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Abstract – Early applications of empirical methods from chaos theory suggested the existence of low dimensional chaotic
motion in empirical financial data. However, such results were questioned, and it is then believed that the search for low
dimensional chaos in financial data was not successful. On the other hand, at the same time that the hypotheses that raw returns
are independent and identically distributed (IID) is often rejected, they indeed present a quite small degree of autocorrelation.
These facts suggest that prices in financial markets do not behave completely at random, although their hidden structures seem
more complex than those observed in low dimensional chaotic systems. Previous work tested for non-linearity or the presence of
low dimensional chaos in artificial financial data generated from the Lux-Marchesi model by means of the BDS and Kaplan tests.
Addressing the same model, researchers extended those results by applying Hinich's bi-spectral and White's tests and introducing
the application of Recurrence Quantification Analysis (RQA) on artificial financial data based on Recurrence Rate, Determinism,
Entropy, and Maximal Diagonal Length. Contributing to this research, the present paper has two main goals: (i) to contrast
previous findings with an RQA application on data generated by a more evolved of microscopic model of financial markets
- the Structural Stochastic Volatility (SSV ) model; and (ii) to extend the RQA investigation above with additional recurrence
measures (namely, Divergence, Laminarity, and Maximal Vertical Length) being applied to distinct real-world financial data. The
objective is to assess if RQA results could help to distinguish between artificial and real-world data, even if linearity is rejected
in both cases. It is shown evidence, in agreement previous findings, to support the rejection of linearity or low dimensional
chaotic motion in an artificial financial time series generated from the SSV microscopic model. In addition, it is also shown that
that RQA measures can help to discriminate artificial from real-world financial data, at least when specific RQA measures are
considered.
Keywords – Recurrence Quantification Analysis, Nonlinearity test, Artificial Financial Data

1 Introduction

According to Chen et al. [2], early applications of empirical methods from chaos theory suggested the existence of low
dimensional chaotic motion in empirical financial data. However, such results were questioned, and it is then believed that the
search for low dimensional chaos in financial data was not successful.

On the other hand, the independent and identically distributed (IID) hypotheses is often rejected, at the same time that
raw returns present a quite small degree of autocorrelation. These facts suggest that prices in financial markets do not behave
completely at random, although their hidden structures seem more complex than those observed in low dimensional chaotic
systems.

An artificial financial data generator should be able to reproduce several of the stylized facts often observed in empirical
financial data. For instance, the presence of a unit root in the price dynamics, the existence of heteroscedasticity (the so-called
volatility clustering) and the heavy tails in the distributions of returns, and the long-term dependency of absolute returns. For an
extensive list see [3]. Along with all these structures usually found in empirical data is the very low autocorrelation of returns
which makes the financial markets appear efficient, at least by considering the weak form of information efficiency from the
Efficient Market Hypothesis [10].

By considering artificial data generated from the Lux-Marchesi microscopic model [9], Chen et al. [2] and Belaire-Franch [1]
state that the resulting price dynamics appear less random than the pseudo-random numbers used as shocks to the fundamental
price of the model. Such results are supported by the empirical chaos literature, where randomly reshuffled series usually lead to
higher estimates of the so-called correlation dimension.

Chen et al. [2] tested for non-linearity or the presence of low dimensional chaos in artificial financial data generated from
the Lux-Marchesi model by means of the BDS and Kaplan tests. Belaire-Franch [1], also addressing the Lux-Marchesi model,
extended those results by applying Hinich's bi-spectral and White's tests, and introducing the application of Recurrence Quan-
tification Analysis (RQA) [22] on artificial financial data. Hence, the key results have shown that both simulated and empirical
time series show traces of hidden structure, but apparently a more complicated one than that generated by low-dimensional
deterministic dynamics.

Contributing to this research, the present paper has two main goals. The first is to compare such previous results with
an application of the (RQA) methodology using data generated by a more evolved microscopic model, the Structural Stochastic
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Volatility (SSV ) model [6]. It is shown evidence in agreement with Chen et al. [2] and Belaire-Franch [1] to support the rejection
of linearity or low dimensional chaotic motion in an artificial financial time series generated from the SSV microscopic model.

