features taken from DenseNet201 and the KNN classifier.  This result suggests that 

other classifiers combined with different CNN must be considered to improve the performance of the proposed system. 

5.2.2 FCM, k-means and SOM with Variational Autoencoder 

The second scenario analyzed deals with the extraction of features via Variational Autoencoder, using the training configuration 

described in the proposed methods section. The results are summarized in Tables 7, 8 and 9 for the binary classification, and Tables 

10, 11 and 12 for the multiclass classification. An interesting aspect of this scenario is the importance of specialist classes.  

In general, both for the binary classification and for the multiclass classification, the results have a behavior like that presented in 

the first scenario. 
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Table 7: Classifier FCM for binary scenario. 

Clusters COVID-19 × Healthy COVID-19 × Others 

train accuracy     test accuracy     train accuracy     test accuracy     

2 96.3 ± 3.4 92.1 ± 5.4 63.6 ± 3.5 58.2 ± 6.6 

4 42.1 ± 13.3 41.3 ± 14.7 29.6 ± 4.3 34.1 ± 8.4 

6 22.2 ± 11.8 21.8 ± 11.5 21.1 ± 4.3 20.9 ± 5.2 

8 15.8 ± 7.4 20.1 ± 11.7 15.7 ± 7.1 16.7 ± 12.5 

12 16.1 ± 7.2 16.7 ± 7.4 7.1 ± 4.1 5.6 ± 3.2 

 

Table 8: Classifier k-means for binary scenario. 

Clusters COVID-19 × Healthy COVID-19 × Others 

train accuracy     test accuracy     train accuracy     test accuracy     

2 95.1 ± 4.1 95.9 ± 3.9 64.1 ± 4.3 58.6 ± 6.5 

4 55.4 ± 20.1 52.9 ± 21.6 30.6 ± 2.6 30.6 ± 7.7 

6 35. 3 ± 9. 7 36.3 ± 13.7 23.8 ± 3.3 27.4 ± 11.7 

8 24.6 ± 10.3 25.9 ± 12.5 16.8 ± 3.2 15.9 ± 6.2 

12 14.7 ± 5.3 16.6 ± 7.1 10.2 ± 2.3 10.2 ± 2.9 

 

Table 9: Classifier Self-Organizing Maps for binary scenario. 

Clusters COVID-19 × Healthy COVID-19 × Others 

train accuracy     test accuracy     train accuracy     test accuracy     

2 95.3 ± 5.5 95.9 ± 5.2 63.9 ± 3.4 58.2 ± 6.0 

4 38.9 ± 6.4 40.1 ± 9.5 27.4 ± 1.6 28.0 ± 7.9 

6 25.2 ± 7.5 28.0 ± 11.3 17.6 ± 1.9 18.0 ± 12.1 

8 18.4 ± 4.9 19.5 ± 10.2 13.8 ± 1.7 15.3 ± 12.3 

  12 11.3 ± 2.9 10.8± 4.8 8.6 ± 0.9 9.4 ± 11.1  

 

Table 10: Classifier FCM for multiclass scenario. 

Clusters COVID-19 × Others × Healthy 

train accuracy     test accuracy     

3 53.1 ± 7.9 55.9 ± 9.0 

6 26.9 ± 8.7 30.1 ± 6.5 

9 17.8 ± 5.4 19.4 ± 6.1 

12 14.5 ± 4.7 13.9 ± 5.2 

 

Table 11: Classifier k-means for multiclass scenario. 

Clusters COVID-19 × Others × Healthy 

train accuracy     test accuracy     

3 52.9 ± 8.5 54.8 ± 9.6 

6 27.0 ± 6.2 30.6 ± 7.1 

9 16.8 ± 5.3 16.4 ± 7.2 

12 14.6 ± 4.7 14.6 ± 7.4 

 

Table 12: Classifier Self-Organizing Maps for multiclass scenario. 

Clusters COVID-19 × Others × Healthy 

train accuracy     test accuracy     

3 55.3 ± 6.8 57.9 ± 7.3 

6 21.6 ± 4.8 20,6 ± 5.1 

9 13.6 ± 2.7 16.4 ± 4.8 

12 10.2 ± 2.6 11.8 ± 6.2 

An interesting result is the training and testing accuracy for the binary classification considering two clusters, it is observed 

that the results were above 90% for both classifiers. Thus, it is observed that these results can be compared to those 

obtained by [19] that also used unsupervised learning to classify COVID-19 images. 
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Analyzing the two considered scenarios (both for binary classification and for multiclass) the combination of 

characteristics via variational autoencoders presented the best accuracy result for the “ideal” number of clusters. 

As discussed, [57] from a clinical point of view, other performance measures, such as sensitivity and specificity, ensure more 

reliable analyses, especially regarding the rate of false negatives and false positives. As we cannot diagnose a COVID-

19 positive patient as negative, the patient may return to the community, believing they are COVID-19 free, which leads 

to community transmission of the disease. When we diagnose too many COVID-19 negatives as positives, it increases the 

burden on the healthcare system and causes public panic. 

