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Abstract – Tuberculosis (TB) and pneumonia, including pneumonia from SARS-CoV-2 infection, are among the main causes
of lower respiratory infections, which are the fourth cause of death worldwide. Recently, the World Health Organization rec-
ommended the use of computer-aided diagnosis (CAD) software as a tool to analyze chest radiographs (CXR) for TB screening
and triage. Most CAD developed to date aim to screen exclusively for TB. This work applies the lifelong machine learning
paradigm to detect both pneumonia and TB through CXRs and evaluate the models’ ability to retain and acquire knowledge.
Two well-known lifelong learning models, the Efficient Lifelong Learning Algorithm (ELLA) and Learning without Forgetting
(LwF), were applied to two public CXR datasets containing TB and pneumonia samples together with healthy CXR samples.
Pneumonia detection was learned first and TB detection was learned as second task. The SP index, a function of sensitivity and
specificity, was used to evaluate the models. We concluded that both algorithms were able to retain knowledge about pneumonia
detection and were also able to learn TB detection.
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1. INTRODUCTION

Lower respiratory infections are the fourth cause of death worldwide [1]. Tuberculosis (TB) and bacterial or viral pneumonia,
including pneumonia from SARS-CoV-2 infection, are among the main causes of lower respiratory infections [2]. TB is caused
by the bacillus Mycobacterium tuberculosis and in general affects the lungs, but can also affect other organs [3]. It has killed 1.3
million people in 2020. For the first time in more than 10 years, this number have increased, as the COVID-19 pandemic caused
a reduction in TB diagnosis and treatment [3]. TB is endemic and in the long term, it will probably continue to kill more than
COVID-19.

Chest radiographs (CXRs) are recommended by the World Health Organization (WHO) as a triage tool for TB [4]. Never-
theless, a shortage of skilled radiologists in many high TB-burden countries and the discordance of human CXR readers on TB
diagnosis limit its use [5]. Thus, in March 2021, the WHO included in the TB Screening Guidelines the use of computer-aided
diagnosis (CAD) software as an alternative to analyzing digital CXR for TB screening and triage in individuals aged 15 years
old and above [6].

Most available CADs are designed to screen TB only [7], [8], [9]. However, for a CAD system to have clinical utility, it
should be able to account for most thoracic abnormalities observed on CXRs, as there are various diseases that can cause the
same symptoms as pulmonary TB in real-world clinical practice [10]. Developing models that can detect different diseases is
useful, not only for generalizing aims, but also to avoid false positives in TB detection because other diseases may have similar
radiological signs [11]. Some examples are different forms of pneumonia, neoplasms, edema and hemorrhagic disease [9]. Also,
in clinical practice, patients presenting with respiratory symptoms usually undergo CXR for differential diagnosis of several
diseases, not one or another specific disease.

Pneumonia is one of the most frequent thoracic diseases that can mimic TB in CXRs [10]. It is an acute respiratory infection
that affects the lungs and can be caused by viruses, bacteria or fungi. The patient’s alveoli are filled with pus and fluid. It is the
single most frequent infectious cause of pediatric death worldwide, accounting for 14% of all deaths of children under 5 years of
age in 2019 [12].

In this work, we propose the application of two algorithms, Efficient Lifelong Learning Algorithm (ELLA) [13] and Learning
without Forgetting (LwF) [14], both developed in the lifelong machine learning paradigm (LML) [15], to detect pneumonia and
TB through CXRs. LML corresponds to systems that can learn many tasks over time while retaining the knowledge from old
tasks [15].This would represent an advance vis-a-vis the existing CAD models that screen TB only and the models that screen
more diseases but do not learn new diseases over time.
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2. TUBERCULOSIS AND MACHINE LEARNING

The radiological signs of pulmonary TB are diverse, which adds complexity to TB diagnosis [9]. In CXR, TB disease is
characterized by the presence of consolidations, fibrosis, calcification and cavitary lesions in the lungs [16]. Pleural effusion is
also a common radiological sign of intrathoracic TB [17].

