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Abstract – The Covid-19 pandemic has been declared in 2020 by the World Health Organization. One of the most
relevant aspects of this respiratory disease is the fact that the infection caused by the new coronavirus has a high
rate of spread. Thus, rapid and accurate diagnosis can contribute to reducing the transmission rate. In this aspect,
in the literature, Deep Learning techniques are studied for application in the detection of this disease through X-ray
images of the patient’s lung. However, one of the challenges in this area is the training of Convolutional Neural
Network models with a database with few samples. One possibility is the generation of artificial images through Data
Augmentation techniques. Thus, the objective of this work is to propose a careful methodology for the tuning of Data
Augmentation hyperparameters for the classification of lung X-ray images in Covid-19 detection with Deep Learning.
The proposed method consists of analyzing the accuracy of 36 Data Augmentation transformations applied to generate
new images for training with balanced and unbalanced database. After the selection of hyperparameters, the classifier
system achieved accuracies up to 100% on the testing stage, both for combinations and individual transformations with
balanced database. Therefore, it is recommended to use a balanced database with the use of zoom, rotation, brightness
in combination or individually, for Covid-19 versus Normal and Covid-19 versus Pneumonia classification.
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1 Introduction

Covid-19 is an infectious respiratory disease caused by the new coronavirus (SARS-CoV-2) [1–4]. The new disease
was first identified in 2019 in Wuhan in China and quickly spread around the world, until on March 11, 2020, the
World Health Organization (WHO) declared a Covid-19 Pandemic [1]. To identify Covid-19 contamination, there are
tests that, combined with clinical symptoms, can confirm the diagnosis [5]. One way to perform detection is through
molecular testing, when the presence of genetic material from the virus is detected in the patient; or serological, when
antibodies are detected [2].

Rapid and accurate diagnosis of the Covid-19 virus helps to decrease the rate of transmission and also to monitor
the patient’s condition [6]. However, the lack of tests, the waiting time for results, and the stress on health professionals
make it difficult to make a rapid diagnosis [7]. So, alternatives to help detect coronavirus and other respiratory diseases
such as pneumonia are emerging to speed up and lower the cost [7–9]. One such approach is the use of Machine
Learning to detect Covid-19 using X-ray images of patients with symptoms [10–16]. Along these lines, the study of [17]
develops a new architecture to classify X-ray images into three groups of patients: healthy, viral pneumonia, Covid-19
pneumonia. Another example is the work of [14], which conducts an extensive literature review and brings together the
main advances in the field fo Covid-19 detection in images with Deep Learning.

However, one of the challenges in this area is the hyperparameter tuning and neural architecture selection of Machine
Learning methods. [10–13]. Along this line, some works have already performed comparative studies of different Deep
Learning architectures for Covid-19 detection in X-ray images [10,12,15]. In this sense, the paper of [10] analyzes two
different Convolutional Neural Network architectures (ResNet50 and ResNet101) and obtains an accuracy of 97.77% in
detecting Covid-19 in X-ray images. The study of [12], in turn, compares five different Deep Learning architectures
(DenseNet, InceptionV3, MobileNet, ResNet50, VGG16 and VGG19), achieving accuracy of 98.81% for the binary
classification and 91.68% for the multi-class classification.

Following this aspect of defining good conditions for Deep Learning experiments, an important area is Data
Augmentation [18–21]. This technique is used to reduce overfitting, generating artificial training images through
random transformations [22]. The application of this method becomes important especially in cases where the number
of samples for training is relatively small [18,21,22]. In this context, most of the studies on the application of Deep
Learning in the diagnosis of Covid-19 via images are found, since they perform experiments with databases with few
examples [16, 23, 24]. Within this aspect, some papers discuss the role of Data Augmentation in Covid-19 classification
in X-ray images [16, 23, 24]. However, little attention has been focused in the literature on Data Augmentation
hyperparameter analysis (image transformations) when it comes to Covid-19 diagnosis using X-ray images [16].

The objective of this work is to propose an experimental methodology to tuning of Data Augmentation hyperpa-
rameters in the classification of X-ray images for Covid-19 detection with Deep Learning. To do this, it is necessary to
study and understand how Deep Learning techniques work, apply a Machine Learning architecture for this type of
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classification and analyze the accuracy for different combinations of hyperparameters. A Convolutional Neural Network
discussed in the literature was selected [25,26], and thus performed the classification from two experimental groups: (1)
between X-ray images of normal patients versus patients with Covid-19; (2) between X-ray images of patients with
pneumonia versus Covid-19 patients.

This paper is an extended version of the study [27], published in the XV Brazilian Congress of Computational
Intelligence and presents the following advances compared to the previous version:

• Classification of x-ray images for Covid-19 detection with an unbalanced dataset;

• Comparison between the accuracy in the testing step of a balanced and unbalanced dataset;

• Analysis of Data Augmentation hyperparameters individually, including two new hyperparameters: width shift
range and height shift range;

• New results, highlighted in Section 4.1, 4.3.2 and 4.3.3;

• Addition of new references;

• Increase of new suggestions for future work;

• Paper written in English;

The present work is divided into six sections. Section II presents the theoretical background. Section III presents
the database, the architecture and hyperparameters, and the methods used in the work. Section IV presents the results
obtained. Section V presents a comparison between the results obtained in this paper and other related work. Finally,
Section VI presents the contributions made by this work, as well as suggestions for future work.

2 Background

Artificial Neural Networks (ANNs) are machine learning methods widely discussed in the literature. [28–30]. In
this aspect, ANNs have several applications, such as: facial recognition [31,32], stock exchange [33–35], autonomous
vehicles [36–38] and building construction [26,39].

