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Abstract- Linear models are widely used to perform time series forecasting. The Autoregressive models stand out due to their 

simplicity in the parameter adjustment based on a closed-form solution. The Autoregressive and Moving Average models 

(ARMA) and Infinite Impulse Response filters (IIR) are also suitable alternatives since they are recurrent structures. However, 

their adjustment is more complex due to the problem having no analytical solution. This investigation performs linear models to 

predict monthly seasonal streamflow series from Brazilian hydroelectric plants. The goal is to reach the best achievable 

performance addressing linear approaches. We propose the application of recurrent models, estimating their parameters via an 

immune algorithm. In order to compare the optimization procedures, the Least Mean Square (LMS) and Recursive Prediction 

Error (RPE) algorithms are utilized. In addition, the AR model and the Holt-Winters method were performed. The results showed 

that the insertion of feedback loops increases the quality of the responses. The ARMA models optimized by the immune 

algorithms achieved the best overall performance. 

Keywords- Seasonal streamflow series forecasting, Box & Jenkins Models, IIR filters, immune algorithm. 

1 Introduction 

Energy planning in Brazil is highly dependent on accurate predictions of monthly seasonal streamflows, since approximately 

60% of the electric power is generated by hydroelectric plants (EPE, 2020; Siqueira et al., 2018). One of the most utilized 

prediction strategies by the Brazilian Electric Sector is the linear approach from the Box & Jenkins methodology (Box et al., 

2008; Luna and Ballini, 2011; CEPEL, 2018; Siqueira et al., 2020). These models are simpler than nonlinear models concerning 

the operation and mathematical tractability (Siqueira and Luna, 2019).  

In this context, autoregressive models are highlighted since they are nonrecurrent structure and their coefficients can be 

calculated by a closed form-solution, which allowed an elevated computational efficiency (Haykin, 2001; Siqueira and Luna, 

2019). These equations provide the model with a global optimum of the cost function based on the mean square error (MSE) 

(Box et al., 2008). 
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Notwithstanding, streamflow series have statistical behavior, such as seasonality and non-stationary, being arduous in their 

treatment and predictions. These characteristics occur because their formation process depends on the rainfall throughout the 

year in a vast country like Brazil (CEPEL, 2018; Siqueira et al. 2020). 

In this sense, there is stillroom for developing good linear solutions since it can use a robust approach with simple mathematical 

treatment and good performance. In this way, the introduction of feedback loops in linear models is particularly relevant because 

they provide more information to perform the output response (Siqueira et al., 2019). 

However, some attention is necessary when we are working on recurrent linear models (Shynk, 1989; Haykin, 2001): i) these 

models do not allow the achievement of a closed-form solution to find their optimum parameters; ii) as indicated in the previous 

item, it is necessary to search values interactively to the parameters of the model. Once exists recurrence, the use of a classic 

nonlinear optimization method based on derivative information, can lead to an unstable solution; iii) in recurrent models, the 

cost function based on the mean square error (MSE) may have local optima; iv) the achievement of the derivatives of the cost 

function based on the free parameters is relatively complex, because of the existence of local optima. 

On the other hand, the use of recurrent models raises the prospect of obtaining linear solutions with high generality, or, in other 

words, ideally, we can extract the best performance possible to a linear approach, with the global optimization of their parameters, 

based on the MSE function (Siqueira and Luna, 2019). 

Considering the importance of the streamflow series forecasting for a country with high dependence on hydropower, we propose 

using immune algorithms (IAs), a bioinspired population metaheuristic (Puchta et al., 2016), to calculate the free coefficients of 

the recurrent linear models to solve the problem. The IAs are viable candidates because they present desirable characteristics to 

overcome the difficulties above (Castro, 2006; Puchta et al., 2020), such as: i) these algorithms realize the search process 

interactively; ii) since the algorithms are population, the achievement of unstable solutions do not compromise the search process. 

Bad solutions tend to disappear during the optimization process; iii) IAs present a global search mechanism based on their 

implicit parallelism or, in other words, their capability to explore simultaneously several regions of the search space; iv) it is not 

necessary to manipulate the cost function. We use a version of the CLONALG algorithm (de Castro and Von Zuben, 2001) 

adapted to work with real parameters. 

As a way of evaluating the proposed approach’s performance, we consider two recurrent formulations: a) Autoregressive and 

Moving Average Models (ARMA), from the Box & Jenkins methodology (Box et al., 2008); b) infinite impulse response filters, 

which we will abbreviate as IIR filters, once this is the classical structure of a recurrent filter (Haykin, 2001). As means to analyze 

the optimization performance of IAs, we performed two algorithms based on the calculation of derivatives of the cost function 

based on the MSE: least mean square (LMS) to both recursive models, and recursive prediction error (RPE), to the IIR filter 

(Skynk, 1989). In addition, we performed the nonrecurrent Autoregressive model (AR) to estimate the improvement obtained 

by using feedback loop (Box et al., 2008). Besides, the Holt-Winters model, developed to seasonal time series, is applied to 

compare the results (Box et al., 2008). Our goal is to evaluate the advantages of applying recurrent models together with a 

bioinspired approach compared to classic models. 

The rest of this article is organized as follows: in Section 2 are the methodologies of linear prediction; Section 3 describes the 

LMS and RPE algorithms and Section 4 the immune algorithms. Section 5 is about the monthly seasonal streamflow series, the 

case study, and the analysis of the results. Section 6 presents the conclusions and future works. 