Several artificial intelligence-based computer programs were developed aiming to analyze CXRs for pulmonary tuberculosis.
The AI4HLTH resource centre from the Stop TB Partnership and FIND keeps a list with all CAD products that may be used for
TB detection in all stages of development [18]. The list contains information about accuracy, operational characteristics, options
for integration into the legacy system, costs, data sharing and privacy aspects, among others [5].

There are conflicting data on these CAD’s accuracy. In an external evaluation of five commercial CADs for triaging TB, all
outperformed experienced Bangladeshi human readers for detecting TB in CXRs [19]. Two CAD products - qXR and CAD4TB
- met WHO-recommended minimal accuracy for TB triage, i.e., 90% sensitivity and 70% specificity [20], when applied to
symptomatic adults at the Indus Hospital in Pakistan. A lower sensitivity was observed for smear-negative pulmonary TB.
However, when applied to clinical data from 6 source studies, 64% of whom with microbiological test information, these two
CADs did not met the targets established by the WHO for a triage test [21]. Lunit Insight was also below WHO targets.

The deep convolutional neural network (CNN) topologies have become the preferred technique for general-purpose im-
age processing, including medical images [22]. A CNN based on the architecture of AlexNet [23], trained with datasets from
Shenzhen, Montgomery [24] and the Korean Institute of Tuberculosis (KIT), achieved an average accuracy of 90.3% for TB
detection [25]. Two other CNNs, AlexNet and GoogLeNet, added the classification by a radiologist to decide on disagreement
between the two CADS, which improved the sensitivity to 97.3% and specificity of 100% [26]. They were trained with the
Montgomery, Shenzhen, Belarus and the Thomas Jefferson University Hospital datasets.

If only TB is considered in diagnosis, other diseases may be misclassified as TB. A model trained with a TB-specific dataset
and tested with the ChestX-ray8 dataset, which has 8 classes [11], classified 36.51% of abnormal radiographs in the ChestX-ray8
dataset as TB. The authors concluded that there was an over-diagnosis of TB. Although many CXR abnormalities are common
in TB and other lung diseases, few models have been developed with the aim of diagnosing TB and other diseases. An accuracy
of 98.3% was obtained with a model for TB, pneumonia, malignant lung neoplasms and pneumothorax detection, based on
CNNs with classifiers in parallel [10]. A downside of this approach is that the whole diseases’ datasets must be available at the
beginning of the training, and if a new disease is presented, the model has to be retrained from the start. This is not the case if
the LML paradigm is applied.

3. THE LIFELONG MACHINE LEARNING PARADIGM

LML corresponds to systems that can learn many tasks over time from one or more domains, while retaining the knowledge
from old tasks, that is, avoiding catastrophic forgetting, and using it to learn new tasks more efficiently and effectively [15].
It is also known as continuous learning and continual learning. Systems should preferably present forward transfer (better
performance and faster learning on new tasks) and backward transfer (better performance on previous tasks) because of shared
knowledge between tasks; it is also desirable that systems have minimal access to previous tasks and a minimal increase in model
capacity and computation when learning new tasks [27].

In practice, it is a challenge to have, at the same time, a system that does not forget old tasks and learns fast and effectively
new tasks. This capability is present in the human brain. The process in which the brain adapts to environmental changes is called
plasticity and was first demonstrated by the neuroanatomist Michele Vincenzo Malacarne in 1783 [28]. At the same time, the
brain needs to be stable enough to retain knowledge over time. This trade-off is known as the plasticity-stability dilemma [29].
The same dilemma is present in neural networks, as a network that is too plastic will tend to overwrite its weights when new
tasks are learned and deteriorate performance in old tasks, and a very stable network will change very little its weights and tend
to perform poorly in new tasks.

The application of this paradigm in medicine and, specifically in CXR analysis, is still limited. An application was made in a
simulated scenario in which data are spread across multiple hospitals and a machine learning model must be trained sequentially
[30]. The model was tested on the CXR dataset for Tuberculosis at the Korean Tuberculosis Institute [25]. Another study involved
the diagnosis of congenital heart disease in fetuses, using small regions of interest in medical images [31].

There are different ways to apply the LML paradigm. The strategies of continuous learning algorithms can be grouped into
three categories: architectural, regularization and rehearsal strategies [32], detailed below.