The second goal concerns the application of the same methodology in two contrasting real-world scenarios, in order to assess
if RQA results could help to distinguish between artificial and actual financial data, even if linearity is rejected in both cases. In
this case, results suggest that the RQA methodology can help to tell artificial and real-world financial data apart, at least when
specific RQA measures are considered. This paper is based on the research conducted by one of the authors during his PhD [7].

In the next section, a simple chaotic system (the logistic map) is used as an illustration to highlight the properties of the
Recurrence Quantification Analysis (RQA) based on the Recurrence Plots(RP ) [5] for detecting linearity or chaos in time
series. Then, surrogate non-linearity tests based on the RQA measures are briefly discussed.

The third section introduces three time series used in this paper. First, the microscopic generating mechanism of the Structural
Stochastic Volatility (SSV ) model [6] is briefly described. Afterward, two real-world financial time series with clearly distinct
behaviors are presented, namely, daily returns from Bitcoin and from the S&P500 index.

Section four shows the results of two analysis performed using surrogate non-linearity tests based onRQA: one following the
exact approach as in Belaire-Franch [1] using only SSV artificial data, and a second making the methodology more comparable
among different time series using also real-world data. Finally, section five presents conclusions.

2 Recurrence Quantification Analysis

Recurrence Quantification Analysis (RQA) is a nonlinear method of analyzing dynamical systems originally proposed by
Zbilut and Webber [22]. It is carried out by calculating some measures on the so-called Recurrence Plot (RP ), which is a
graphical representation of how often in time a trajectory visits the neighbor regions of its phase space.

This section is divided as follows: first, the Logistic Map [13] is introduced and used as an example for outlining the required
procedures in the creation of an RP . Then, selected RQA complexity measures are calculated for different parameters of the
logistic map in order to illustrate their properties. The last part concludes by presenting a surrogate non-linearity test based on
RQA measures, which are used in next section to test artificial financial data generated by the SSV model.

2.1 Logistic Map Example

The logistic map is an early example of an apparently simple mathematical model presenting very complicated dynamics
[13]. It consists of a polynomial mapping of degree 2 in the following form:

xn+1 = rxn(1− xn) (1)

where xn is defined in [0, 1] and can be interpreted as the ratio between some current population at time n and the environment
total capacity, which is assumed to be fixed. The initial population ratio x0 has also to be assumed fixed. The growth parameter
r can be any positive number, although the population ratio interpretation only holds for r ≤ 4. For higher values of r, x does
not respect the [0, 1] range. Values of r below 3 always present a fixed point as long term value, while for values higher than
3 periodic orbits of increasing order start to appear. Finally, for values higher than about 3.57 the logistic map exhibits chaotic
behavior for most values beyond this threshold (except for some regions of periodicity such as r = 3.83).

2.2 Recurrence Plots

Recurrence plots (RP ) were proposed by Eckmann et al. [4] as a tool for visualizing recurrences of dynamical systems. In
order to build an RP for a given time series, one has to first reconstruct its phase-space trajectory. As stated by Takens’ theorem
[18], a topologically equivalent representation of the original high-dimension system can be reconstructed from a time sequence
of observations of its states by means of the method of time delay. This procedure consists of generating, from the original
time series Xt, the set of embedded vectors Xm

t = Xt, Xt+τ , Xt+2τ , · · · , Xt+(m−1)τ , where m is the underlying embedding
dimension of the system, and τ is the time delay used in the reconstruction of the phase space from a time series.

Among several methods for choosing an appropriate value for the embedding dimension m, Zbilut et al. [24] point out that a
heuristic approach is well suited when the final objective is to generate an RP . This approach consists of choosing a very high
value for m (m > 20), and of sequentially decreasing its value until significant differences in the RP appear. Let m∗ denote the
value of m at this point. They state that this difference is due to the existence of false nearest neighbors, and, thus, a value of m
a few dimensions higher than m∗ should be enough for embedding.

Having reconstructed the phase space, the objective of anRP is to check for recurrence patterns, that is, to verify whether the
system roughly returns to neighborhoods already visited in the past. To do so, how close two trajectories should be in order to be
considered a recurrence has also to be defined. This is done by setting a critical value ε. Obviously, if ε is set to zero, then there
would not be any recurrence at all and, on the other hand, if ε is sufficiently large, then every trajectory would be considered a
recurrence.