2 Linear Prediction and Modeling 

2.1 Autoregressive models (AR) 

The Autoregressive model (AR) is one of the most widespread methods for stationary time series prediction because of its simple 

mathematical tractability. The AR is a FIR filter without feedback loops (Siqueira and Luna, 2019). The mathematical 

formulation of an AR model is presented in Equation (1): 

𝑥̃𝑡 = 𝜙1𝑥𝑡−ℎ + 𝜙2𝑥𝑡−ℎ−1 +⋯+ 𝜙𝑝𝑥𝑡−ℎ−𝑝+1 + 𝑎𝑡, (1) 

where xt–h, i = 1, 2, …, p are the lags of the observed series, 𝑥̃𝑡 the predicted value in time t, ϕi, i = 1, 2, …, p is the free 

parameters, and the term at is the random component (Box et al., 2008). 

This definition is set to the direct prediction approach for h steps ahead (Sorjamaa et al., 1997). The AR is adjusted by the Yule-

Walker equations (Box et al., 2008), depicted in Equation (2): 
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𝜱 = 𝑹−𝟏𝒓, (2) 

where the matrix R is given by Equation (3): 

𝑹 = [

𝑟0 𝑟1 ⋯ 𝑟𝑝−1
𝑟1 𝑟0 ⋯ 𝑟𝑝−2
⋮ ⋮ ⋱ ⋮

𝑟𝑝−1 𝑟𝑝−2 … 𝑟0

], (3) 

and the vector r by Equation (4): 

𝒓 = [

𝑟ℎ
𝑟ℎ+1
⋮

𝑟ℎ+𝑝

], (4) 

being ri the estimate of the correlations of the inputs (Box et al., 2008).  

The term h refers to the number of steps ahead that we intend to predict considering the direct approach (Siqueira et al., 2014), 

p is the order of the AR model and Φ = [ϕ1, ϕ2, …, ϕp] is the vector of parameters. Equation (2) is the solution of the Yule-Walker 

Equations, which leads to a condition of minimum MSE, unique to each problem (Box et al., 2008). 

2.2 Autoregressive and Moving Average Models (ARMA)  

The Autoregressive and Moving Average models (ARMA) can be understood as a mix between the AR and a moving average 

(MA) models. While the AR combines the delays of an input signal, the MA combines random shocks at and its delays. A MA 

model with q order can be described by Equation (5): 

𝑥̃𝑡 = −𝜃1𝑎𝑡−ℎ − 𝜃2𝑎𝑡−ℎ−1 −⋯− 𝜃𝑞𝑎𝑡−ℎ−𝑞+1 + 𝑎𝑡, (5) 

where θj, j = 1, 2, …, q, are the adjustable parameters.  

Equation (5) is set to the direct prediction approach for h steps ahead. The MA model can be seen as an all-pole IIR filter, and 

unlike the FIR filters (Siqueira and Luna, 2019), there is no closed-form solution to calculate its free parameters because it is 

necessary to solve a nonlinear system (Haykin, 2001).  

The ARMA model may contain adjustable zeros and poles, which turns this model more embracing than the others. The 

ARMA(p,q) for forecasting is described by Equation (6): 

𝑥̂𝑡 = 𝜙1𝑥𝑡−ℎ +⋯+ 𝜙𝑝𝑥𝑡−ℎ−𝑝+1 − 𝜃1𝑎𝑡−ℎ −⋯− 𝜃𝑞𝑎𝑡−ℎ−𝑞+1 + 𝑎𝑡, (6) 

where ϕi, i = 1, 2, …, p and θj, j = 1, 2, …, q, are its free parameters (Box et al., 2008). 

A second formulation is proposed in this work, with the feedback of the error of the last iteration, to any number of steps ahead, 

according to Equation (7) : 

𝑥̂𝑡 = 𝜙1𝑥𝑡−ℎ + 𝜙2𝑥𝑡−ℎ−1 +⋯+ 𝜙𝑝𝑥𝑡−ℎ−𝑝+1 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞 + 𝑎𝑡. (7) 

Observe that to one step ahead prediction, Equations (6) and (7) are the same. The random shocks 𝑎𝑡 are equivalent to the errors 

et  defined in Equation (2), which feedback to the model (Box et al., 2008). 

Analogously to MA, the optimization of the free parameters of the ARMA model requires solving a nonlinear system. However, 

in an ideal case, if the choice of the parameters and the order of the model is suitable, we have an optimum linear predictor (Box 

et al., 2008).  

2.3 IIR FILTERS 

Linear structures IIR can be built from a different perspective of the ARMA models, with the feedback of the output response of 

the model. This model has the following Equation (8) (Haykin, 2001): 

𝑥̂𝑡 = 𝑐1𝑥𝑡−ℎ +⋯+ 𝑐𝑝𝑥𝑡−ℎ−𝑝+1 − 𝑏1𝑥̂𝑡−ℎ −⋯− 𝑏𝑞𝑥̂𝑡−ℎ−𝑞+1. (8) 
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in which ci, I = 1, 2, …, p are the free parameters which weigh the feedforward inputs and bj, j = 1, 2, …., q the weights of the 

feedback. 

Like the ARMA models, the IIR filters have adjustable zeros and poles in their transfer function (Haykin, 2001).  

2.4 HOLT-WINTERS MODELS 

Time series may have complex behavior like seasonality. In this case, their prediction can be made by smoothing models. In this 

category are the Holt-Winters model (Morettin and Toloi, 2018), often used to series with this component. 

The smoothing equations are based on three basic components: a) The level, which is stationary (without seasonality or trend) 

but may have some random perturbation; b) The trend component; c) The seasonality component.  

The method has two variants: multiplicative and additive. We adopt the second proposal. It is important to observe that the 

streamflow series do not present trend (Box et al., 2008). Therefore, the trend component is considered equals to zero. The 

expression of the model to a horizon of h steps ahead is given by Equation (9): 

𝑥̂𝑡+ℎ = 𝑅̄𝑡𝑆𝑡+ℎ−𝐿 + 𝑎𝑡, (9) 

where 𝑅̄𝑡 is the level factor, St, the seasonal factor, at is the aleatory component, and L is the size of the seasonality. In our case, 

L = 12, or one year.  