The inspiration for creating the ANN came with the concept of the human nervous system [28], where there are
similarities between the physical structures and functions of the biological neuron with the artificial neuron. An example
of an ANN can be represented by Figure 1.
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Figure 1: Artificial Neuron. Source: based on [28].

where x1, x2 and xn are the input signals, w1, w2 and wn are the synaptic weights,
∑

is the linear combiner, θ is the
activation threshold, u is the activation potential, g is the activation function, and y is the output signal. In this sense,
Equations (1) and (2) summarize the output produced by the artificial neuron [28]:

u =

n∑
i=1

wi.xi − θ, (1)

y = g(u). (2)

Convolutional Neural Networks (CNN) are a type of ANN [25,40]. A CNN is characterized by its efficiency and
robustness in handling information from a large number of layers and neurons [25, 28, 40, 41]. CNN has 4 basic
operations [25,40,41]:

1. Convolution operator (Kernel): The convolution matrix is multiplied by the image matrix to apply image effects.
The result of this multiplication is a feature map, where the most notable features are stored, decreasing the size
of the original matrix for easier processing. After the feature map is obtained, the activation function Relu is
usually applied.
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2. Pooling: This is the layer responsible for emphasizing the key features resulting from the application of the
convolutional layer, reducing overfitting and unnecessary noise.

3. Flattening: This is the layer that transforms the resulting matrix from Pooling into a vector, thus being able to
start the application in the dense neural network.

4. Fully connected layer (Dense): this is the net with neurons like the net formed by the traditional ANN, with sets
of neurons and fully connected layers that together define the output classes.

To assist in the development of a CNN, programming language libraries can be used. An example is Keras, a library
based on TensorFlow, free and available in Python or R [22,25].

3 Proposed Method

The methodology proposed in this work is composed of five steps: (1) database definition, (2) image pre-processing,
(3) CNN architecture definition, (4) training and validation phase, and (5) test phase.

3.1 Database

The selected image database is available on the Kaggle1 platform. This database contains images obtained from
three different sources234. According to the information provided on the Kaggle website, all sources are freely licensed
and can be used for research, evaluation and commercial purposes.

The database has a total of 6,432 images, divided into three classes:

• Covid-19: 576 lung X-ray images from patients diagnosed with Covid-19.

• Pneumonia: 4,273 lung X-ray images of patients diagnosed with pneumonia.

• Normal: 1,583 lung X-ray images from patients diagnosed without Covid-19 and pneumonia.

Figure 2 demonstrates some examples of images made available in the database.

(a) Class Normal. (b) Class Normal.

(c) Class Covid-19. (d) Class Pneumonia.

Figure 2: Example images, for each class (Normal, Covid-19 and Pneumonia) made available in the database.

3.2 Pre-Processing

After the database was defined, the images were reorganized in two dataset types: balanced and unbalanced. For
each dataset type, the images were organized into two experimental groups: Covid-19 versus Pneumonia and Covid-19
versus Normal. Moreover, the images were separated separated into three sets (training, validation, and test) as follows:

1https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
2https://github.com/agchung
3https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
4https://github.com/ieee8023/covid-chestxray-dataset
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3.2.1 Unbalanced

• Covid-19 versus Pneumonia

– Training: 432 images of the Covid-19 class and 3205 images of the Pneumonia class.

– Validation: 72 images of the Covid-19 class and 534 images of the Pneumonia class.

– Test: 72 images of the Covid-19 class and 534 images of the Pneumonia class.

• Covid-19 versus Normal

– Training: 432 images of the Covid-19 class and 1187 images of the Normal class.

– Validation: 72 images of the Covid-19 class and 198 images of the Normal class.

– Test: 72 images of the Covid-19 class and 198 images of the Normal class.

Thus, the Covid-19 versus Pneumonia group has 4849 images and the Covid-19 versus Normal group has 2159.
Furthermore, the images were divided into 75% for training, 12.5% for validation and 12.5% for testing.

3.2.2 Balanced

• Covid-19 versus Pneumonia

– Training: 432 images from the Covid-19 class and 432 images from the Pneumonia class.

– Validation: 72 images from the Covid-19 class and 72 images from the Pneumonia class.

– Test: 72 images from the Covid-19 class and 72 images from the Pneumonia class.

• Covid-19 versus Normal

– Training: 432 images from the Covid-19 class and 432 images from the Normal class.

– Validation: 72 images from the Covid-19 class and 72 images from the Normal class.

– Test: 72 images from the Covid-19 class and 72 images from the Normal class.

Thus, the reorganized database now has 1728 images. Furthermore, the images were divided into 75% for training,
12.5% for validation and 12.5% for testing. The Pneumonia and Normal images were selected in the original numbered
order, i.e. the first 576 images of each class were selected.

3.2.3 Data Augmentation

The amount of images contained in the database is considerably small. Thus, the proposed methodology aims to apply
the technique of Data Augmentation [18,22] to generate new images and consequently increase the amount of data
for training. For this, the function ImageDataGenerator() provided by the library Keras [22] was adopted, where
it generates new images, as needed, online, which means that the new batches of image data are generated in real
time. The number of artificially created images depends on the training settings: batch size, steps perhaps epochs
and epoch. For example, for this work, these parameters are set in the first phase of experiments as: batch size = 32;
steps per epochs = 25; and epoch = 10. In this sense, for each simulation approximately 8000 images are randomly
generated for training from the original images. Thus, 4000 images artificially generated are added for each class.