Hence, an RP is a graphical representation of the square matrix of the distances between all paired time coordinates of the
reconstructed phase space, where a point in the distance matrix is darkened if the distance is smaller than ε and not otherwise. In
other words, a Heaviside function is applied to the distances of each pair of time coordinates obtained by the reconstructed phase
space. By construction, the main diagonal of the distances matrix is always darkened (and it is called line of identity - LOI), and
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the idea of the RP is that if there is a significant amount of determinism in the system, then its phase-space trajectory will visit
previous regions and, thus, the RP will show lines parallel to the main diagonal (LOI).

Marwan [11] summarizes three different structures that can be found in an RP , namely isolated dots, vertical lines, and
diagonal lines. Single dots appear when states are rare or do not last enough time. A diagonal line occurs when a trajectory visits
the same region of phase space that it was in the past. Finally, a vertical line appears when the state of the system does not move,
or moves too slowly, for a period of time.

Figure 1 illustrates the RP of distinct time series patterns. The data were generated by mathematical models of a random,
chaotic, periodic, and linear series, following a similar approach of Takakura et al. [17]. The random data was built using random
integers between 0 and 100. The chaotic data was built by the logistic equation (1) with x0 = 0.2 and r = 3.7, corresponding to a
chaotic state. The values were also multiplied by 100, excluding the decimal place. The periodic series was built by repeating the
numbers 0 to 90 with step 4, for a total of 180 numbers. The linear series was constructed by means of a time series comprised
of prime numbers from 2 to 1,070.

2.3 Complexity Measures Based on the Recurrence Plot

Having seen that the RP is a powerful tool for analyzing dynamic systems, the RQA deals with measures which attempt
to quantify the insights provided by the RP s. For instance, the periodic component of the Logistic Map is captured by long
diagonal lines. Zbilut and Webber [23] developed some measures based on the density and the diagonal structures of the RP ,
and Marwan [11] extended some of these measures considering vertical structures. In an RP , diagonal lines suggest that the
system orbits two regions of the phase space in parallel for some time, while vertical lines indicate that only one region of the
phase space is being visited during that period.

REC - Recurrence Rate

It consists of summing all darkened dots in the RP and dividing them by the total number of dots. Mathematically,

REC(m, τ, ε) =
1

N2

N∑
i,j=1

Rm,εi,j (2)

where N is the length of the RP , and R is the binary distance matrix.
As it can be seen in the equation above, REC measures the density of the RP. Actually, the REC definition coincides with

that from correlation dimension [8]. It is worth stressing that the REC measure can be adjusted by the radius ε defined in the
previous section. Obviously, if one sets ε = 0, then the RP will have no darkened points at all. On the other hand, if ε is set
sufficiently large, then all points in the RP will be darkened.

One then should set ε as small as possible to expose a sufficient number of recurrence structures [12]. Therefore, there are
many options to set ε, e.g. a percentage of the maximum phase space diameter [14], a value that should not exceed 10% of the
mean or the maximum phase space [23], or setting ε so that the REC is approximately 1% [24]. The later option was adopted in
this paper, but setting ε for all series targeting REC to 5%.

DET - Determinism

This measure is calculated by dividing the sum of all darkened points that belong to a diagonal structure by the total number of
darkened points. For deciding whether a recurrence point belongs or not to a diagonal structure, one has to additionally define a
minimal line length lmin. The idea is that a deterministic system produces longer diagonal lines than stochastic ones. Thus, we
have

DET (m, τ, ε, lmin) =

∑N
l=lmin

lpε(l)∑N
i,j=1R

m,ε
i,j

(3)

where pε(l) is the frequency distribution of diagonal line lengths. It should be stressed that if lmin = 1 (that is, every isolated
recurrence point belongs to a line of length 1), then DET = 1.

RATIO - Ratio between DET and REC

The RATIO measure is simply the ratio of DET and REC, as shown below

RATIO(m, τ, ε, lmin) =
DET (m, τ, ε, lmin)

REC(m, τ, ε)
(4)

In the extreme case where lmin = 1 (and, thus,DET = 1),RATIO is equal to the reciprocal ofREC. According to [21], in
certain circumstances, this measure can be used to study phase transitions, because REC can decrease without a correspondent
change in DET .
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L - Average Diagonal Length

This measure gives an impression about how much time two trajectories remain close to each other, and is simply calculated by
obtaining the average value of the line lengths defined by lmin. Therefore, we have

L(m, τ, ε, lmin) =

∑N
l=lmin

lpε(l)∑N
l=lmin

pε(l)
(5)

In this sense, the more often the system shows long periods of recurrent orbits, the longer the average length of the diagonal
lines.