The smoothing equations are according to Equation (10) and Equation (11): 

𝑅̄𝑡 = 𝐴(
𝑥𝑡

𝑆𝑡−𝐿
) + (1 − 𝐴)(𝑅̄𝑡−1),          t = L+1, ..., N (10) 

𝑆𝑡 = 𝐷 (
𝑥𝑡

𝑅̄𝑡
) + (1 − 𝐷)(𝑆𝑡−𝐿),          t = L+1, ..., N (11) 

where A, 0 ≤ A, and D, D ≤ 1, are the smoothing constants which have to be optimized, and N the number of observations. 

Another important stage in the application of this method is the initialization of the factors, based on the first L samples of the 

series, or one seasonal period of the historic data. For this purpose, we use Equations (12) and (13): 

𝑅̄𝑡 =
1

𝐿
∑ 𝑥𝑡
𝐿
1 ,          t = 1, ..., L (12) 

𝑆𝑡 =
𝑥𝑡

𝑅̄𝑡
,          t = 1, ..., L (13) 

In the next section, the models and methods presented are tested in the monthly seasonal streamflow series forecasting. 

3 Optimization Algorithms based on Estimates of the Gradient Vector 

3.1 LMS Algorithm 
 

A widespread algorithm in the literature to optimize linear filters is the least mean square (LMS) (Widrow and Hoff, 1960). This 

method can be used to calculate the parameters of IIR filters and ARMA models. The proof of the deduction is based on a 

stochastic approximation of the gradient vector, which allows search estimates of the Wiener solution with a low computational 

cost (Haykin, 2001).  

The LMS minimizes the MSE through a stochastic search, reducing the cost function Jw interactively based on the error produced 

at each interaction, or the instant error. Consider J a stochastic variant of Jw, endowed of a scalar factor equals to 1/2 for 

simplicity, which depends on a vector of parameters of the model w = [c1, c2, …, cp, b1, b2, …, bq], as in Equation (14): 

𝑱 =
1

2
𝒆𝑡

2, (14) 

where et is the error measured in the instant t. It is possible to calculate the derivative of J with respect to𝑤(𝛻𝑤𝑱), to find the 

stochastic gradient according to an equation error model (Shynk, 1989) using Equation (15): 

𝛻𝑤𝑱 = −𝒆𝑡𝒙𝑡, (15) 
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where xt is not dependent of wt. Lastly, using the classical form of the gradient method to minimization (Haykin, 2001) we have 

Equation (16) to update the weights: 

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝛻𝑤𝑱, (16) 

Combining Equations (15) and (16), the expression of update of the coefficients is given by Equation (17): 

𝒘𝑡+1 = 𝒘𝑡 + 𝛾𝒆𝑡𝒙𝑡, (17) 

where  is the adjust step, and the vector xt is composed of all the inputs, feedforward, and feedback. However, disregarding the 

influence of parameters on the feedback, the method can converge to a suboptimal solution, in terms of MSE (Shynk, 1989). 

3.2 RPE Algorithm 

Another method that utilizes information from the cost function J, instant estimate of the square error, is the Recursive Prediction 

Error algorithm (RPE). Its application here is restricted to the IIR filters. According to Shynk (1989), its expression has a 

simplification and is similar to the LMS algorithm, but the derivative calculation with respect to 𝑤(𝛻𝑤𝒙) is different. In general 

form, it is possible to write the gradient vector as in Equation (18): 

𝛻𝑤𝑱 = −𝛾𝒆𝑡𝛻𝑤𝒙̂𝑡, (18) 

where the gradient is the vector in relation of the weights w = [c1, c2, …, cp, b1, b2, …, bq] is given by Equation (19):  

𝛻𝑤𝒙𝑡 = [
𝜕𝑥𝑡

𝜕𝑐1
, … ,

𝜕𝑥𝑡

𝜕𝑐𝑝
,
𝜕𝑥𝑡

𝜕𝑏1
, … ,

𝜕𝑥𝑡

𝜕𝑏𝑞
], (19) 

However,𝛻𝑤𝒙𝑡 = 𝒙𝑡 is a simplification since the values of the gradient are dependent on the past values𝒙𝑡. If we suppose that 

the values of the weights change very slowly, or in other words, wt ≈ wt–1 ≈ … ≈ wt–N+1, when the step   is small, it is possible 

to obtain recursive derivatives to the calculation of 𝛻𝑤𝒙𝑡 (Shynk, 1989). For this, it is necessary to store the past values of the 

series. It was proposed an additional step to simplify the calculation of derivatives, described in Equation (20): 

𝜕𝑥𝑡

𝜕𝑐𝑡
≈ 𝑥𝑡−𝑘1

𝑓
,          and          

𝜕𝑥𝑡

𝜕𝑏𝑡
≈ 𝑥̂𝑡−𝑘2

𝑓
, (20) 

where k1 = 1, 2, …, p – 1 and k2 = 0, 1, …, q – 1, respectively. 