3.1 Architectural strategy

The strategy is based on models that use specific architectures, addition of layers and parameters, weight-freezing strategies,
among others, in order to avoid catastrophic forgetting. The Progressive Neural Network (PNN) algorithm [33] is an example of
this strategy. In this algorithm, the network is initialized with a single column, which consists of a deep neural network with L
layers. When a second task arrives, a new column is added and the model learns lateral connections between the two columns,
in order to extract useful characteristics for the new task.

Another example is an algorithm developed for building dynamically expanding networks [34]. When a new task arrives,
firstly the network makes maximum use of the knowledge of previous tasks, retraining a subset of parameters in order to learn
the new task. It is then expanded when the accumulated knowledge alone cannot perform satisfactorily on the new task. Unlike
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PNN, which always adds a fixed number of neurons, in this case, the number of neurons to be added is dynamically decided for
each layer and task.

3.2 Regularization strategy

In this strategy, the loss function encompasses terms that lead to selective consolidation of weights that are important to retain
prior knowledge. The algorithm called Elastic Weight Consolidation (EWC) [35] is an example, which imposes that important
parameters of the neural network remain close to their original values. This is done by including a penalty in the objective
function, calculated by Fisher’s information matrix, which is a measure of the amount of information that the viewed data bring
from a parameter. The more information there is about the parameter, the greater the penalty associated with changing it.

The algorithm called AR1, for multiclass problems, combines the architectural and regularization strategy of penalizing the
objective function and the growth of the network [32]. It is based on a deep network that has a parameter set shared among all
classes. For each batch of training, the output layer is expanded with neurons corresponding to the number of new classes in
this batch. The shared weights are also updated, but variations on these weights are penalized in the objective function. The
magnitude of the penalty varies according to the importance of the weight in the output of the previous tasks, using the Synaptic
Intelligence technique [36].

3.3 Rehearsal strategy

This strategy is based on re-presenting periodically previous information to the model, in order to strengthen the memory
of what has already been learned, either by storing part of the data referring to previous tasks or by using generative models to
generate pseudo-data. The iCaRL algorithm [37] is an example of this strategy, applied to the incremental learning of classes.
It is based on a CNN, which is trained to extract features from elements. To predict the class of an input, a prototype vector
is computed for each class already observed. These vectors are compared to the feature vector related to the image that is to
be classified, which the network also computes, and the class defined for the image is the one whose prototype vector is most
similar. When a new class is presented to the network, first the outputs for the classes which were already learned are stored.
Then, the CNN parameters are updated by minimizing a loss function with the restriction that the results for the old classes are
reproduced.

Another algorithm uses an adversarial deep generating network (GAN) [38], which is trained to generate data similar to those
referring to past tasks [39]. When a new task is presented, the GAN generates as much data as necessary and merges it with the
new data to update both the GAN and the network that acts as a solver.

4 DESCRIPTION OF THE APPLIED ALGORITHMS

The first LML algorithm applied is called Efficient Lifelong Learning Algorithm (ELLA) [13], which uses the architectural
strategy. This algorithm was chosen beacuse it is one of the important pioneers in the LML paradigm and because it is based on
simple models, either linear regression or logistic regression. In the present application, as it involves classification, the algorithm
is based on logistic regression.

ELLA assumes that the models’ parameters can be represented as a linear combination of shared latent components from a
knowledge repository. The library of latent components is the main mechanism of knowledge retention and transference, as it
is shared between the specific models associated with each task. The code used in this study was adapted from the code made
publicly available by the authors.