Lmax - Maximal Diagonal Length

This measure is simply given by the maximal diagonal line length in the RP. According to Webber and Zbilut [21], it is related
to the largest positive Lyapunov exponent.

Lmax(m, τ, ε, lmin) =
N

max
l=lmin

lpε(l) (6)

DIV - Divergence

Divergence is the reciprocal of Lmax. The smallest the divergence, the longer is the maximal recurrent orbit in the system.

DIV (m, τ, ε, lmin) =
1

Lmax
(7)

ENT - Entropy

This measure consists of calculating Shannon entropy to the frequency distributions of diagonal line lengths and interpreting this
as the complexity of the deterministic structure of the system. Thus, we have

ENT (m, τ, ε, lmin) = −
N∑

l=lmin

P (l) lnP (l) (8)

where

P (l) =
pε(l)∑N

l=lmin
pε(l)

(9)

In this sense, ENT indicates the diversity of visited regions of the phase space. For instance, if the system visits very often a
few specific regions of the phase space, and only occasionally lots of others regions, ENT will be low. In the extreme case of all
regions being equally visited, ENT reaches its maximum value given by N log(N). However, as stated by Marwan [11], ENT
depends heavily on lmin (that is, the bin size for creating the frequency distribution of line lengths).

LAM - Laminarity

This measure is analogous to DET , but with regard to vertical lines. Vertical structures in a Recurrence Plot indicate stationarity
in a specific region of the phase space. It is calculated by dividing the sum of all darkened points that belong to a vertical structure
by the total number of darkened points. Thus, we have

LAM(m, τ, ε, vmin) =

∑N
v=vmin

vpε(v)∑N
i,j=1R

m,ε
i,j

(10)

where vmin is the minimal length to define a vertical line.

Vmax - Maximal Vertical Length

This measure is simply given by the maximal vertical line length in the Recurrence Plot.

Vmax(m, τ, ε, vmin) =
N

max
v=vmin

vpε(v) (11)

More about those measures can be found in Marwan [11] or even in Trulla et al. [20] if related to the logistic map. In this
paper, they are used in the context of surrogate non-linearity tests.
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As an illustration, table 1 presents the selected RQA complexity measures for a random, chaotic, periodic, and linear time
series presented in figure 1. And figure 2 shows the time series generated by the logistic map with four different values of the
growth parameter, their respective RP , and selected RQA measures. The respective calculated values are shown in table 2. It
can be seen that for the stable value r = 3.52 the majority of theRQAmeasures are different from the other three chaotic values.

Table 1: Selected RQA complexity measures for the ran-
dom, chaotic, periodic and linear time series presented in
figure 1

random chaotic periodic linear
REC 0.034 0.066 0.044 0.031
DET 0.051 0.801 1.0 0.909
Lmax 3 18 157 98
DIV 0.333 0.056 0.006 0.01

RATIO 1.503 12.201 22.946 28.991
LAM 0.061 0.072 0.0 1.0
Vmax 2 7 1 11
ENT 0.305 1.875 1.946 2.211

Table 2: Selected RQA complexity measures for four time
series generated by different growth parameters of the lo-
gistic map. It can be seen that for the stable value r = 3.52
the majority of the RQA measures are different from the
other three chaotic values.

r = 3.52 r = 3.679 r = 3.72 r = 4
REC 0.224 0.072 0.051 0.039
DET 0.987 0.817 0.751 0.552
Lmax 162 19 13 7
DIV 0.006 0.053 0.077 0.143

RATIO 4.413 11.281 14.807 14.285
LAM 0.0 0.536 0.092 0.005
Vmax 1 8 9 3
ENT 2.568 2.783 2.762 1.786

2.4 Surrogate Non-Linearity Test Based on Recurrence Quantification

According to Marwan [11], a satisfying theoretical study on the properties of the measures described in the previous section
is yet to be developed. However, with regard to stationary time series, significance levels of RQA measures can be assessed by
means of surrogate tests. This tests are done in two steps.