In practice, an intermediate stage is added to the algorithm with the insertion of new vectors 𝒙𝑓 and 𝒙𝑓, which are calculated 

instantly based on the original inputs and outputs. Therefore, each component of the gradient is simply a delayed version of the 

initial conditions. These vectors compose the expression of the update of the coefficients. The RPE algorithm is presented in 

Algorithm #1, which follows the original version from Shynk (1989): 

 

Algorithm #1 - RPE algorithm 

Definitions: 

𝒘 = [𝒄𝟏, . . . , 𝒄𝒑, 𝒃𝟏, . . . , 𝒃𝒒]
𝑻
 

𝒗 = [𝑥̂𝑡−1, . . . 𝑥̂𝑡−𝑞+1, 𝑥𝑡 , . . . , 𝑥𝑡−𝑝+1]
𝑇
 

𝒗𝑓 = [𝑥̂𝑡−1
𝑓

, . . . 𝑥̂𝑡−𝑞+1
𝑓

, 𝑥𝑡
𝑓
, . . . , 𝑥𝑡−𝑝+1

𝑓
]
𝑇
 

Initialization: 

𝒙𝑡−𝑝 = 𝒙𝑡−𝑞 = 𝒙𝑡−𝑝
𝑓

= 𝒙𝑡−𝑞
𝑓

= 0 

For each new input xt, dt, do: 

𝒙𝑡
𝑓
= 𝒙𝑡 +∑𝑐𝑖

𝑝−1

𝑖=1

𝒙𝑡−𝑖
𝑓

 

𝒙𝑡 = 𝒘𝑡
𝑇𝒗𝑡 

𝒙𝑡
𝑓
= 𝒙𝑡 +∑𝑐𝑖

𝑝−1

𝑖=1

𝒙𝑡−𝑖
𝑓

 

𝒆𝑡 = 𝒅𝑡 − 𝒙𝑡 
Update of the coefficients: 

𝒘𝒕+𝟏 = 𝒘𝒕 + 𝜸𝒗𝒕
𝒇
𝒆𝒕 

where  is the optimization step. 
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4 IMMUNE ALGORITHM 

Immune algorithms or artificial immune systems (IAs), are bioinspired methods for search and optimization based on the defense 

mechanism against antigens of superior organisms (Castro, 2006).  

The primary motivation to use this technique to optimize linear structures comes from the complex characteristics of the resulting 

optimization problem.  The application of IAs were successfully in works related to signal processing and streamflow prediction 

compared to other methods as genetic algorithms (Attux et al., 2003). 

In this work, we used a version of CLONALG algorithm (Castro and Von Zuben, 2002) with real codification. The algorithm’s 

modus operandi is inspired in the process of recognizing antigens, where the solutions are vectors of real numbers (in the case 

treated here) and are equivalent to the structure of an antibody. The affinity between antigen and antibody is measured through 

the cost function named fitness, as usual in evolutionary computation.  

The basic idea that rules this algorithm is the clonal selection principle. According to this principle, at the moment of recognizing 

an antigen, the defense cells create copies from themselves, and these clones are subject to mutations proportionally to the affinity 

between antibody and antigen (Castro and Timmis, 2002). 

To use IAs is necessary to set some elements that are described below. The first is the fitness function, which is defined in 

Equation (21): 

𝑱𝒇𝒊𝒕 =
1

(1+𝑱̂𝒘)
, (21) 

where is the estimate of the cost function based on the mean square error. 

The mutations associated with the clonal selection principle are Gaussian disturbances added to the real values of the individuals. 

Tin order to improve the potential of global search, the algorithm realizes a periodic insertion of new individuals that are 

randomly generated. The binomial cloning/mutation provides a local search mechanism. Algorithm #2 presents the immune 

algorithm used: 

 

Algorithm #2 - CLONALG algorithm 

Initialization 

Choose the parameters of the algorithm and randomly initialize the antibodies of the 

population.  

Interactive process 

While the maximum number of interactions is not reached, do: 

1. Calculate the fitness of all individuals; 

2. Each Nit iterations, include Nind solutions generated randomly and substitute for the Nind  

antibodies with lower fitness; 

3. Produce Nc copies of each  antibody; 

4. Apply a mutation antibody unchanged. The mutation is proportional to the cost and follows 

these two equations: 

𝑐 ′ = 𝑐 + 𝛼𝑁(0,1), 

𝛼 = (
1

𝛽
) 𝑒𝑥𝑝(−𝑓), 

where  is a regulation parameter of the mutation amplitude, N(0,1) describes a random value 

generated by a Gaussian distribution with zero mean and variance equals one, exp is the 

exponential function, and f is the value of the fitness of the clone c.  

5. Determine the cost of the new individuals and save each group just the best solution. 

wĴ
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5 Computer Simulations and Discussion 

5.1 Case Study and Experimental Protocol 

The stage of the computational simulations was performed with the historical series from three Brazilian hydroelectric plants. 

• Furnas, located in Rio Grande river, with test set defined from 1952 to 1956 (dry) and from 1972 to 1976 (median);  

• Sobradinho, in the border of the states of Bahia and Pernambuco, with the test set from 1981 to 1985 (wet);  

• Emborcação, on the west of the state of Minas Gerais, from 1972 to 1976 (medium).  

These test sets are usual in this kind of study and present a distinct hydrological behavior. It is possible to observe that the period 

from 1981 to 1985 presented an abnormally high volume of water caused by constant rainfall, inversely to 52/56, which was dry. 

In the period between 1972 and 1976, the mean is close to the historical mean of each plant. This variation in the hydrological 

behavior of the test sets allows evaluating the performance of the proposed predictors more broadly.  

Each selected period has five years or 60 monthly observations. The Brazilian data of streamflow series are available on the 

website of Electric System National Operator (ONS, 2020). A brief descriptive analysis regarding their means and standard 

deviations are summarized in Table 1:  

 

Table 1: Average and Standard Deviation for all series. 

Series Mean 
Standard 

Deviation 

Furnas  926.61 613.16 

Sobradinho  2.66×103 1.95×103 

Emborcação  486.07 362.80 

 

It is notorious that Sobradinho plant has a historical mean twice and a half higher than Furnas plant, and Furnas is approximately 

twice compared to Emborcação. In Table 2 are presented the mean and standard deviation of each test period. 

 

Table 2: Average and Standard Deviation for test sets. 