Let L ⊆ Rd×nc be the library of latent components, d the dimension of the inputs x and nc the number of latent components
in the library. The vector θ(t), corresponding to the parameters of each task t, is calculated as a linear combination of the
components in L whose weights are given by the vector s(t) ∈ Rnc. That is, for each task t we have that:

θ(t) = Ls(t) (1)

Equation 2 shows the objective function to be minimized, depending on L and the s(t) corresponding to each task:

min
L,s(t)

1

N

N∑
t=1

{ 1
nt

nt∑
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and:
N is the number of tasks
nt is the number of elements corresponding to task t

x
(t)
i , y

(t)
i is the ith labeled training instance for task t

L is a known loss function
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||L||F is the Frobenius norm of L

Catastrophic forgetting is avoided by the terms in the objective function which penalize classification errors of past tasks. A
disadvantage of this definition is that all of the previous training data are required to calculate the objective function. In order to
remove this dependence, the authors use the second-order Taylor expansion around θ̂(t) = argminθ

1
nt

∑nt

i=1 L(f(x
(t)
i ; θ), y

(t)
i ),

which is an optimal predictor obtained when the model is trained only with training data for task t, leading to the objective
function expressed in Equation 4.

min
L,s(t)

1

N

N∑
t=1

∥|θ̂(t) − Ls(t)||H(t) + µ||s(t)||1 + λ||L||2F (4)

where:

H(t) =
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2
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θ(t),θ(t)

1
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nt∑
i=1

L(f(x(t)
i ; θ(t)), y

(t)
i )|θ(t)=θ̂(t) (5)

The objective function is a function of s(t) and L. As the function is not convex in s(t) and L simultaneously, the optimization
is done in two steps: first fixing L and optimizing s(t) and then fixing s(t) and optimizing L, as shown in Equations 6 and 7. In
order to simplify the optimization process, the s(t)’s for the old tasks are kept fixed and only the s(t) for the new task is updated.

s(t) ← argmin
s(t)
||θ̂(t) − Lms(t)||2H(t) + µ||s(t)||1 (6)

Lm+1 ← argmin
L

1

N

N∑
t=1

(||θ̂(t) − Ls(t)||2H(t) + µ||s(t)||1) + λ||L||2F (7)

The fact that the base L changes over time makes possible an improvement in past tasks performance, as their parameters are
a function of the base L. As all the tasks’ parameters are a linear combination of the base L, the inputs from all tasks must come
from the same space Rd.

The second algorithm applied in this study was the Learning without Forgetting (LwF) [14], based on a CNN, which is
recommended in image classification tasks. It uses the regularization strategy to avoid catastrophic forgetting. The loss function
is modified to control forgetting without the need to store the older tasks’ datasets.

The network layers are shared by all tasks, except for the last layer. The shared layers’ parameters are represented by θs and
the last layer’s parameters are represented by θo for the old tasks and θn for the new tasks. When a new task arrives, the labeled
dataset xn, yn associated with it is presented to the network, at a first moment without changing the network’s parameters, and
the outputs yo of all the previous tasks’ last layer are recorded. Next, the parameters θn are added to the output layer, connected
to all neurons in the previous layer and initialized with random values.

As the tasks share all the layers except for the last one, all the inputs must come from the same space Rd. The number of
classes in each task can vary, as the last layer of the network is task-specific.

The LwF modified loss function is defined as:

min
θ̂s,θ̂o,θ̂n

λoLold(yo, ŷo) + Lnew(yn, ŷn) +R(θ̂s, θ̂o, θ̂n) (8)

where:

Lold(yo, ŷo) = −H(ŷ′o, ŷ
′
o) = −

l∑
i=1

y′(i)o logŷ′(i)o (9)

Lnew(yn, ŷn) = −yn · logŷn (10)

y′(i)o =
(y

(i)
o )1/T∑l

j=1(y
(j)
o )1/T

(11)

ŷ′(i)o =
(ŷ

(i)
o )1/T∑l

j=1(ŷ
(j)
o )1/T

(12)

and:

R(θ̂s, θ̂o, θ̂n) is a regularization term;
λo is a loss balance weight; the higher the value, the more importance is given to the performance in previous tasks, to the

detriment of the new task;
ŷn is the last layer output corresponding to the new task, ŷn ≡ CNN(xn, θ̂s, θ̂n);
yn is the vector of labels for the new task;
ŷ
(i)
o is the current last layer output corresponding to the previous task i, ŷ(i)o ≡ CNN(xn, θ̂s, θ̂

(i)
o );
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y
(i)
o is the recorded last layer output corresponding to the previous task i, y(i)o ≡ CNN(xn, θs, θ

(i)
o );

l is the number of labels;
y
′(i)
o and ŷ

′(i)
o are modified versions of the current and recorded output;

T is a parameter that controls the weight given to output values in the modified version.