First, samples of data generated and following a number of surrogates copies are produced for each sample. Here, the
surrogate copies are generated by the method described in Schreiber and Schmitz [15] called Iterative Amplitude Adjusted Fourier
Transform (IAAFT). The copies have the same autocorrelations and the same probability distribution as the source. The surrogate
copies tends to preserve the linearity (overall form and short-lag relationships) and to destroy any nonlinearity in the original
sequence. An excellent review can be found in Schreiber and Schmitz [16]. Second, the null hypothesis of linearity is rejected
with regard to one of the RQA measures in each sample if all surrogated copies present values smaller than the measure in
original data. As well pointed in Belaire-Franch [1], who also applied the same test on artificial financial data generated by
Lux-Marcehsi model [9], this method prevents false rejections due to deviations from Gaussianity.

3 Data Series

The three data series submitted to a Recurrence Quantification Analysis (RQA) are presented below. The following subsec-
tion is dedicated to explaining the SSV microscopic model [6] of a financial market that is used as the generating process for the
artificial data considered here. In the following, two real-world financial time series with very distinct behavior are presented.

3.1 Structural Stochastic Volatility Model (SSV )

With regard to agent design, this is a two-group model where agents can be fundamentalists or chartists. The main difference
is that fundamentalists respond to deviations from fundamental price, and chartists extrapolate the returns they just observed in
the previous period. Thus, their demand functions df,ct are given by

dft = φ(p∗ − pt) + εft εft ∼ N(0, σ2
f ), φ > 0 (12a)

dct = χ(pt − pt−1) + εct εct ∼ N(0, σ2
c ), χ ≥ 0 (12b)

where the superscripts f and c denote agent affiliation (fundamentalists and chartists, respectively); the subscript t represents
time unit; p is the log of the price; p∗ is the log of the (fixed) fundamental price; εf,c are group-specific random terms (with
zero mean and σf,c standard deviations) that account for intra-group heterogeneity; φ corresponds to the responsiveness of the
fundamentalists to the deviation from fundamental price; and χ corresponds to the responsiveness of the chartists to the last trend
observed.

However, this model also accounts for learning, in the sense that agents can dynamically change their minds and move to
the other group. Therefore, the shares of each group in the total population are allowed to vary over time. Considering that nf,ct
denotes their respective population shares, total excess demand can be written as nft d

f
t + nctd

c
t . Seen that this equation may not

balance, a market maker is assumed to hold a sufficiently large inventory for supplying any excess of demand and for absorbing
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Figure 1: Time series generated by four different patterns and their respective recurrence plots.
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Figure 2: Time series generated by four different growth parameters of the logistic map and their respective recurrence plots.
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any excess of supply. This is done by adjusting the price in the next period by a fixed coefficient that is inversely related to market
liquidity. Considering these specifications, price determination at each time unit is given by

Pt+1 = Pt + µ[nft φ(p
∗ − pt) + nctχ(pt − pt−1) + εt] (13)

where

εt ∼ N(0, σ2
t ), σ2

t = (nft )
2σ2
c + (nct)

2σ2
c (14)

summarizes what the authors coined as Stochastic Structural Volatility (SSV), and can be viewed as a structural modeling
approach to time-varying variance.

What remains to be explained is the learning mechanism that yields the dynamics of the population shares. Even though the
authors presented two different technical approaches for this, namely transition probabilities and discrete choice, only the latter
will be considered here, given its best performance in a comparative study conducted by the same authors [6]. It is worth be-
ginning with the definition of a switching index st, which attempts to measure the relative attractiveness of the fundamentalist’s
strategy in comparison to that of the chartist, given by

st = α0 + αxxt + αd(pt − p∗)2 (15)

where α0 is a predisposition parameter to switch to fundamentalism; αxxt captures the idea of herding behavior; xt is equal
to nft − nct in order to capture the relative presence of the two groups; and αd can be understood as a measure of the influence
of price misalignment (that is, the larger the gap, the higher the attractiveness of switching to fundamentalism). Thus, in the
spirit of the discrete-choice approach, the shares of the total population in each group can be written as nft = 1/[1 + e−βst−1 ]

and nct = 1 − nft , where β is the intensity of choice. Figure 3 compares outputs from a single run of the model with returns of
Standard & Poor’s 500 index as a benchmark.