The proposed methodology selected six Data Augmentation transformations to be analyzed:

• rotation range: represented by an integer value that identifies the maximum rotation value the image can have.

• brightness range: a list or tuple that represents the brightness range that the image can have.

• zoom range: a value of the float type or a vector [min, max] that determines the zoom range that the image can
get.

• horizontal flip: boolean type where the image can be inverted horizontally or not.

• width shift range: a value of type integer or float that determines the range of horizontal shift that the image can
get.

• height shift range: a value of type integer or float that determines the vertical shift range the image can get.

Figure 3 exemplifies some images generated from using the ImageDataGenerator() function with the following
hyperparameter values:
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• rotation range: 60;

• brightness range: [0.2, 0.8];

• zoom range: [0.3, 1.0];

• horizontal flip: True;

• width shift range: 0.6;

• height shift range: 0.4.

(a) Class Normal using only rotation. (b) Class Normal using only horizontal flip.

(c) Class Covid-19 using only zoom. (d) Class Pneumonia using four hyperparameters.

(e) Class Normal using only width shift range. (f) Class Normal using only height shift range.

Figure 3: Examples of images generated with data augmentation for the Normal, Pneumonia and Covid-19 classes.

3.3 Convolutional Neural Network Architecture

The CNN architecture used in this work was proposed by [25] and used in other works in the literature [26, 39].
This architecture has 12 layers, four convolutional, four Max Pooling, one Flatten, one Dropout, a dense layer with 512
neurons and the output layer with the classifier neuron. The architecture used can be represented by Figure 4.

Database
Convolutional 

Layer 1

Max Pooling 
Layer 1

Convolutional 
Layer 2

Max Pooling 
Layer 2

Convolutional 
Layer 3

Max Pooling 
Layer 3

Convolutional 
Layer 4

Max Pooling 
Layer 4

Flatten Layer

Dropout Layer Dense Layer 512

Dense Layer 
Output Classified 

images

Figure 4: Flowchart for representing the CNN-12 Convolutional Neural Network adopted in this work. Based on [25]
and [26].

In addition to the data augmentation hyperparameters mentioned above, fixed hyperparameters were used for
the experimental stages of the CNN: number of filters in each convolutional layer (32, 64, 128, 128), kernel size
in the convolutional layers (3x3), pool size in the Max Pooling layers (2x2), and RELU activation functions in
the convolutional/dense and sigmoid layers of the classification layer. The CNN architecture was coded from the
keras.models.Sequential() command, available from the Keras library of the Python language [25]. Also set the dropout
rate at 0.2, used the Relu and Sigmoid activation functions, and the Adagrad optimizer with a learning rate of 0.001.
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3.4 Training and Validation

The training and validation experiments aim to evaluate the hyperparameter combinations of Data Augmentation.
In this aspect, the steps proposed by the methodology proposed in this study are represented in Figure 5.

Reading from 
the Database

Generating 
new images

Horizontal Flip

Zoom 

Brightness

Rotation

Training 
Stage

Validation 
Stage

Accuracy 
Results

Figure 5: Flowchart of the methodology for hyperparameter tuning of Data Augmentation - training and validation.

The experiments were divided into two phases. The first phase, Data Augmentation Combined Analysis (DACA),
consists in testing how combinations of Data Augmentation interfere with the accuracy. Already in the second phase,
Data Augmentation Single Analysis (DASA), of experiments, hyperparameters are evaluated individually, varying their
experimental levels at standard intervals.

In the DACA phase of the study, two experimental levels were defined for analysis of the Data Augmentation
hyperparameters:

• rotation range: 60 e 140;

• brightness range: [0.3, 1.0] e [0.2, 0.8];

• zoom range: [0.3, 1.0] e [0.2, 0.8];

• horizontal flip: True e False.

Thus, Table 1 presents the 16 combinations of hyperparameters analyzed in DACA step.

Table 1: Hyperparameter combinations of Data Augmentation used for Phase 1 (DACA).

Combination Rotation Brightness Zoom Horizontal Flip
1 60 [0.3 1.0] [0.3 1.0] True
2 60 [0.2 0.8] [0.3 1.0] True
3 60 [0.3 1.0] [0.2 0.8] True
4 60 [0.2 0.8] [0.2 0.8] True
5 60 [0.3 1.0] [0.3 1.0] False
6 60 [0.2 0.8] [0.3 1.0] False
7 60 [0.3 1.0] [0.2 0.8] False
8 60 [0.2 0.8] [0.2 0.8] False
9 140 [0.3 1.0] [0.3 1.0] True
10 140 [0.2 0.8] [0.3 1.0] True
11 140 [0.3 1.0] [0.2 0.8] True
12 140 [0.2 0.8] [0.2 0.8] True
13 140 [0.3 1.0] [0.3 1.0] False
14 140 [0.2 0.8] [0.3 1.0] False
15 140 [0.3 1.0] [0.2 0.8] False
16 140 [0.2 0.8] [0.2 0.8] False

On the other hand, Table 2 presents the 12 levels of hyperparameters analyzed for the DASA Phase. In addition to
the combinations cited in Table 2, other hyperparameters will be used for Covid-19 versus Normal analysis: width shift
range and height shift range (see Table 3).

In this sense, in both phases (DACA and DASA), each of the combinations shown in Table 1 and 2 were simulated
in 3 repetitions with 10 epochs. Furthermore, for training the CNN models the function fit generator() from Keras
library was used [25].
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Table 2: Hyperparameter combinations of Data Augmentation used for Phase 2 (DASA).