Test                   

Period 
Mean 

Standard 

Deviation 

Furnas 52/56 656.41 409.09 

Furnas 72/76 882.63 445.05 

Sobradinho 81/85 3.47×103 2.22×103 

Emborcação 72/76 433.01 273.42 

 

Streamflow series related to hydroelectric plants present a characteristic seasonal component. It occurs because the volume of 

water is driven by rainfall throughout the year (CEPEL, 2018). Therefore, before applying the forecasting models, it is necessary 

to remove the seasonal component. This procedure is performed by using the monthly deseasonalization process, which is 

detailed in Equation (22) (Siqueira et al., 2012a; 2012b): 

𝑧
𝑥𝑖,𝑚−𝜇̂𝑚

𝜎̂𝑚 𝑖,𝑚
, (22) 

in which x is the original series that is transformed in a new stationary series z, 𝜇̂𝑚is the historical mean of the month                         

m = 1, 2, 3, …,12, 𝜎̂𝑚is the monthly standard deviation, m is the current month of the i-th year, i = 1, 2, …, Ny. These mean and 

standard deviation are given by Equations (23) and (24) (Box et al., 2008; Siqueira et al., 2012c): 

𝜇̂𝑚 =
1

𝑁𝑦
∑ 𝑥𝑖,𝑚
𝑁𝑦
𝑖=1

, (23) 
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𝜎̂𝑚 = √
1

𝑁𝑦
∑ (𝑥𝑖,𝑚 − 𝜇̂𝑚)

2𝑁𝑦
𝑖=1

, (24) 

where Ny is the number of samples from month m. 

Initially, the series considering all subsets (training, validation, and test) pass through the deseasonalization process described in 

Equation (22). Next, the optimization algorithms to the models AR (Yule-Walker equations), ARMA (LMS), and IIR filters (LMS 

and RPE) were performed to all selected series to estimate their coefficients. After to ARMA and IIR models, the immune 

algorithm was implemented.  

The parameters of the IAs were chosen by preliminary evaluations and set according to Table 3. 

 

Table 3: Parameters of IAs to ARMA and IIR filter. 

Parameter Value 

Number of antibodies (Nind) 10 

Number of clones (Nc) 5 

Changing amplitude control (β) 50 

Number of reintegrated individuals 3 

Periodicity of reintegration (Nit) 20 

Number of iterations      1,000 

 

The addressed forecasting horizons were h = 1, 3, 6, and 12 steps ahead. The Friedman’s test was applied to all predictions in 

the test sets, in real space, to analyze if the results were significantly different (Luna and Ballini, 2011). Lastly, the Holt-Winters 

model was utilized. The smoothing coefficients were calculated by an exhaustive search, with step equals 0.01. 

The order of the models was defined by the analysis of the variance of the residuals (Box et al., 2008) in view of the principle of 

parsimony. It was selected a second-order AR model. After, studying the influence of the different forms of recursion, we choose 

just one feedback to ARMA models and IIR filters.  

The considered metrics to analyze the errors were mean square error (MSE), mean absolute error (MAE), and mean absolute 

percent error (MAPE), exposed in Equations (25), (26) and (27) respectively: 

𝑀𝑆𝐸 =
1

𝑁𝑠
∑ (𝑥𝑡 − 𝑥̂𝑡)

2𝑁𝑠
𝑡=1 , (25) 

𝑀𝐴𝐸 =
1

𝑁𝑠
∑ |𝑥𝑡 − 𝑥̂𝑡|
𝑁𝑠
𝑡=1 , (26) 

𝑀𝐴𝑃𝐸 = 100
1

𝑁𝑠
∑ |

𝑥𝑡−𝑥𝑡

𝑥𝑡
|

𝑁𝑠
1 , (27) 

where xt  is the desired response,𝑥̂𝑡 is the predicted value, and Ns the number of data.  

5.2 Results  

Hereafter, in the Tables 4-7, are presented the computational results to the test sets. These results are the average of 30 

simulations. The values in bold highlight the best performance achieved in each scenario. The acronym HW refers to the result 

achieved by Holt-Winters model, AR to the autoregressive model, ARMA1 to the model proposed in (6) and ARMA2 presented 

in (7), and IIR is the IIR filter. LMS, RPE, and IA correspond to the optimization methods. The term “deseas” means the error 

in the deseasonalized space or after the data pass through the transformation presented in Equation (25). We do not present the 

MAPE in the deseasonalized domain because it is necessary to divide the subtraction by a small number.  

5.3 Analysis and Discussion 

Initially, we applied Friedman’s test to evaluate if the results were significantly distinct. The p-values achieved were below 0.05, 

which proves the hypothesis that the results are significantly different (Luna and Ballini, 2011).  
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The error metrics adopted are very usual in this kind of study. However, we observe that in the 16 best results found based on 

the MSE on the real domain, just in 11 the model showed the best MAE too. Similar behavior can be observed regarding the 

MAPE. To compare the results, we adopted as the best results those in which the model presents the lowest MSE, once the cost 

function is based on this metric (Siqueira et al., 2014; Siqueira et al., 2018).  

 

Table 4: Results for all streamflow series considering one step ahead (h = 1). 