3.2 Real-world benchmarks

As one of the purposes of this paper is to contrast artificial and real-world RQA applications, two very contrasting real-world
scenarios were selected for the sake of generalization. In addition to the artificially generated data from the SSV model described
above, the RQA methodology is applied to daily returns from the Standard & Poor’s 500 index (closing values) and from the
market price in dollars of one Bitcoin (latest data in UTC time). The three time-series were limited to 2, 000 observations, and
are depicted both in level and in percent returns in figure 4.

As it is clear from the figure, the market value of one Bitcoin has experienced extreme variation during the time frame
considered here. Such a fast and expressive value increase imprints on the time series a consistent upward trend during almost half
of the time period considered. On the other hand, the S&P index presents alternating periods of ups and downs of approximated
magnitude, with the exception of the high volatility period at the center.

4 Surrogate Test Results

This section presents details of the application of surrogated non-linearity tests on the data generated by the SSV model [6]
and on the real-world data series. The first subsection reproduces the approach used in Belaire-Franch [1], while the second uses
a slightly different approach in order to compare RQA of real-world and artificial financial data.

4.1 Testing for non-linear structures in artificial financial data

For the sake of comparability, the same approach in Belaire-Franch [1] was followed. This means that a total sample size of
40, 000 observations were generated by the SSV model, and divide into 20 subsamples of size 2, 000 each. For each of these
subsamples, 20 surrogate copies were produced, and four of the RQA measures, namely REC, DET , ENT and Lmax, were
then compared with the value from the original subsamples. The parameters for those tests are m = 15, τ = 1, lmin = 3 and ε is
endogenously determined to aim a fixed 5% REC in the original series. The null hypothesis of linearity is rejected with regard
to one of these measures if all surrogated copies from a specific subsample present values smaller than its respective subsample.
Results are summarized in table 3.

As it can be seen in table 3, results from different test run are not similar within subsamples. Interestingly, while comparing
test results with the visual appearance of the relevant parts of the time series (Fig. 5), there seems to be a general tendency
towards rejection in periods with larger fluctuations, while in periods with moderate volatility linearity is not rejected.

For instance, in the same way as pointed out by Chen et al. [2] and Belaire-Franch [1], both acceptance and rejection of
linearity are found in different realizations of the same model. However, different complexity measures usually agree within
subsamples, suggesting both that the model is able to reproduce the empirically observed alternating periods of high and low
volatility and also that theRQAmeasures are able to discriminate between these subsamples, as shown in figure 5. It can be seen
that, for the SSV model, the null hypothesis of linearity is more likely to be accepted if subsample volatility is low, and rejected
otherwise.
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(a)

(b)

(c)

(d)

Figure 3: T = 6750 observations of (a) log of price, (b) share of fundamentalists, and (c) returns from a simple run of the
model and (d) daily returns from S&P500 from January 1980 to March 2007. Inputs to the model are as follows: φ = 0.0728,
χ = 0.0896, µ = 0.01, α0 = −0.327, αx = 1.815, αd = 9.6511, σf = 1.0557, σc = 2.9526, p∗ = 0, and β = 1.
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Figure 4: Artificially generated data from the SSV model (a), daily returns from the Standard & Poor’s 500 index (b) and from
the market price in dollars of one Bitcoin (c). The three time-series were limited to 2, 000 observations, and are depicted both in
level and in percent returns
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Table 3: Results of non-linearity tests based on RQA complexity measures for the SSV model. It can be seen that results from
different tests are similar within most sub-periods. Comparing test results with the visual appearance of the relevant parts of the
time series (Fig. 5), there seems to be a general tendency towards rejection in periods with larger fluctuations.