Combination Rotation Brightness Zoom
1 20 - -
2 40 - -
3 60 - -
4 80 - -
5 - [0.0 0.2] -
6 - [0.2 0.4] -
7 - [0.4 0.6] -
8 - [0.6 0.8] -
9 - - [0.0 0.2]
10 - - [0.2 0.4]
11 - - [0.4 0.6]
12 - - [0.6 0.8]

Table 3: Other Data Augmentation hyperparameter combinations used for Phase 2 (DASA).

Combination Width Shift Range Height Shift Range
1 0.2 -
2 0.4 -
3 0.6 -
4 0.8 -
5 - 0.2
6 - 0.4
7 - 0.6
8 - 0.8

In the validation stage, in turn, CNN performance analysis was performed for each combination of transformation
Data Augmentation. This evaluation was performed by observing the metric of image classification accuracy, according
to Eq. (3):

Ac =
TP + TN

TP + TN + FP + FN
(3)

where, Ac is the accuracy value, TP is the true positives, TN is the true negatives, FP is the false positives, and FN is
the false negatives.

3.5 Test

Following the proposed methodology, the three combinations of hyperparameters that obtained the best average
accuracy values in the validation stage for the DACA Phase with the balanced database were selected for the test stage.
These three combinations went through the testing step for the balanced and unbalanced database. For the DASA
Phase, the best experimental hyperparameter level was chosen for each type of transformation. In this new step, the
analyzed images are distinct from the training and validation steps, according to the database division described in
Section 3.2.

The CNN architecture was maintained and for each hyperparameter combination 3 repetitions with 30 epochs were
performed. Therefore, the goal of the testing step is to select which combination of hyperparameters results in the best
accuracy when analyzing a new set of images. For this, the evaluate generator() command from the Keras library was
used for the accuracy evaluation in the test step [25].

3.5.1 Comparison between Balanced and Unbalanced

To determine the influence of database balancing on the experiments, first a test step was performed with the presented
architecture. Three repetitions with 30 epochs each were made for each experimental group, that is, for the Covid-19
versus Pneumonia and Covid-19 versus Normal groups, with the database balanced and unbalanced.

For this step, the proposed Data Augmentation hyperparameters were not used, since the goal is to test the influence
of database balancing for this architecture on the classification of lung x-ray images for Covid-19 detection.

4 Results

In this section, the results of the training, validation, and testing phases of the CNN application are presented.
In each of the steps, for both the DACA Phase and the DASA Phase, hyperparameters were selected from Data
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Augmentation with the best accuracy metrics for image classification in the two experimental groups: (1) Normal
versus Covid-19 and (2) Pneumonia versus Covid-19.

4.1 Results of Training and Validation

Training and Validation are the first stages of experiments. Based on the results obtained in this stage, the
combinations and transformations for the next phase (test experiments) will be determined.

4.1.1 Results of Data Augmentation Combined Analysis (DACA)

Table 4 shows the accuracy values for in the classification process of the first experimental group (Normal × Covid-19)
for the DACA phase.

Table 4: Accuracy results (%) for validation in the DACA phase of combinations of Data Augmentation for Normal ×
Covid-19.

Rot. Brig. Zoom Hor. Flip Ac1(%) Ac2(%) Ac3(%) Avg.(%)
60 [0.3 1.0] [0.3 1.0] True 78.1 43.8 75.0 65.6
60 [0.2 0.8] [0.3 1.0] True 90.6 96.9 84.4 90.6
60 [0.3 1.0] [0.2 0.8] True 71.9 43.8 43.8 53.1
60 [0.2 0.8] [0.2 0.8] True 84.4 68.8 65.6 72.9
60 [0.3 1.0] [0.3 1.0] False 96.9 81.3 96.9 91.7
60 [0.2 0.8] [0.3 1.0] False 90.6 90.6 78.1 86.5
60 [0.3 1.0] [0.2 0.8] False 50.0 81.3 56.3 62.5
60 [0.2 0.8] [0.2 0.8] False 71.9 78.1 90.6 80.2
140 [0.3 1.0] [0.3 1.0] True 59.4 53.1 90.6 67.7
140 [0.2 0.8] [0.3 1.0] True 31.3 75.0 53.1 53.1
140 [0.3 1.0] [0.2 0.8] True 56.3 81.3 59.4 65.6
140 [0.2 0.8] [0.2 0.8] True 40.6 50.0 43.8 44.8
140 [0.3 1.0] [0.3 1.0] False 62.5 65.6 46.9 58.3
140 [0.2 0.8] [0.3 1.0] False 62.5 87.5 71.9 74.0
140 [0.3 1.0] [0.2 0.8] False 40.6 62.5 75.0 59.4
140 [0.2 0.8] [0.2 0.8] False 65.6 84.4 59.4 69.8

Rot.: Rotation; Brig.: Brightness; Hor. Flip: Horizontal Flip.

Therefore, in Table 4 it is possible to observe the influence of the hyperparameters of data augmentation in the
accuracy values. In this sense, we highlight the average accuracies of 91.7%, 90.6% and 86.5% as the best results
obtained, respectively, by the combinations 2, 5 and 6. These three combinations with the highest average accuracy
results were selected for the testing stage of the first experimental group (Covid-19 × Normal). It is important to note
that the rotation of 60◦ and zoom into a range between 30% and 100% are present in the three best accuracy results.
In this aspect, it is also worth noting the worst performances (low accuracy), as is the case of 44.8% for combination 12
and 53.1% for combinations 10 and 3.