 Model MSE real (×104) MAE real  MAPE real  MSE deseas  MAE deseas  

F
U

R
N

A
S

 5
2

/5
6

 HW 11.8920 206.3132 24.84 - - 

AR 5.2963 153.8511 19.40 0.3084 0.4528 

ARMA+LMS1 5.2434 152.2564 19.11 0.3031 0.4422 

ARMA+IA 1 6.0848 162.3638 21.80 0.3401 0.4752 

IIR+RPE 5.4851 157.7098 20.14 0.3121 0.4591 

IIR+LMS 5.2808 153.6556 19.46 0.3053 0.4460 

IIR+ IA 5.6802 159.1192 21.37 0.3478 0.4740 

F
U

R
N

A
S

 7
2

/7
6

 HW 12.9324   270.8675 30.65 - - 

AR 4.3971 159.6183 17.33 0.3878 0.5385 

ARMA+LMS1 4.5550 160.5871 17.36 0.3989 0.5427 

ARMA+ IA 1 4.4326 160.4042 17.63 0.4028 0.5503 

IIR+RPE 4.5894 161.6452 17.50 0.4077 0.5489 

IIR+LMS 4.5227 160.7465 17.39 0.3998 0.5441 

IIR+ IA 4.5753 160.8217 17.43 0.4061 0.5468 

S
O

B
R

A
D

IN
H

O
  HW 46.8939 1326.5386 30.27 - - 

AR 11.7045 633.7137 14.53 0.3597 0.4383 

ARMA+LMS1 11.1777 618.1714 14.26 0.3513 0.4328 

ARMA+ IA 1 11.2139 618.1087 14.26 0.3525 0.4327 

IIR+RPE 12.1175 649.7864 14.73 0.3613 0.4442 

IIR+LMS 11.5907 631.5168 14.43 0.3555 0.4366 

IIR+ IA 11.4886 636.7802 14.64 0.3561 0.4433 

E
M

B
O

R
C

A
Ç

Ã
O

 HW 4.6990 135.1774 32.00 - - 

AR 2.8585 95.7394 18.91 0.5592 0.4987 

ARMA+LMS1 2.8911 96.6709 19.12 0.5645 0.5021 

ARMA+IA 1 3.4639 103.1276 19.59 0.6161 0.5266 

IIR+RPE 2.8713 96.6585 19.13 0.5627 0.5026 

IIR+LMS 2.8724 96.7253 19.15 0.5630 0.5029 

IIR+ IA 2.8797 97.1362 20.06 0.5634 0.5082 

 

 

It is possible to observe there is no perfect correspondence between the best MSE in the real and deseasonalized domain. This 

phenomenon may be related to the fact that the deseasonalization procedure commonly adopted in streamflow series forecasting 

considers all the samples of the series with the same importance (weight). Hence, certain periods with high variance exert a 

pronounced influence in the monthly mean and standard deviation, used in such a process. This undesirable effect could be 

mitigated by introducing penalties to the atypical periods of the streamflow series (Siqueira et al., 2014). In the test set, in 13 

cases, there is a correspondence between the spaces.  

The analysis of the results in the deseasonalized domain showed that for the 16 possible results in 14 the best results were for 

the ARMA model. The immune algorithm presented the best results in 8 cases and the LMS in 6. In just 2 cases, the AR model 

reached the best results, which is not surprising to h = 1, once the Yule-Walker equations guarantee global optimality in the MSE 

sense. The Holt-Winters model to the test sets could not overcome the performance of the other methods. 

The general analysis based on the best MSE in real domain allows some critical considerations. The ARMA model achieved 13 

of 16 best performances while AR 2, and the IIR filter 1. Furthermore, just comparing AR and IIR filter, the filter achieved the 

best results in 13 cases. It is clear that the insertion of feedback is an advantage, even losing the guarantee of the global minimum 

optimum, especially to horizons higher than 1 step ahead. 
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Table 5: Results for all streamflow series and three steps ahead (h = 3). 

 Model MSE real (×104) MAE real  MAPE real  MSE deseas  MAE deseas  

F
U

R
N

A
S

 5
2

/5
6

 

HW 16.9630 292.0998 28.53 - - 

AR 8.1562 166.0216 21.44 0.4064 0.5074 

ARMA+LMS1 8.1531 165.9847 21.21 0.4039 0.5008 

ARMA+LMS2 7.0372 169.1651 24.44 0.3507 0.4893 

ARMA+ IA 1 9.2471 172.1396 22.59 0.4286 0.5180 

ARMA+ IA 2 6.6153 162.3318 22.51 0.3433 0.4740 

IIR+RPE 8.3423 167.0702 21.52 0.4070 0.5032 

IIR+LMS 8.3465 166.9945 21.54 0.4061 0.5036 

IIR+ IA 7.8548 159.8932 23.01 0.3897 0.4886 

F
U

R
N

A
S

 7
2

/7
6

 

HW 26.9516 411.0062 59.47 - - 

AR 4.9578 174.1835 21.40 0.6254 0.6513 

ARMA+LMS1 5.0954 174.5261 21.31 0.6224 0.6520 

ARMA+LMS2 4.4120 155.3570 18.64 0.4984 0.5777 

ARMA+ IA 1 5.0673 175.6782 21.87 0.6654 0.6671 

ARMA+ IA 2 4.1937 157.6562 19.00 0.4970 0.5804 

IIR+RPE 4.9854 175.4764 21.40 0.6174 0.6538 

IIR+LMS 4.9808 175.1214 21.38 0.6232 0.6538 

IIR+ IA 4.9565 174.7082 20.63 0.5682 0.6435 

S
O

B
R

A
D

IN
H

O
 

HW 45.9117 1376.1300 32.20 - - 

AR 40.1147 1096.1947 25.39 0.7944 0.6723 

ARMA+LMS1 34.8638 1051.5499 23.32 0.7653 0.6669 

ARMA+LMS2 17.1287 764.6008 17.83 0.4650 0.5278 

ARMA+ IA 1 32.9608 1029.0909 22.65 0.7551 0.6650 

ARMA+ IA 2 20.8338 839.8754 18.82 0.4910 0.5464 

IIR+RPE 37.8120 1076.3597 24.39 0.7751 0.6701 

IIR+LMS 35.4638 1057.5056 23.42 0.7694 0.6685 

IIR+ IA 35.9654 1062.4966 23.60 0.7751 0.6696 

E
M

B
O

R
C

A
Ç

Ã
O

 