Subsample REC DET ENT Lmax
1 Reject Reject Reject Reject
2 Reject Accept Reject Accept
3 Reject Reject Reject Reject
4 Reject Reject Reject Reject
5 Reject Reject Reject Reject
6 Reject Reject Reject Reject
7 Reject Reject Reject Reject
8 Reject Reject Reject Accept
9 Reject Reject Reject Reject

10 Reject Reject Reject Reject
11 Reject Reject Reject Reject
12 Reject Reject Reject Reject
13 Reject Reject Reject Reject
14 Reject Reject Reject Reject
15 Reject Reject Reject Reject
16 Reject Accept Reject Accept
17 Reject Reject Reject Reject
18 Reject Reject Reject Reject
19 Reject Reject Reject Accept
20 Accept Accept Accept Accept
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Figure 5: Artificial returns for the SSV model. It can be seen in table 3 that results from different tests are similar within most
subperiods. Comparing test results with the visual appearance of the relevant parts of the time series, there seems to be a general
tendency towards rejection in periods with larger fluctuations.
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Figures 6 and 7 show Recurrence Plots of two subsamples from the time series depicted in figure 5. For instance, considering
the SSV model, the null hypothesis of linearity is rejected by all measures in the subsample 5, and not rejected by all measures
in subsample 20. It can be seen that, as also found by Chen et al. [2] and Belaire-Franch [1], the null hypothesis of linearity
is often rejected in periods presenting high volatility dominated by speculative trading. During periods of low volatility, lower
complexity is captured by the RQA measures and, hence, it is easier to accept the null hypothesis of linearity.

In addition, it should be pointed out that the hypothesis of chaos or linearity is rejected for the majority of the subsamples.
This indicates that, if there is a deterministic process ruling the data, it is more complicated than the dynamics from low di-
mensional chaotic systems. When considering the RQA results for the Lux-Marchesi model presented by Belaire-Franch [1],
approximately the same number of rejection is observed here, although a few more occur for the SSV model when compared to
the Lux-Marchesi model. This is somewhat expected since the SSV family of models is known for better reproducing financial
time series [6]. For instance, the null hypothesis of linearity is rejected here 19 out of 20 with respect to the complexity measure
REC (recurrence), while in the results presented by the aforementioned authors this number is 18. The number of rejections
found here (17) is above theirs (15) when considering the DET (determinism) measure. When considering the ENT (entropy)
measure the results presented here show 2 rejections less than the authors (19 against 17), and when considering the Lmax (max-
imum diagonal length) measure this difference is of 2 rejections (15 and 13).

4.2 Testing for non-linear structures in real-world financial data

In this second experiment, some modifications were necessary in order to compare such results to those obtained from
applying RQA to real-world financial data. Particularly, the sample size was restricted to 2, 000 (approximately 5.5 years of
daily data), no division in sub-samples was performed, but 100 surrogated copies were generated instead.

This time the null hypothesis is rejected only if the value of the measure from the original series is significantly different from
the ones generated from the surrogate set. This approach is based on the idea that surrogate data testing is a statistical proof by
contradiction technique similar to parametric bootstrapping [19]. In this sense, the proportion of surrogate copies presenting an
RQA measure higher that its correspondent series is interpreted as a p-value for hypothesis testing. Once more, to make all the
RP complexity measures comparable among the series, the radius ε was set to guarantee that REC of all series and copies to be
5%.

Table 4: The proportions of surrogate copies presenting an RQA measure higher that its correspondent series.

Metric Bitcoin S&P500 SSV
DET 0.0 0.00 0.00
DIV 1.0 1.00 0.78
ENT 0.5 0.01 0.03
LAM 0.0 0.00 0.75
Lmax 0.0 0.00 0.24
Vmax 0.0 0.00 0.34

The range of RQA measures applied in this experiment was extended, to include DIV, LAM, and Vmax in addition to the
previous REC, DET , ENT , and Lmax measures. Of course, REC is not considered because all series and copies have it fixed
at the 5% level.

The parameters for generating the RPs were kept at the previous values of m = 15, τ = 1, lmin = 3, and ε being
endogenously determined to target a fixed 5% REC. However, here such procedure was applied both for the original and the
surrogates copies time series. The proportion of surrogate copies presenting values above its corresponding original series is
presented in table 4 for each RQA measure.

It can be seen that the null hypothesis of linearity has been rejected for all three series only by the DET and RATIO
measures. With respect to DET , it was not able to detect any determinism in data generated by the SSV model neither in the
real-world financial series.

However, for the same time series, the proportions of copies with values above the original for the Lmax, LAM , and Vmax
do not allow the null hypothesis of linearity to be rejected (at least not under a reasonable significance level for the SSV data),
meaning that some structure was detected in the data generated by the model, and it was not present in the real-world time series.
The SSV is a more evolved model when compared with the one used in Belaire-Franch [1], the Lux-Marcehsi model [9], but it
presents a deterministic core.