Table 5 presents the accuracy results from the methodology for the classification of the second experimental group
(Pneumonia versus Covid-19).

From Table 5, it can also be seen that Data Augmentation hyperparameters directly interfere with CNN performance.
For example, the average accuracy value ranged from 55.2% to 88.5%. It is noteworthy that the combinations that
achieved the highest average accuracies were: combination 1 (88.5%); combination 6 (87.5%); and combination 7
(81.3%). Thus, these 3 combinations were selected for the testing stage of the Pneumonia × Covid-19 experiments.

4.1.2 Results of Data Augmentation Single Analysis (DASA)

Continuing the analysis of the first experimental group (Normal × Covid-19), Table 6 and 7 presents the DASA Phase
results, where the hyperparameters are observed on an individual basis.

Thus, it is possible to perceive the individual influence of the hyperparameters where the rotation and brightness
reach accuracy values of 100%, when the applied rotation rate was 20%, 40%, 60% or 80%. As for the brightness at
rates of 20% to 40%, 40% to 60% or 60% to 80%. With this analysis it is also seen that the zoom hyperparameter has
a low accuracy when compared to the previously mentioned ones, where its maximum value was 84.38% when applied
a range between 0% and 20%.

Table 7 shows the accuracy results for the DASA phase validation of combinations for the Pneumonia × Covid-19
group.
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Table 5: Accuracy results (%) for validation in the DACA phase of Data Augmentation combinations for Pneumonia ×
Covid-19.

Rot. Brig. Zoom Hor. Flip Ac1(%) Ac2(%) Ac3(%) Avg.(%)
60 [0.3 1.0] [0.3 1.0] True 90.6 84.4 90.6 88.5
60 [0.2 0.8] [0.3 1.0] True 75.0 84.4 78.1 79.2
60 [0.3 1.0] [0.2 0.8] True 68.8 59.4 71.9 66.7
60 [0.2 0.8] [0.2 0.8] True 78.1 68.8 71.9 72.9
60 [0.3 1.0] [0.3 1.0] False 84.4 81.3 62.5 76.0
60 [0.2 0.8] [0.3 1.0] False 87.5 90.6 84.4 87.5
60 [0.3 1.0] [0.2 0.8] False 84.4 78.1 81.3 81.3
60 [0.2 0.8] [0.2 0.8] False 62.5 65.6 62.5 63.5
140 [0.3 1.0] [0.3 1.0] True 81.3 65.6 71.9 72.9
140 [0.2 0.8] [0.3 1.0] True 81.3 71.9 65.6 72.9
140 [0.3 1.0] [0.2 0.8] True 59.4 59.4 62.5 60.4
140 [0.2 0.8] [0.2 0.8] True 46.9 65.6 53.1 55.2
140 [0.3 1.0] [0.3 1.0] False 50.0 71.9 59.4 60.4
140 [0.2 0.8] [0.3 1.0] False 56.3 81.3 78.1 71.9
140 [0.3 1.0] [0.2 0.8] False 59.4 59.4 50.0 56.3
140 [0.2 0.8] [0.2 0.8] False 75.0 46.9 62.5 61.5

Rot.: Rotation; Brig.: Brightness; Hor. Flip: Horizontal Flip.

Table 6: Accuracy results (%) for DASA phase validation of combinations of Data Augmentation for Normal ×
Covid-19.

Rot. Zoom Brig. Ac1(%) Ac2(%) Ac3(%) Avg.(%)
20 - - 100.00 100.00 96.88 98.96
40 - - 100.00 100.00 59.38 86.46
60 - - 100.00 90.62 100.00 96.87
80 - - 100.00 96.88 93.75 96.88
- [0.0 0.2] - 62.50 84.38 43.75 63.54
- [0.2 0.4] - 53.12 59.38 75.00 62.50
- [0.4 0.6] - 50.00 50.00 78.12 59.37
- [0.6 0.8] - 71.88 65.62 59.38 65.63
- - [0.0 0.2] 96.88 96.88 90.62 94.79
- - [0.2 0.4] 96.88 90.62 100.00 95.83
- - [0.4 0.6] 100.00 93.75 96.88 96.88
- - [0.6 0.8] 100.00 100.00 96.88 98.96

Rot.: rotation; Brig.: brightness.

Table 7: Accuracy results (%) for DASA Phase validation of combinations of Data Augmentation for Pneumonia ×
Covid-19.

Rot. Zoom Brig. Ac1(%) Ac2(%) Ac3(%) Avg.(%)
20 - - 96.88 96.88 93.75 95.84
40 - - 93.75 93.75 96.88 94.79
60 - - 100.00 90.62 81.25 90.62
80 - - 100.00 96.88 96.88 97.92
- [0.0 0.2] - 40.62 53.12 31.25 41.66
- [0.2 0.4] - 43.75 59.38 46.88 50.00
- [0.4 0.6] - 59.38 75.00 59.38 64.59
- [0.6 0.8] - 84.38 81.25 78.12 81.25
- - [0.0 0.2] 90.62 93.75 96.88 93.75
- - [0.2 0.4] 100.00 96.88 96.88 96.88
- - [0.4 0.6] 96.88 93.75 96.88 95.84
- - [0.6 0.8] 90.62 93.75 100.00 94.79

Rot.: rotation; Brig.: brightness.