5 APPLICATION IN THE TASKS OF DETECTING PNEUMONIA AND TB

The ELLA and LwF algorithms were applied to the classification of two diseases: pneumonia and tuberculosis. Radiological
signs associated to TB were already enumerated in section 2. For pneumonia, common signs are lower lobes with bilateral
multicentric opacities, diffuse multifocal involvement and pleural effusion [40].

For this purpose, two public CXR datasets were used. The first one is the CheXpert [41], which is a dataset consisting
of 224,316 chest radiographs of 65,240 patients who underwent a radiographic examination from Stanford University Medical
Center. This dataset presents 14 classes. We selected a subset of images according to the following criteria:

• Only 2 classes: ’Normal’ and ’Pneumonia’.

• Images present in the reduced set that was available for download (11 GB, while the full set has 439 GB).

• Front images and AP view.

• Similar amount of images in both classes.

After this process, there were 1,070 images from class ’Normal’ and 1,065 images from class ’Pneumonia’.
The second dataset was made available by the U.S. National Library of Medicine and contains radiographs collected at

Shenzhen No.3 People’s Hospital (China) [24]. It has a total of 662 frontal CXR images, of which 326 correspond to healthy
patients and 336 present manifestations of TB. The images are 8-bits RGB with width and height from 948 to 3001 pixels. All
the images from this dataset were used in the present study.

A limitation concerning the public datasets used in this work is that they lack information about how the CXRs’ diagnosis
were made and whether they were confirmed by microbiological tests or by following the patient’s clinical outcome.

As the main purpose was to evaluate the application of the algorithms for TB screening and triage, pneumonia detection was
defined as the first task to be learned and TB detection as the second task. The reason is that, even with mechanisms to avoid
catastrophic forgetting, a decrease in classification performance when learning a new task may occur. Another reason is that the
models may benefit from the knowledge acquired when learning to classify pneumonia to improve performance when learning
to classify TB [27].

Images for both algorithms were pre-processed, so that all image resolution became 224 x 224 pixels from 3 channels. As
the ELLA algorithm is based on logistic regression, the Principal Component Analysis [42] was used in addition to the described
pre-processing, in order to reduce dimensionality.

For ELLA, a grid search was made to choose the model hyperparameters with nc = [2, 4, 8, 12], µ = [0.1, 1.0, 1.5] and
λ = [10−4, 10−5, 10−6]. Different percentages of variance retention from data projection in the principal components were
tested (85%, 90% and 95%).

For LwF, the code made available by Mallya et al [43] was adapted and a grid search was made for the following hy-
perparameters, which are related to the CNN training process using Stochastic Gradient Descent (SGD) [44]: learning rate =
[10−2, 10−3, 10−4], learning rate decay factor = [0.05, 0.1, 0.2] and weight decay = [0.00025, 0.0005, 0.001].

Three different indexes were chosen as performance indexes: sensitivity and specificity, which are well-known indexes that
measure the model performance in detecting, respectively, those with the disease (true positive rate) and those without the disease
(true negative rate), and the SP index [45], which is a function of the two former indexes, as shown in Equation 13. This index
was chosen because it allows a ballance between sensitivity and specificity and the performance is given by a single value.

SP =

√√
sensitivity ∗ specificity ∗ sensitivity + specificity

2
(13)

For both algorithms, the cross-validation method with stratified k-folds technique [46] was used in the gridsearch, with k=10.
This method gives an estimate of the uncertainty in the results due to the fact that we have a limited sample. The hyperparameters
that gave the highest SP index average in the validation sets were chosen. The grid search steps are described in Algorithm 1.

With this procedure, the hyperparameters for ELLA were set as k = 8, µ = 0.1 and λ = 10−4 and for LwF, the learning rate
was set as 10−3, the learning rate decay factor as 0.2 and the weight decay as 0.00025.