In this sense, those measures were able to tell the artificial and the real-world series apart, even being the SP&500 and the
Bitcoin indexes so different in statistical terms. Noticing that DIV is the reciprocal of Lmax, the null hypothesis could not be
rejected for the three series by both measures, neither helped to discriminate between artificial and real-world series. With respect
to the ENT measure, its p-value reveals an interesting pattern by capturing the fact that the Bitcoin has a steady uptrend, and it
was enough to avoid its null hypothesis rejection for linearity.
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5 Conclusion

The main interest in this work is twofold. First, to extend the results presented by Chen et al. [2] and Belaire-Franch [1]
using the Recurrence Quantification Analysis (RQA) in data generated by a more evolved microscopic model (SSV ). Second,
to show how to apply and compare RQA complexity measures among different data, including artificial and real-world data.
More specifically, artificial data generated by the SSV model and two financial data series with very distinct behavior by nature:
Bitcoin, and S&P500.

In the second section, the RQA approach was shown to be powerful by allowing one to discriminate between the different
periods of periodic orbits and chaotic motion of the logistic map.

Following the introduction of the Structural Stochastic Volatility (SSV ), the results show that the RQA approach combined
with a surrogate linearity test is able to discriminate between periods of high and low volatility in artificial financial data, in
the same way as pointed out by Chen et al. [2] using traditional non-linearity tests, and later by Belaire-Franch [1] addressing
data from the Lux-Marchesi model. In addition, an approach for making RQA measures comparable among distinct series was
explored, revealing that RQA measures are also a valuable resource that can be used to characterize artificial and real-world
series.

Again in agreement with Chen et al. [2], it can be seen that the hypothesis of linearity is rejected for the majority of the
subsamples of data generated from the Structural Stochastic Volatility (SSV ) model. In this sense, this work extends and
supports the results presented by Chen et al. [2] using a different non-linearity test based on the RQA, and by checking if such
results are confirmed in a different artificial market model (SSV ). Finally, the results add evidence in agreement with Chen et al.
[2] and Belaire-Franch [1] to support the rejection of linearity or low dimensional chaotic motion in an artificial financial time
series generated from the SSV microscopic model, which is a model that better replicate dysfunctions in financial markets.

To conclude, previous work tested for non-linearity or the presence of low dimensional chaos both in artificial and real-
world financial time series. The contribution of this paper to this research is twofold: first to contrast previous findings with the
application of the RQA methodology with data generated by a more evolved microscopic model of artificial market, and second
to evaluate the RQA results obtained above with the same methodology being applied to real-world financial data, in order to
assess ifRQA results could help to distinguish between artificial and real-world data, even if linearity is rejected in both cases. It
is shown evidence, in agreement previous findings, to support the rejection of linearity or low dimensional chaotic motion in an
artificial financial time series generated from the SSV microscopic model. In addition, it is also shown that that RQA measures
can help to discriminate artificial from real-world financial data, at least when specific RQA measures are considered.
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Figure 6: Subsample number 5 and its Recurrence Plot from the SSV model time series depicted in figure 5. The difference
between this subsample and subsample number 20 is highlighted in their Recurrence Plots and in table 3. In subsample number
5, the null hypothesis of linearity is rejected by all four measures, while in the subsample number 20 the null is not rejected by
any of the measures. It can be seen that, as also found by [1] and [2], the null hypothesis of linearity is more often rejected in
periods presenting high volatility dominated by speculative trading. During periods of low volatility, the lower complexity of the
time series is captured by the RQA measures, thus, making it is easier to the null hypothesis of linearity for being accepted.
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Figure 7: Subsample number 20 and its Recurrence Plot from the SSV model time series depicted in figure 5. The difference
between this subsample and subsample number 5 is highlighted in their Recurrence Plots and in table 3. In subsample number 20,
the null hypothesis of linearity is not rejected by any of the four measures, while in the subsample number 5 the null is rejected
by all the measures. It can be seen that, as also found by [1] and [2], the null hypothesis of linearity is more often rejected in
periods presenting high volatility dominated by speculative trading. During periods of low volatility, the lower complexity of the
time series is captured by the RQA measures, thus, making it is easier to the null hypothesis of linearity for being accepted.
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