13



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 20, Iss. 2, pp. 5-20, 2022

© Brazilian Society on Computational Intelligence

From Table 7, it can be seen that for the individual Rotation and Brightness transformations maximum accuracies
of up to 100% were obtained, highlighting the maximum mean value of 97.92% for rotation at 80 degrees and 96.88%
for brightness from [0.2 0.4]. As for the zoom transformation levels, one notices lower values when compared to the
other transformations, with the maximum mean value of 81.25% for a zoom from [0.6 0.8].

4.2 Results of Test

With the results obtained in the Training and Validation step and with the analysis of the best averages, it is
possible to perform the Test experiments for the balanced and unbalanced database and obtain the final results.

4.2.1 Results of Data Augmentation Combined Analysis (DACA) - Balanced

Table 8 presents the accuracy results referring to the second step (test) of the methodology for the classification of the
first experimentation group (Normal × Covid-19).

Table 8: Accuracy results (%) for test in the DACA - Balanced phase of combinations of Data Augmentation for
Normal × Covid-19.

Rot. Brig. Zoom Hor. Flip Ac1(%) Ac2(%) Ac3(%) Avg.(%)
60 [0.3 1.0] [0.3 1.0] False 96.9 93.7 96.9 95.8
60 [0.2 0.8] [0.3 1.0] True 93.7 90.6 100.0 94.8
60 [0.2 0.8] [0.3 1.0] False 90.6 93.7 90.6 91.7

Rot.: Rotation; Brig.: Brightness; Hor. Flip: Horizontal Flip.

The influence of the hyperparameters can be mentioned again, where in the test step for the first experimental
group (Normal × Covid-19) a maximum mean value of 95.8% was obtained for combination (60; [0.3 1.0]; [0.3 1.0];
False) and a minimum mean value of 91.7% for combination (60; [0.2 0.8]; [0.3 1.0]; False). It is also worth mentioning
that an accuracy of 100% was obtained for one of the tests (60; [0.2 0.8]; [0.3 1.0]; True).

Table 9 shows the accuracy results referring to the second step of the methodology for the second experimental
group (Pneumonia × Covid-19) classification. Here we have the accuracy for the three best combinations of Data
Augmentation hyperparameters obtained in stage 1.

Table 9: Accuracy results (%) for test in the DACA - Balanced phase of combinations of Data Augmentation for
Pneumonia × Covid-19.

Rot. Brig. Zoom Hor. Flip Ac1(%) Ac2(%) Ac3(%) Avg.(%)
60 [0.3 1.0] [0.3 1.0] True 90.6 78.1 100.0 89.6
60 [0.2 0.8] [0.3 1.0] False 87.5 84.4 87.5 86.5
60 [0.3 1.0] [0.2 0.8] False 84.4 81.3 87.5 84.4

Rot.: Rotation; Brig.: Brightness; Hor. Flip: Horizontal Flip.

Once again, the experiments revealed the importance of the hyperparameters of Data Augmentation in the results
of a CNN. It can be seen that combination (60; [0.3 1.0]; [0.3 1.0]; True) presented the best accuracy value on average,
with about 89.6%, and also obtained a maximum accuracy of 100%.

4.2.2 Data Augmentation Combined Analysis (DACA) - Unbalanced

Table 10 presents the accuracy results for the second step of the methodology for the classification of the Normal versus
Covid-19 experimentation group with the unbalanced database.

Table 10: Accuracy Results (%) for test in the DACA - Unbalanced phase of combinations of Data Augmentation for
Normal × Covid-19.

Rot. Brig. Zoom Hor. Flip Ac1(%) Ac2(%) Ac3(%) Avg.(%)
60 [0.3 1.0] [0.3 1.0] False 78.1 75.0 53.1 68.8
60 [0.2 0.8] [0.3 1.0] True 59.4 78.1 56.3 64.6
60 [0.2 0.8] [0.3 1.0] False 81.3 68.8 53.1 67.7

The highest accuracy value for the experimental group Covid-19 versus Normal for an unbalanced database shown
in Table 10 is 81.3%. When compared to the same test step for the balanced database, this value is lower than the
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minimum accuracy value obtained (90.6%), as shown in Table 8. This comparison demonstrates the influence of the
database and how balancing contributes to a significant increase in the accuracy value.

Table 11 shows the accuracy results referring to the second step of the methodology for the classification of the
Covid-19 versus Pneumonia experimentation group with the unbalanced database.

Table 11: Accuracy results (%) for test in the DACA - Unbalanced phase of combinations of Data Augmentation for
Pneumonia × Covid-19.

Rot. Brig. Zoom Hor. Flip Ac1(%) Ac2(%) Ac3(%) Avg.(%)
60 [0.3 1.0] [0.3 1.0] True 65.6 68.8 75.0 69.8
60 [0.2 0.8] [0.3 1.0] False 71.9 71.9 53.1 65.6
60 [0.3 1.0] [0.2 0.8] False 65.6 51.3 56.3 58.3

When comparing the accuracy values obtained in Table 9 and Table 11 it is noted that the accuracy for unbalanced
database is lower (maximum of 75.0%). In contrast, the maximum accuracy for the balanced database was 100.0% (see
Table 9) . This comparison again demonstrates how database balancing influences the classification of x-ray images for
Covid-19 detection.

4.2.3 Results of Data Augmentation Single Analysis (DASA)

Table 12 presents the results of the DASA Phase in the Test stage for the first experimental group (Normal × Covid-19).

Table 12: Accuracy results (%) for Testing in the DASA Phase of combinations of Data Augmentation for Normal ×
Covid-19.