HW 6.2002 190.5383 50.64 - - 

AR 3.5208 131.5846 25.96 0.7772 0.7025 

ARMA+LMS1 3.6168 132.1966 25.64 0.7769 0.6940 

ARMA+LMS2 2.6428 100.0613 21.63 0.6014 0.5491 

ARMA+ IA 1 3.6141 133.9609 26.59 0.8171 0.7370 

ARMA+ IA 2 2.1581 94.1444 20.01 0.5393 0.5401 

IIR+RPE 3.5334 132.6184 26.20 0.7816 0.7088 

IIR+LMS 3.5319 132.5575 26.20 0.7815 0.7089 

IIR+ IA 3.1094 118.5371 24.89 0.7291 0.6573 

 

Ideally, a recurrent method may extract high generality solutions and improve the performance of a linear approach. The results 

showed that the insertion of a feedback response often led to the best solutions, once more information is available to the 

formation of the response of the predictor.  

Regarding the optimization procedure, the IA was the best in 8 cases and LMS in 5. Analyzing just the optimization of the IIR 

filter, in 11 cases, the IAs provided better results. Also, the ARMA model presented in Equation (7) almost invariably (to h 

higher than 1) presented results better than those from Equation (6). 
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Table 6: Results for all streamflow series and six steps ahead (h = 6). 

 Model MSE real (×104) MAE real  MAPE real  MSE deseas  MAE deseas  
F

U
R

N
A

S
 5

2
/5

6
 

HW 17.5895 302.2370 29.53 - - 

AR 6.9484 165.9277 21.35 0.4511 0.5441 

ARMA+LMS1 6.8478 164.2319 20.76 0.5047 0.5530 

ARMA+LMS2 6.6263 166.0349 22.54 0.3667 0.5059 

ARMA+ IA 1 6.0692 164.3675 21.64 0.4569 0.5621 

ARMA+ IA 2 5.9779 163.1211 20.78 0.3654 0.5015 

IIR+RPE 6.9733 166.2771 21.39 0.4539 0.5451 

IIR+LMS 6.4813 168.3400 23.06 0.5094 0.5852 

IIR+ IA 5.7267 146.0020 22.39 0.4346 0.5148 

F
U

R
N

A
S

 7
2

/7
6

 

HW 25.2952 383.2954 62.63 - - 

AR 5.7656 186.0062 23.91 0.8704 0.7275 

ARMA+LMS1 5.5854 182.7388 23.41 0.8411 0.7232 

ARMA+LMS2 4.4590 158.6120 19.24 0.5586 0.5993 

ARMA+ IA 1 5.9157 188.2496 24.06 0.8737 0.7340 

ARMA+ IA 2 4.4315 162.4742 20.06 0.6261 0.6310 

IIR+RPE 5.7453 185.9357 23.90 0.8742 0.7306 

IIR+LMS 5.6516 184.5136 21.92 0.7456 0.6992 

IIR+ IA 5.6938 186.0797 22.22 0.7618 0.7075 

S
O

B
R

A
D

IN
H

O
 

HW 42.8919 1367.2676 32.37 - - 

AR 24.2060 952.0566 22.99 0.9168 0.7414 

ARMA+LMS1 23.8601 952.2272 22.31 0.8985 0.7273 

ARMA+LMS2 10.3441 683.1941 17.39 0.4633 0.5537 

ARMA+ IA 1 24.4221 951.8605 22.66 0.9033 0.7354 

ARMA+ IA 2 12.9949 716.4950 17.82 0.5405 0.5677 

IIR+RPE 23.6769 946.7702 22.96 0.9100 0.7415 

IIR+LMS 23.9110 945.8540 22.83 0.9066 0.7366 

IIR+ IA 23.5099 938.1707 22.37 0.8870 0.7257 

E
M

B
O

R
C

A
Ç

Ã
O

 

HW 6.8209 199.7716 58.22 - - 

AR 3.3228 127.3918 27.78 0.8753 0.7636 

ARMA+LMS1 3.9823 140.4540 28.41 0.8910 0.7634 

ARMA+LMS2 2.4692 100.8096 23.10 0.6160 0.5874 

ARMA+ IA 1 3.3538 133.1688 30.13 0.9300 0.8143 

ARMA+ IA 2 2.3190 102.6668 22.51 0.6008 0.6111 

IIR+RPE 3.3354 127.5599 27.75 0.8750 0.7624 

IIR+LMS 3.3242 127.1329 27.74 0.8811 0.7614 

IIR+ IA 2.9934 117.5704 26.19 0.8013 0.7143 

 

The empirical evidences of this study showed, in summary:  

i) the presence of feedback loops (ARMA and IIR filter) improved the performances compared to the AR model to multi-step 

ahead prediction. In most cases, the ARMA model of Equation (7) proved to be more effective;  

ii) optimization algorithms based on estimates of the gradient of the cost function are already employed. However, the use of a 

population metaheuristic showed very competitive, presenting good results;  

iii) besides the deseasonalization of Equation (22) be the most effective until this moment, it is necessary to find alternatives that 

valorize the response of the predictors (which occurs in deseasonalized space) once the best response of the models may be 

degraded by the reversion of the process. 
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Table 7: Results for all streamflow series and twelve steps ahead (h = 12). 