Then, the ELLA and LwF algorithms with the chosen hyperparameters were applied to the tasks of pneumonia and TB
detection. Models were adjusted and results were calculated using Algorithm 2 for LwF, which is similar to Algorithm 1 but
presents two main differences: 1) the first ”for” loop, which concerned the hyperparameters, was skipped and 2) for each test fold,
the validation model with highest SP index was chosen in order to apply it to this test fold. For ELLA, the algorithm was very
similar, but there was no need to define a validation set as ELLA is not an iterative algorithm and the hyperparameters have been
chosen in the precedent step. The 95% confidence interval (CI) for the three indexes was calculated using the cross-validation
method with k-folds technique with k=10.
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Algorithm 1 Grid search to choose hyperparameters for ELLA and LwF algorithms
for each set of hyperparameters do

for each task do
Divide dataset from task in 10 folds
for each ifold do

Separate ifold as a test fold
for each jfold different from ifold do

Separate jfold as a validation fold
Train ELLA or LwF model with the other 8 folds
Apply model to jfold and save in validationResults
Apply model to the whole dataset and save in allResults

end for
Get the model which gave the highest SP index from allResults
Establish this model as operation, to learn the following task

end for
end for
Calculate the SP index average for validationResults corresponding to the TB detection task

end for
Chose the set of hyperparameters which gave the highest SP index average

Algorithm 2 LwF’s training and evaluation using cross-validation with k-folds, k=10
for each itask do

Divide dataset from task i in 10 folds
for each ifold do

Separate ifold as a test fold
for each jfold different from ifold do

Separate jfold as a validation fold
Train ELLA or LwF model with the other 8 folds
Apply model to all data, except for ifold, and save the results in validationResults

end for
Get the model which gave the highest SP index from validationResults
Apply this model to ifold and save the results in testResults
Apply this model to all dataset and save the results in allResults
for each jtask < itask (evaluate performance in old tasks) do

apply this model to all dataset from jtask and save the results in oldTasksResults
end for

end for
Calculate the confidence interval at level 95% for new task with data from testResults
Calculate the confidence interval at level 95% for model performance in old tasks with data from oldTasksResults
Get the model which gave the highest SP index from allResults
Establish this model as operation, to learn the following task

end for

We wanted to observe, with the results, 1) whether the models ”forget” the previous task of pneumonia detection when it
learns the new task of TB detection and 2) the difference in models performance when they learn only to detect TB and when
they learn it after pneumonia detection, in the LML paradigm.

In order to analyze the first performance evaluation aspect in ELLA and LwF, the performances in pneumonia detection
before and after learning to detect TB were compared. The whole dataset corresponding to the pneumonia task was used and the
models trained in Algorithm 2 were applied to calculate the 95% CIs for the performance indexes. The results are displayed in
Table 1.

Note that the results obtained are biased because data used as train and validation were now used in classification. This
approach was chosen because only one out of the 10 models which were trained for pneumonia detection was set as the operation
model, and submitted to learn TB detection. In consequence, only one out of the 10 folds could be evaluated as test, and this
limitation would also introduce bias. So the obtained indexes were used to give an indication about the forgetting process of
the model, but it is not possible to use them to indicate the models’ performance in the task because of the bias introduced. In
order to analyse the forgetting process without bias, a recommended approach would be to apply the trained models to a different
pneumonia dataset.

In order to analyze the second evaluation aspect, the models’ performance in TB detection when it was the only task and
when it was learned after pneumonia detection were compared. When the ELLA and LwF models learn only one task, they
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are equivalent to a regular logistic regression and a CNN with AlexNet design, respectively. The 95% CIs for the performance
indexes were calculated. Each model was applied to the corresponding test set. The results are in Table 2.

Table 1: Results for pneumonia detection with ELLA and LwF before and after learning 2nd task, applying models to the whole
dataset.

Algorithm Index Before learning 2nd Task After learning 2nd Task
ELLA Sensitivity 75.2 ± 1.2 76.0 ± 0.6
ELLA Specificity 73.2 ± 1.3 72.5 ± 1.1
ELLA SP Index 74.2 ± 0.5 74.2 ± 0.5
LwF Sensitivity 87.1 ± 1.0 91.0 ± 1.3
LwF Specificity 84.3 ± 0.8 77.7 ± 2.6
LwF SP Index 85.7 ± 0.4 84.2 ± 0.8

Table 2: Results for TB detection with ELLA and LwF, when it is the only task learned and when it is learned after pneumonia
detection, applying models to the train set.