Rot. Zoom Brig. Ac1(%) Ac2(%) Ac3(%) Avg.(%)
20 - - 96.88 100.00 100.00 98.96
- [0.6 0.8] - 53.13 34.38 75.00 54.17
- - [0.6 0.8] 100.00 100.00 100.00 100.00

Rot.: rotation; Brig.: brightness.

The best accuracy values of the training and validation steps were selected for each hyperparameter. Thus, we
have again the highlight for the rotation, which presented accuracy of 100%, with an average of 98.96%, and for the
brightness, where the average was 100%. For zoom, the results were not adequate, since its average was 54.17%, with a
maximum value in the repetitions of 75%.

Table 13 shows the results obtained with the combinations of width shift range and height shift range.

Table 13: Accuracy results (%) for Testing in the DASA Phase with transformations of shift range (width and height)
for Normal × Covid-19.

Wid. Hei. Ac1(%) Ac2(%) Ac3(%) Avg.(%)
0.2 - 93.7 100.0 100.0 97.9
0.4 - 100.0 93.7 100.0 97.9
0.6 - 96.9 100.0 96.9 97.9
0.8 - 96.9 96.9 96.9 96.9
- 0.2 100.0 96.9 100.0 99.0
- 0.4 96.9 100.0 100.0 99.0
- 0.6 100.0 100.0 100.0 100.0
- 0.8 100.0 100.0 93.7 97.9

Wid.: width shift range; Hei.: height shift range.

On the other hand, Table 14 shows the accuracy values for test phase of the second experimental group (Pneumonia
× Covid-19).

It can be seen that both the rotation of 80 degree and brightness from [0.2 0.4] obtained maximum values of 100%
in one of the experiments and got an equal maximum average of 96.88%. The accuracy of the zoom transformation
from [0.6 0.8] had a maximum average accuracy of 87.50%.

4.3 Comparison between Balanced and Unbalanced

In this section, the adoption of balanced and unbalanced databases is compared. For this, data augmentation is not
applied. The results of this step can be seen in Table 15.
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Table 14: Accuracy Results (%) for test in the DASA phase of combinations of Data Augmentation for Pneumonia ×
Covid-19.

Rot. Zoom Brig. Ac1(%) Ac2(%) Ac3(%) Avg.(%)
80 - - 100.00 100.00 90.63 96.88
- [0.6 0.8] - 90.63 81.25 90.63 87.50
- - [0.2 0.4] 100.00 93.75 96.88 96.88

Rot.: rotation; Brig.: brightness.

Table 15: Accuracy Results (%) for Testing for Covid-19 × Normal and Covid-19 × Pneumonia.

Ac1(%) Ac2(%) Ac3(%) Avg.(%)

Covid-19 × Normal
Balanced 100.0 100.0 100.0 100.0

Unbalanced 46.9 65.6 84.4 65.6

Covid-19 × Pneumonia
Balanced 93.8 96.9 93.8 94.8

Unbalanced 71.9 37.5 37.5 49.0

Table 15 shows the accuracy values for the test step for the group Covid-19 versus Normal and Covid-19 versus
Pneumonia for the balanced and unbalanced database. Through the same it is possible to observe that the accuracy
values for the balanced database is higher than the unbalanced one, having an average of 100.0% while for the unbalanced
database of 65.6%. Similarly as before, in the Covid-19 versus Pneumonia the accuracy values for the balanced tests
were higher compared to the unbalanced, with an average of 94.8% for the balanced while the unbalanced with 49.0%.
It is then possible to state, that database balancing contributes to an improvement in accuracy for Covid-19 detection
on lung X-ray images without the use of Data Augmentation.

4.4 Summary of Main Results and Recommended Configurations

Therefore, the best results for all the phases presented in this paper are are summarized in Table 16.

Table 16: Summary of main results For accuracy results (%) for testing: Covid-19 × Normal and Covid-19 × Pneumonia.

With Combinations of D.A With Individual D.A Without D.A

Covid-19 × Normal
Balanced 95.8 100.0 100.0

Unbalanced - 68.8 65.6

Covid-19 × Pneumonia
Balanced 89.6 96.88 94.8

Unbalanced - 69.8 49.0

D.A: Data Augmentation.

As is apparent from the Sections 4.2.1, 4.2.2, 4.2.3, and 4.3, the configurations that used the balanced dataset
obtained the best results for Covid-19 × Normal and Covid-19 × Pneumonia, realized when Data Augmentation was
used and in its absence. The highlights are Covid-19 × Normal balanced with individual analyses of data augmentation
and without Data Augmentation, which obtained an average accuracy of 100%, and Covid-19 × Pneumonia balanced
with individual use of Data Augmentation with an average accuracy of 96.88%.

For the results using combinations of Data Augmentation, the combination of (60; [0.3 1.0]; [0.3 1.0]; False) in
Covid-19 × Normal is highlighted, where it is possible to perceive an average accuracy of 95.8%, and for Covid-19
× Pneumonia the combination (60; [0.3 1.0]; [0.3 1.0]; True), which obtained an average accuracy of 89.6%, being
Rotation, Brightness, Zoom and Horizontal Flip the sequence of the hyperparameters.

5 Comparison with other papers

In this section, Table 17 presents the comparison between the present proposal and other works using Deep Learning
in Covid-19 classification on lung X-ray images: I [10], II [11], III [42] and e IV [23].

Table 17 reveals that studies I, II and III are dedicated to analyzing how the change of CNN architecture interferes with
accuracy. On the other hand, work IV and the proposal of this paper aim to analyze the influence of Data Augmentation.
In this sense, an important contribution of this work is the application of Deep Learning in the classification of lung
X-ray images for Covid-19 diagnosis, considering the influence of Data Augmentation hyperparameters.