5.3 Graphical results 

5.3.1 FCM, k-means and SOM via transfer learning 

For the first proposed method, using the transfer learning technique with the COVID-Net models [29], was used the Fisher 

Discriminant Ratio to perform the dimensionality reduction, that allowed a optimization regarding the model  complexity. 

The first analysis was meant to cluster COVID-19 patient samples from Healthy patient samples. For the testing set, the 

clusters centers, neurons and the samples in a 3D feature space, built considering the three most relevant features, according 

to the FDR criterion, are shown in Figures 3, 4 and 5. 

 

(a) FCM (b) k-means (c) SOM 

 
Figure 3: COVID-19 vs. Healthy using: (a) FCM; (b) k-means; and (c) SOM classification models 

. 

As it can be observed in Figures 3(a), 3(b) and 3(c), the algorithms found clusters centers/neurons closer to each other, 

showing a slight difference between them, only observed when the image is zoomed in. The second analysis proposed 

(COVID-19 vs Others) does not perform as good as the first one, both methods showed a poor performance compared 

with the first one. A possible reason for the lower performance would be due to the similarity between covid samples and 

other diseases samples. The feature space for FCM, k-means and SOM algorithms became as shown in Figure 4. 

 

   
 

(a) FCM (b) k-means (c) SOM 

 
Figure 4: COVID-19 vs. Others using: (a) FCM and (b) k-means and (c) SOM classification models. 
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The last analysis aimed to cluster all three classes, and as expected the clusters centers does not fit exactly where it should 

be, mainly COVID-19 and others diseases samples, that shows more closer relation than COVID-19 and Healthy 

samples. The healthy cluster center appears to be the most separable one, as shown in Figure 5. 

 

(a) FCM (b) k-means (c) SOM 

 
Figure 5: COVID-19 vs. Healthy vs. Others using: (a) FCM and (b) k-means and (c) SOM classification models. 

 

Considering that a Transfer Learning was performed in this first analysis, the feature extraction builds a good feature 

space for the first scenario (COVID-19 versus Healthy), a reasonable feature space for the second scenario (COVID-19 versus 

Others), and a poor quality feature space for the third scenario (COVID-19 versus Healthy versus Others). Also, considering 

an analysis from a model trained in another database, these models managed to extract the features from the images, 

in general. 

5.3.2 FCM, k-means and SOM with Variational Autoencoder 

For the second method we had three fully trained models, each one trained to recognize its own class, the so called specialists 

models. Variational Autoencoders are trained for each of the classes, with the trained models in hand, the entire data set is 

“passed” in each of the expert models, generating the final set of features. 

After training the models to generate new samples, it becomes able to extract the samples features and compress it to a 

latent space usually called z space.  To achieve this results the Fisher ’s discriminant ratio was also used as in the first 

method. The first three features with the highest ratio were chosen to plot the latent space in three dimensions. First the 

analysis of COVID-19 against healthy samples was captured, and the output can be seen in Figure 6. 

   
 

(a) FCM (b) k-means (c) SOM 

 
Figure 6: COVID-19 vs. Healthy using: (a) FCM and (b) k-means and (c) SOM classification models. 
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The latent space or hidden space created by Variational Autoencoder models, shows a higher clustering level when compared 

with transfer learning method, as it was fitted in the data to acquire hidden features from the images. The clustering algorithms 

obtained high performance results in terms of classification. For the COVID-19 versus others diseases scenario, the graphical 

result wasn’t good as the previous one, as it can be seen in the Figure 7. 

 

(a) FCM (b) k-means (c) SOM 

 
Figure 7: COVID-19 vs. Others using: (a) FCM and (b) k-means and (c) SOM classification models. 

 

As it was observed at the first method, the COVID-19 versus other diseases has a lower clustering level, when dealing 

with the latent feature space, possible due to its similarity on the lesions patterns in the images, giving a more similar 

latent space. For the last analysis, considering all the three classes, the healthy class seems to be the most separable 

again, considering the feature space. 

 

   

(a) FCM (b) k-means (c) SOM 

 
Figure 8: COVID-19 vs Healthy vs Others using: (a) FCM and (b) k-means and (c) SOM classification models. 

 

The latent feature space created by the VAE, showed a better clustering level when dealing with the first analysis, 

COVID-19 against healthy samples, but an equivalent performance in the other comparisons. 

6 Conclusion and Future Works 

The COVID-19 screening through computational techniques has become an important tool to help health professionals. 

Unlike most works in the literature, this work proposes unsupervised learning since unlabeled data can be used. The 

proposed system also relies on the use of ensemble techniques, which can contribute to a better generalization  of the 

model. The proposal was used to evaluate two methodological scenarios and the results were competitive with works in 

the literature, with accuracies varying from around 52% to 95% in testing data. The best results were achieved with the 

extraction of features via variational autoencoder, a reason for that would be because the extractor model was designed 

by considering the used data set, instead of using a transfer leaning approach. 

In addition, in future work, it is expected to include other databases, comparing with other supervised learning classifiers. 

Another contribution is working in the area of unsupervised online learning. 
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