Algorithm Index Learning only this task After learning pneumonia detection
ELLA Sensitivity 78.7 ± 12.4 77.9 ± 16.1
ELLA Specificity 86.4 ± 9.0 86.1 ± 9.8
ELLA SP Index 82.4 ± 6.1 81.9 ± 8.5
LwF Sensitivity 78.3 ± 6.3 83.4 ± 4.1
LwF Specificity 86.6 ± 7.1 86.5 ± 5.7
LwF SP Index 82.3 ± 3.3 84.9 ± 3.1

6. Discussion

In this study, both ELLA and LwF were able to retain knowledge from the previous task after a new task was learned. For
ELLA, there was no significant difference in the performance indexes obtained in pneumonia detection before and after learning
TB detection. For LwF, sensitivity increased, specificity decreased and there was a small decrease in the SP index obtained in
pneumonia detection after learning TB detection, at a level of confidence of 95% (Table 1).

A possible explanation for the decrease in specificity for LwF is that the model learns different abnormalities when it learns
to detect TB and may transfer this knowledge to detect pneumonia, but this also may lead to more false positives. LwF presented
better performance in pneumonia detection than ELLA, both before and after learning TB detection, as it was associated to higher
sensitivity, specificity and SP index at a level of confidence of 95% (Table 1).

Both ELLA and LwF could learn a new task, as Table 2 showed there was no significant difference in performance at a level
of confidence of 95% when they learned only TB detection and when it was learned after pneumonia detection.

The WHO established 90% of sensitivity and 70% of specificity as the performance parameters of a target product profile
for TB triage [20]. In order to achieve such target operational values, corresponding detection thresholds should be determined.
Our models attained specificity levels in TB detection above the target values for proper operation. This indicates that another
threshold could be chosen in order to obtain a higher sensitivity and get close to the performance parameters indicated by WHO.
To illustrate this, Figure 1 shows the Receiver Operating Characteristic Curve (ROC curve) [47] corresponding to the adjusted
LwF models. The average curve exhibits an operation point that attains 90% of sensitivity and 70% of specificity.

Figure 1: ROC curve for the LwF models. The black curve corresponds to the sensitivity average of the 10 adjusted models, for
the specificity defined in x axis. This sensitivity was linearly interpolated for each of the models. The blue area corresponds to
the error bar computed from one root mean square spread of the 10 models.
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Large CIs were obtained for a level of confidence of 95% for both ELLA and LwF, but CIs from ELLA were larger (Table
2). This indicates that models adjusted in cross-validation have varying performances. This is also a consequence of having a
smaller dataset for TBm comparing to the pneumonia dataset.

There was no significant difference at a level of confidence of 95% between ELLA and LwF performances for TB detection
when it was the only learned task. There was also no significant difference between ELLA and LwF when TB detection was
learned after pneumonia detection.

7. Conclusion

This work aimed to evaluate the potential of using LML in disease detection through CXR, verifying if two algorithms, ELLA
and LwF, could retain knowledge about pneumonia detection after having learned TB detection. This ability could be verified
for both algorithms.

In order to evaluate the models’ knowledge retention, their performance in pneumonia detection before and after learning TB
detection was compared. The results indicated that knowledge could be retained and that LwF had a better performance than
ELLA.

For the evaluation about the models’ ability to learn a new task, the performances of the models that learned only TB detection
were compared to the models that learned it after pneumonia detection, for both ELLA and LwF. There was no significant
difference in performance, which indicates that the models were able to learn the new task. Also, there was no significant
difference between LwF’s and ELLA’s performances in detecting TB.

As future work, more diseases may be presented to the models to evaluate their knowledge retention and learning capability
in a more defying and realistic scenario. Also, the models should be applied to different pneumonia and TB datasets, not involved
in the training process, to better evaluate the knowledge retention.

The study had some limitations. Datasets have low quality clinical information, which hampers the validation process.
Despite this limitation, we believe CADs can be trained to learn more than one task, which will be interesting for the development
of more applicable tools in clinical practice.
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