It is also worth noting that the present proposal adopts a methodology to select the relevant Data Augmentation
hyperparameters in the training and validation stages of a CNN model : rotation, brightness, zoom, flipping, width shift
and height shift. The other studies reviewed in Table 17 use only some of these hyperparameters.
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Table 17: Comparison of the present proposal (Prop.) with other works using Deep Learning in Covid-19 classification
on lung X-ray images: I [10], II [11], III [42] e IV [23].

Prop. I II III IV

Proposed Method
Data Augmentation Influence ✓ - - - ✓
Architectural Influence - ✓ ✓ ✓ -

Data Augmentation
Hyperparameters

Rotation ✓ ✓ ✓ ✓ ✓
Brightness ✓ - - - -
Zoom ✓ - ✓ - ✓
Flipping ✓ - - ✓ ✓
Width Shift ✓ - - - -
Height Shift ✓ - - - -

Library
Keras ✓ - ✓ ✓ ✓
FastAi - ✓ - - -

Image Classes
Normal ✓ ✓ ✓ ✓ ✓
Pneumonia ✓ ✓ ✓ ✓ -
Covid-19 ✓ ✓ ✓ ✓ ✓

Max. accuracy = 100% ✓ ✓ - - ✓

Also noteworthy is the use of the Keras library, which is used in the present paper and in most of the papers
analyzed in Table 17, with the exception of paper of [10], which uses the FastAi library.

Finally, it is noteworthy that studies I, II and III, including the proposal presented, use the same classifications for
the images: Normal, Pneumonia and Covid-19, except for work IV, which does not present the Pneumonia group. In
addition, the selected CNN model achieved accuracy equal to 100% for both groups of experiments in the testing stage.
This level of hit rate (= 100%) was only presented in the results of two of the analyzed studies: [10] and [23]. Thus,
indicating a good fit of the proposed model in the task of recognizing Covid-19 in lung x-ray images.

6 Conclusion and Future Works

The aim of this work was to propose a methodology for hyperparameter tuning of Data Augmentation in the
classification of lung X-ray images. Thus, the present study focuses its contributions on the following aspects: (i)
application of Deep Learning model in the process of Covid-19 detection through lung X-ray images in databases
with few samples; (ii) proposal of a methodology for tuning of Data Augmentation hyperparameters, in combination
with each other and individually, for this application; (iii) proposal for a methodology to analyze the influence of
database balancing with and without Data Augmentation (iv) maximum accuracy equal to 100% in the testing stage,
in both Phases, Data Augmentation Combined Analysis and Data Augmentation Single Analysis, experimental after
the adjustment of the hyperparameters.

The results found demonstrate the influence that the Data Augmentation hyperparameters have on the classification
accuracy of X-ray images of: i) healthy patients, ii) patients with pneumonia and iii) patients with Covid-19. With
the variation of 4 hyperparameters and a total of 16 combinations, accuracy values between 53.1% and 91.7% for the
Normal versus Covid-19 classification and between 55.2% and 88.5% for the Pneumonia versus Covid-19 classification
were obtained for the validation step. After choosing the three combinations with the highest accuracy and performing
the testing step, the mean accuracy results increased, reaching 95.8% for the Normal versus Covid-19 classification
and 89.6% for the Pneumonia versus Covid-19 classification. It is worth noting that in both classifications it was still
possible to obtain accuracy values of 100%, demonstrating the effectiveness of the hyperparameters chosen for this
application. In experiments with unbalanced database the average value found for accuracy was 68.8% (Covid-19
versus Normal) and 69.8% (Covid-19 versus Pneumonia). Thus, again stating the importance of database balancing for
greater accuracy in this type of classification.

In the phase of Data Augmentation Single Analysis with the hyperparameters analyzed individually were obtained
average accuracy results of 98.96% for angular rotation and brightness rate (training and validation steps) for the
Normal versus Covid-19 classification. In the test stage, mean accuracy values of 98.96% and 100% were obtained,
again for the angular rotation and brightness rate hyperparameters. For the Pneumonia versus Covid-19 group it is
also highlighted the accuracy averages above 95%, again for rotation and brightness rate: train (97.92%), validation
(96.88%) and test (96.88%).

With this, it is stated that the recommended method to classify lung X-ray images for Covid-19 detection using
Data Augmentation is the use of a balanced database and combinations of hyperparameters such as rotation, brightness,
zoom, and horizontal flip for Covid-19 versus Normal and Covid-19 versus Pneumonia classification. For the use of
individual transformations, it is recommended for the Covid-19 versus Pneumonia group the use of rotation, zoom and
brightness. Besides these, it is also recommended for Covid-19 versus Normal the transformations of height shift and
weight shift.
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For future work, it is suggested to apply the analysis to other Convolutional Neural Network models, analyzing how
the change in architecture also influences. As well as analyze the influence of other Data Augmentation hyperparameters
on this type of classification, checking their individual behavior and when combined with other transformations.
Furthermore, it is suggested to analyze with other databases, in order to verify the model performance beyond the
images initially used and to validate the accuracy hypothesis. Finally, it is recommended to use other statistical
measures for analysis (standard deviation, median and variance) and apply other methodologies for hyperparameter
tuning [21,39].
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Algoritmos: Uma Revisão Descritiva Da Literatura”. South American Development Society Journal , vol. 6, no. 17,
pp. 237, 2020.

[34] A. M. Moura. “Redes neurais recorrentes aplicadas à previsão de preços de ativos da BOVESPA: comparativo de
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