 Model MSE real (×104) MAE real  MAPE real  MSE deseas  MAE deseas  
F

U
R

N
A

S
 5

2
/5

6
 

HW 10.6741 195.6570 25.07 - - 

AR 10.2104 207.6676 27.17 0.6871 0.6992 

ARMA+LMS1 10.7560 199.1596 34.33 0.6544 0.6363 

ARMA+LMS2 7.4008 175.0472 21.62 0.4337 0.5481 

ARMA+ IA 1 10.1017 206.1241 27.17 0.6737 0.6929 

ARMA+ IA 2 7.3119 171.9934 21.42 0.4397 0.5420 

IIR+RPE 10.0649 206.5301 26.99 0.6798 0.6957 

IIR+LMS 10.0977 206.7539 27.02 0.6812 0.6963 

IIR+ IA 7.9468 170.7382 28.32 0.5810 0.5911 

F
U

R
N

A
S

 7
2

/7
6

 

HW 14.5841 293.6045 47.55 - - 

AR 5.4783 178.1599 22.85 0.8191 0.6897 

ARMA+LMS1 5.3730 184.8272 22.04 0.7460 0.7126 

ARMA+LMS2 4.2680 152.0157 18.09 0.5315 0.5692 

ARMA+ IA 1 5.2866 174.9972 21.92 0.7711 0.6725 

ARMA+ IA2 3.8210 147.3185 18.07 0.5489 0.5669 

IIR+RPE 5.5205 172.3159 21.87 0.7888 0.6722 

IIR+LMS 5.4584 177.5435 22.47 0.7873 0.6829 

IIR+ IA 5.4487 177.3626 22.48 0.7881 0.6826 

S
O

B
R

A
D

IN
H

O
 

HW 47.2633 1431.4180 36.43 - - 

AR 25.6825 1040.8319 24.29 1.0364 0.8085 

ARMA+LMS1 26.6915 1117.2437 28.47 1.2010 0.8817 

ARMA+LMS2 10.8632 667.1912 16.78 0.5007 0.5424 

ARMA+ IA1 26.1734 1070.4998 25.33 1.0878 0.8315 

ARMA+ IA2 11.3811 680.8712 16.82 0.5089 0.5451 

IIR+RPE 21.4678 958.0474 22.83 0.9474 0.7752 

IIR+LMS 21.1604 950.8522 22.71 0.9397 0.7721 

IIR+ IA 24.8570 1079.7776 28.32 0.9850 0.8250 

E
M

B
O

R
C

A
Ç

Ã
O

 

HW 7.8649 201.5132 41.80 - - 

AR 3.8799 144.4730 35.55 1.1883 0.9009 

ARMA+LMS1 4.4007 157.1772 38.56 1.3375 0.9758 

ARMA+LMS2 2.9201 112.7873 26.87 0.7861 0.6777 

ARMA+ IA 1 4.4196 141.3258 65.17 1.5693 0.9315 

ARMA+ IA 2 2.3477 109.5475 25.84 0.7311 0.6872 

IIR+RPE 5.4160 174.1206 47.61 1.6325 1.0846 

IIR+LMS 4.0604 149.9718 37.66 1.2585 0.9403 

IIR+ IA 4.0102 149.3458 37.57 1.2543 0.9394 

As the forecasting horizon grows, the output response of the models tends to the long-term mean (LTM). We expected 

degradation in error with the increase of h since the correlation between the observations decreases. However, as showed in 

Figure 1, this correspondence was not perfect because sometimes the MSE in a higher horizon was lower than the previous.  

6 Conclusions 

This work proposed the application of recursive linear models - autoregressive and moving average models (ARMA) and infinite 

impulse response (IIR) filters - to monthly seasonal streamflow series forecasting of the following Brazilian hydroelectric plant: 

Furnas, Sobradinho, and Emborcação, with 1, 3, 6, and 12 steps ahead. This problem is fundamental for countries where the 

power generation is predominantly done by this kind of source. 

The Brazilian Electric Sector often uses models without feedback, especially the autoregressive models (AR), since it has a 

closed-form solution to calculate their free parameters. Unlike the AR model, recursive models have cost functions potentially 

multimodal, which requires optimization procedures to find their parameters. However, such approaches raise the prospect of 

obtaining linear solutions with high generality, which may bring important performance gains to this problem. 
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Figure 1: MSE for each forecasting horizon h. 

 

Finally, Figures 2 to 5 present the streamflow series and the predicted series associated with the model that reached the best 

performance, considering the one step ahead prediction (h = 1). 

 

  
Figure 2: Best predicted series considering the test set 

associated with Furnas 1952/1956 and h = 1. 

Figure 3: Best predicted series considering the test set 

associated with Furnas 1972/1976 and h = 1. 

  
Figure 4: Best predicted series considering the test set 

associated with Sobradinho and h = 1. 

Figure 5: Best predicted series considering the test set 

associated with Emborcação and h = 1. 
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An immune algorithm performs the adjustment of the ARMA and IIR filter parameters. It is a population metaheuristic inspired 

by the immune system of the superior organisms, which allies local search capability with high global search potential due to its 

intrinsic optimization mechanism based on the binomial cloning/mutation. For comparison purposes, two techniques, both 

elaborated based on information from the gradient: Least Mean Square (LMS) - to ARMA and IIR - and Recursive Prediction 

Error (RPE) - just to IIR filter. Besides, the Holt-Winter method was performed.  

The results show that recurrent models bring to this problem a consistent increase in performance. Most of the best results were 

favorable to the ARMA model. Comparing just IIR filter and AR, once again, the recurrent approach was the best. It seems to 

be clear that the use of feedback is essential to linear models applied to this forecasting problem, even the loss of deterministic 

solutions to calculate the parameters. 

Regarding the optimization algorithms, the performance achieved by the IAs was better than the others. We can state that the 

IAs have to be considered as a competitive candidate to solve this task. 

Future works may be developed to explore this proposal using other series with hydrological behavior distinct from those. A 

new proposal is necessary to deseasonalize the streamflow series that maintain the proportionality between the output response 

of the predictor and the series in real space. In many cases, the response of the model was degraded in the reversion of the 

deseasonalization. In addition, a further analysis comparing the linear models and machine learning models should be evaluated 

(Tadano et al., 2016). 
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